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Summary

Missing data are common in longitudinal cohort studies and can lead to bias, particularly in 

studies with informative missingness. Many common methods for handling informatively missing 

data in survey samples require correctly specifying a model for missingness. Although doubly 

robust methods exist to provide unbiased regression coefficients in the presence of missing 

outcome data, these methods do not account for correlation due to clustering inherent in 

longitudinal or cluster-sampled studies. In this work, we developed a doubly robust method to 

estimate the regression of an outcome on a predictor in the presence of missing multilevel data 

on the outcome, which results in consistent estimation of regression coefficients assuming correct 

specification of either (1) the probability of missingness or (2) the outcome model. This method 

involves specification of separate hierarchical models for missingness and for the outcome, 

conditional on observed auxiliary variables and cluster-specific random effects, to account for 

correlation among observations. We showed this proposed estimator is doubly robust and derived 

its asymptotic distribution, conducted simulation studies to compare the method to an existing 
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doubly robust method developed for independent data, and applied the method to data from the 

China Health and Nutrition Survey, an ongoing multilevel longitudinal cohort study.
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1 | INTRODUCTION

The China Health and Nutrition Survey (CHNS) is an ongoing longitudinal cohort study, 

consisting of a diverse population-based sample1. The CHNS was implemented to study 

the effects of various government programs and the rapidly changing social and economic 

environments in China on the nutrition and health of the population. The original CHNS 

cohort included households from eight provinces in China, with households from additional 

provinces and municipalities added in later waves of data collection, resulting in a cohort 

of about 7,200 households with over 30,000 people from 15 provinces and municipalities, 

with nine waves of data collection that started in 1991. A diverse set of individual-level 

and household-level data was collected via household-based surveys and physical exams, in 

addition to the collection of community-level data.

The CHNS cohort includes entire households (i.e., all participants from a given household) 

and multiple households per community (i.e., geographic neighborhood), resulting in natural 

clusters in the data. In addition, repeated measures from multiple study visits are clustered 

within individuals. This natural clustering introduces correlation to the data, which can 

complicate statistical analysis. Similarly to most long-term, longitudinal studies, CHNS 

suffers from a substantial amount of missing data due to individual- or household-level 

non-response at particular years of data collection. It can be of interest to estimate the 

effect of an independent variable on an outcome variable via regression analysis. However, 

estimating this regression based only on the subset of the sample with non-missing outcome 

data may result in biased effect estimates if the missing values of the outcome variable differ 

systematically from the observed values after conditioning on the observed variables in the 

model, including observed model covariates and observed outcome data within the same 

cluster2. The CHNS collected a rich set of variables, and so if there is a set of observed 

(i.e., non-missing) variables that are related either to the outcome variable or to whether an 

individual provides outcome data, then it may be possible to use these auxiliary variables to 

adjust for the missing data in certain situations.

Many methods currently exist to accommodate missing data in regression analysis. One 

commonly used method is multiple imputation, which involves imputing (i.e., filling-in) the 

missing data multiple times, performing identical analyses on each set of imputed data using 

standard statistical methods for complete data, and combining the results3. Another common 

method for handling missing data is inverse probability weighting (IPW), which involves 

estimating the probability of data being non-missing for each record, and performing 

statistical analysis among the sub-sample with non-missing data, weighted by the inverse 

of this estimated probability4. However, the validity of multiple imputation depends on 
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correct specification of the imputation model3, and IPW requires correct specification of 

a model for the probability of missingness4. Therefore, there is need for missing data 

methods that have the double robustness property, meaning that the method is unbiased 

if either the imputation model (i.e., model for the missing variable) or the probability of 

missingness model, but not necessarily both, is specified correctly. Several doubly robust 

methods have been developed to estimate a regression of an outcome variable on a predictor 

variable in the presence of missing outcome data for independent records. Scharfstein et al.5 

proposed estimating the probability that the outcome is observed (i.e., non-missing) for each 

data record based on a specified working model for missingness, estimating the predicted 

outcome for each data record based on a specified working model for the outcome, and 

solving a set of estimating equations that depends on the predicted non-missing probabilities 

and predicted outcomes to estimate the regression coefficients of interest. In addition, Zeng 

and Chen6 also proposed estimating the non-missing probability and predicted outcome for 

each data record based on specified working models, and estimating the regression estimator 

of interest based on these predicted non-missing probabilities and predicted outcomes and a 

partition of the support of the predictor variable(s) of interest. When the working model for 

either missingness or the outcome (or both) is specified correctly, both the Scharfstein et al.5 

estimator and the Zeng and Chen6 estimator are consistent for the true effect of the predictor 

on the outcome. However, both of these methods were developed for independent data, 

and therefore estimate the non-missing probabilities and predicted outcomes from working 

models that would ignore any multilevel data structure.

We build upon the Scharfstein et al.5 method to propose a new doubly robust approach to 

estimate the association between a predictor and outcome variable for multilevel data, when 

the outcome variable is missing for some records. Since the CHNS data contain natural 

clusters, it is expected that missingness for different records within the same cluster may 

be correlated, and similarly the outcome variable may be correlated among different records 

within the same cluster. Therefore, we propose estimating the probability of missingness and 

the mean of the outcome variable conditional on cluster-specific random effects (in addition 

to observed data), which differs from existing doubly robust methods5,6 that estimate these 

quantities conditional on observed variables only. Allowing cluster-specific random effects 

in the working models may improve the plausibility that one or both of the working models 

will be specified correctly, particularly when there is high within-cluster correlation in 

the missingness and/or the outcome variable beyond what can be explained by observed 

covariates.

The rest of the paper is organized in the following way. Section 2 provides details for 

regression estimation using our new approach, and shows that this approach is doubly 

robust. Section 3 provides results from a simulation study comparing the numerical 

performance of this new approach with other existing methods. Section 4 illustrates the 

use of this approach on data from the CHNS. Section 5 concludes with a discussion.
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2 | DOUBLY ROBUST METHOD FOR SEMIPARAMETRIC REGRESSION 

WITH MISSING DATA

2.1 | Notation

Without loss of generality, let us focus on the case with two-level data (e.g., repeated 

measures data on independent individuals), where j = 1, …, m denotes the cluster (i.e., level 

2), i = 1, …, nj denotes the data record within cluster j (i.e., level 1), and n = ∑j = 1
m nj (a 

discussion of the extension to more than two levels is included in Section 5). Let Yij denote 

an outcome of interest, Rij denote an indicator that Yij is observed (i.e., non-missing), Xij 

denote a vector of predictors for Yij, and Zij denote a high-dimensional vector of auxiliary 

variables related to missingness and/or the outcome variable (including all variables in Xij). 

Let Yj = Y 1j, …, Y njj ′, Rj = R1j, …, Rnjj ′, Xj = X1j…Xnjj ′ be a matrix of dimension nj 

by p where p equals the number of predictor variables, Zj = Z1j…Znjj ′ be a matrix of 

dimension nj by q where q equals the number of auxiliary variables, and the data (Rj, Yj, Zj) 

be independent and identically distributed for j = 1, …, m. Let Y = (Y1, …, Ym)′ and R = 

(R1, …, Rm)′ be vectors of length n, X = X1′ …Xm′ ′ be a matrix of dimension n by p, and 

Z = Z1′ …Zm′ ′ be a matrix of dimension n by q. Let

E Y ij ∣ Xij = μ(Xij
Tβ) (1)

be the semi-parametric regression model of interest, where β is an unknown vector of 

constant regression coefficients with dimension p, β* is the true value of β, and μ(·) is some 

known function of XTβ. Throughout the remainder of the paper, assume that Rij and Yij 

are independent conditional on the auxiliary variables Zij and independent cluster-specific 

random vectors aj and bj (i.e., Rij ⊥ Yij|Zij, aj, bj), that Rij depends on Zij and aj only 

(i.e., Rij ⊥ bj|Zij, aj) and Yij depends on Zij and bj only (i.e., Yij ⊥ aj|Zij, bj), and that the 

parameters for the joint distributions for (Rj, aj) and (Yj, bj) conditional on Zj are distinct 

(i.e., the model for the joint distribution for (Rj, aj) conditional on Zj and the model for the 

joint distribution for (Yj, bj) conditional on Zj do not share the parameters); see assumption 

(A1) in Web Appendix A in the Supplementary Materials. Note that taken together, 

these assumptions imply that the outcome data are missing at random (MAR)2; in other 

words, these assumptions imply that the outcome variable is independent of missingness, 

conditional on the observed data (i.e., Rij ⊥ Yij|Zij). These assumed relationships between 

the different variables described here are illustrated in Figure 1.

2.2 | Proposed Doubly Robust Method for Multilevel Data

First, specify hierarchical working models for [Rj, aj|Zj] and [Yj, bj|Zj], where aj and 

bj are independent vectors of cluster-specific random effects to account for within-cluster 

correlation in missingness and the outcome variable respectively; let the cluster-specific 

random effects (aj, bj) be independent and identically distributed for j = 1, …, m. For 

example, generalized linear mixed effect models may be specified for [Rj, aj|Zj] and 

[Yj, bj|Zj], with linear predictors Zij
Tα and Zij

Tγ and cluster-specific random intercepts aj 
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and bj respectively. If the random effects were known, then the predicted values from 

these working models, πij aj = P Rij ∣ Zij, aj; αm  and ∣ vij bj = E Y ij ∣ Zij, bj; γm , could be 

substituted in the set of doubly robust estimating equations for independent data introduced 

by Scharfstein et al.5, resulting in the following estimating equations conditional on the 

random effects:

0 = Sm(β ∣ aj, bj; αm, τm, γm, ϕm) = ∑
i, j

Rij
πij(aj)

(Y ij − μ(Xij
Tβ))∂βμ(Xij

Tβ)

− Rij
πij(aj)

− 1 (vij(bj) − μ(Xij
Tβ))∂βμ(Xij

Tβ) .
(2)

Solving this set of conditional estimating equations would result in a doubly robust estimator 

for β if the random effects aj and bj were known5. However, the random effects aj and bj 

are unknown in practice, but rather are assumed to be randomly distributed according to 

some specified working distribution. Therefore, it is necessary to integrate the estimating 

equations over the posterior distribution of the random effects conditional on the observed 

data that is implied by the working models, p aj, bj ∣ Rj, RjYj, Zj; αm, τm, γm, ϕm , to obtain a 

revised set of estimating equations that depend on observed data only. Let p Rij ∣ Zij, aj; α
be the working density for [Rij|Zij, aj], p Y ij ∣ Zij, bj; γ  be the working density for [Yij|Zij, 

bj], p aj; τ  be the working density for the random effects aj, and p bj; ϕ  be the working 

density for the random effects bj. The posterior densities for the random effects (aj, bj) 

are conditioned on the observed data in cluster j. Assumption (A1) (see Web Appendix A 

in the Supplementary Materials) implies that the random effects aj and bj are independent 

conditional on the observed data, that the working posterior distribution for aj depends only 

on the working model [Rj, aj|Zj; α, τ], and that the working posterior distribution for bj 

depends only on the working model [Yj, bj|Zj; γ, ϕ]:

p(aj, bj ∣ Rj, RjYj, Zj; αm, τm, γm, ϕm)
∝ p(aj, bj; αm, τm, γm, ϕm)

∏
i = 1

nj
p(Rij, RijY ij ∣ Zij, aj, bj; αm, τm, γm, ϕm)

= p(aj; τm) ∏
i = 1

nj
p(Rij ∣ Zij, aj; αm) p(bj; ϕm) ∏

i = 1

nj
p(Y ij ∣ Zij, bj, γm)Rij

∝p(aj Rj, Zj; αm, τm)p(bj Rj, RjYj, Zj; γmϕm
),

(3)

where p aj ∣ Rj, Zj; αm, τm  is the posterior density of aj conditional on the observed 

data based on the working model for [Rj, aj|Zj] and the estimated α and τ, and 

p bj ∣ Rj, RjYj, Zj, γm, ϕm  is the posterior density of bj conditional on the observed data 

based on the working model for [Yj, bj|Zj] and the estimated γ and ϕ.

Therefore, we obtain the following set of estimating equations:
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0 = Sm(β; αm, τm, γm, ϕm)
= ∑

i, j
∫ Rij

πij(aj)
(Y ij − μ(Xij

Tβ))∂βμ(Xij
Tβ)

− Rij
πij(aj)

− 1 (vij(bj) − μ(Xij
Tβ))∂βμ(Xij

Tβ)

p(aj, bj ∣ R, RY , Z; αm, τm, γm, ϕm)dajdbj

= ∑
i, j

∫ Rij
πij(aj)

(Y ij − μ(Xij
Tβ))∂βμ(Xij

Tβ)

− Rij
πij(aj)

− 1 (vij(bj) − μ(Xij
Tβ))∂βμ(Xij

Tβ)

p(aj ∣ Rj, Zj; αm, τm)p(bj ∣ Rj, RjYj, Zj; γm, ϕm)dajdbj

≡ ∑
j = 1

m
g(Rj, Yj, Zj; β, αm, τm, γm, ϕm) .

(4)

Since these estimating equations are a function of the observed data (R, RY, Z) only, we 

propose to estimate β by solving these estimating equations.

Since the working model parameters (α, τ, γ, ϕ) are unknown in practice, in order to solve 

the estimating equations, it is necessary to obtain estimates of these parameters, such as 

by maximizing the observed data likelihoods for Y and R. For example, if the models 

[Rj, aj|Zj] and [Yj, bj|Zj] are generalized linear mixed effects models, then the observed 

data likelihoods for R and Y are of the form ∏j = 1
m ∫ ∏i = 1

nj p Rij ∣ Zij, aj; α p aj; τ daj and 

∏j = 1
m ∫ ∏i = 1

nj p Y ij ∣ Zij, bj; γ Rijp bj; ϕ dbj respectively, and the working model parameter 

estimates (αm, τm, γm, ϕm) are the values that maximize these observed data likelihoods. 

After estimating the working model parameters, these estimates are substituted into the 

estimating equations 0 = Sm β; αm, τm, γm, ϕm , and these estimating equations are solved for 

β to obtain the effect estimate of interest,βm. The observed data likelihood functions for the 

working models and the final set of estimating equations can be maximized or solved by EM 

algorithm, Markov Chain Monte Carlo, or Gauss-Hermite quadrature.

2.3 | Asymptotic Properties

We now present arguments to justify the consistency and asymptotic normality of the 

proposed estimator βm when at least one of the hierarchical working models, [Rj, aj|

Zj] and/or [Yj, bj|Zj], is specified correctly. For example, the working model for [Rj, 

aj|Zj] would be specified correctly if both the working model for Rij conditional on aj, 

p Rij ∣ Zij, aj; α , and the working density for aj, p aj; τ , are specified correctly; similarly, 

the working model for [Yj, bj|Zj] would be specified correctly if both the working model 

for Yij conditional on bj, p Y ij ∣ Zij, bj; γ , and the working density for bj, p bj; ϕ , are 

specified correctly. Let ∂α,τ denote a vector of partial derivatives and ∂α, τ
2  denote a matrix of 

second-order derivatives with respect to α and τ; let ∂γ,ϕ and ∂γ, ϕ
2  denote the corresponding 

operations with respect to γ and ϕ.
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Generally, note that the proposed estimating equations 4 can be re-written as the following:

0 = Sm(β; αm, τm, γm, ϕm)

= ∑
i, j

∫ Rij
πij aj

Y ij − Rij
πij aj

− 1 vij bj p(aj ∣ Rj, Zj; αm, τm)

p(bj ∣ Rj, RjYj, Zj; γm, ϕm)dajdbj − μ(Xij
Tβ) ∂βμ(Xij

Tβ)

= ∑
i, j

Qij − μ(Xij
Tβ) ∂βμ(Xij

Tβ),

(5)

where 

Qij = ∫
Rij

πij aj
Y ij −

Rij
πij aj

− 1 vij bj p(aj ∣ Rj, Zj; αm, τm)p(bj ∣ Rj, RjYj, Zj; γm, ϕm)dajdbj. 

The estimating equations (5) are equivalent to a generalized estimating equations (GEE) 

model to estimate β. Therefore, it follows that this set of proposed estimating equations 

inherits the properties of standard GEE models (e.g., unique solution for β, identifiability of 

β from the observed data distribution) under some mild regularity conditions.

According to maximum likelihood theory for generalized linear mixed effect models7, 

αm, τm, γm, ϕm  converge in probability to a constant (α*, τ*, γ*, ϕ*), where (α*, τ*) 

are the true parameter values if the working model [Rj, aj|Zj; α, τ] is correct, and (γ*, 

ϕ*) are the true parameter values if the working model [Yj, bj|Zj; γ, ϕ] is correct. Let 

πij∗ aj = P Rij ∣ Zij, aj; α ∗  and vij∗ bj = E Y ij ∣ Zij, bj; γ ∗  based on the specified working 

models. It can be shown by Taylor series expansion of the log-likelihood for each working 

model around the limits of the maximum likelihood estimates of the parameters that

m1/2 αm − α*
τm − τ* = − m−1/2E ∂α, τ

2 l α * , τ * −1 ∑
j = 1

m
∂α, τlj α*, τ* + op(1)

≡ ψα, τ R, Z; α * , τ * + op(1)
(6)

Where lj(α, τ) = log ∫ ∏i = 1
nj p Rij ∣ Zij, aj; α p aj; τ daj , and

m1/2
γm − γ *
ϕm − ϕ *

= − m−1/2E[∂γ, ϕ
2 l γ * , ϕ * ]−1 ∑

j = 1

m
∂γ, ϕlj γ * , ϕ * + op(1)

≡ ψγ, ϕ R, RY , Z; γ * , ϕ * + op(1)
(7)

where lj(γ, ϕ) = log ∫ ∏i = 1
nj p Y ij ∣ Zij, bj; γ Rijp bj; ϕ dbj .

The following results show that the proposed estimating equations are unbiased for β if at 

least one of the working models is correct, and therefore βm is consistent for the true value 

β*. It is also shown that m1/2 βm − β *  is asymptotically normally distributed.

Lemma 1.—Let E Y ij ∣ Xij = μ Xij
Tβ * , and either the working model [Rj, aj|Zj] or the 

working model [Yj, bj|Zj] be correct. Then E[Sm(β*; α*, τ*, γ*, ϕ*)] = 0.
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An outline of the proof is presented in the Supplementary Materials (Web Appendix 

B). In particular, this proof follows from (1) the independence of the posterior 

distributions of the random effects aj and bj, (2) ∫
Rij

πij* aj
p aj ∣ Rj, Zj; α * , τ * daj

= E
Rij

πij* aj
∣ Rj, RjYj, Zj  if working model [Rj, aj|Zj; α, τ] is correct, and 

(3) ∫ (vij*(bj) − μ(Xij
Tβ * ))∂βμ(Xij

Tβ * )p(bj ∣ Rj, RjYj, Zj; γ * , ϕ * )dbj
= E (vij*(bj) − μ(Xij

Tβ * ))∂βμ(Xij
Tβ * ) ∣ Rj, RjYj, Zj

 if working model 

[Yj, bj |Zj; γ, ϕ] is correct.

Theorem 1.—Let E Y ij ∣ Xij = μ Xij
Tβ * , and either the working model [Rj, aj|Zj] or the 

working model [Yj, bj|Zj] be correct. Under assumptions (A1)-(A8) (see Web Appendix A 

in the Supplementary Materials), βm converges in probability to the true parameter value 

β*, and m1/2 βm − β *  converges to a normal distribution with mean zero and a covariance 

matrix that can be estimated by

1
m2 E ∂βg(R, Y, Z; βm, αm, τm, γm, ϕm) −1

∑
j = 1

m
−g(Rj, Yj, Zj, βm, αm, τm, γm, ϕm)

+E ∂α, τg(R, Y, Z; βm, αm, τm, γm, ϕm) E ∂α, τ
2 l(αm, τm) −1∂α, τlj(αm, τm)

+E ∂γ, ϕg(R, Y, Z; βm, αm, τm, γm, ϕm) E ∂γ, ϕ
2 l(γm, ϕm) −1∂γ, ϕlj(γm, ϕm)

⊗ 2

E ∂βg(R, Y, Z; βm, αm, τm, γm, ϕm) −1,

(8)

where E[ ⋅ ] indicates empirical mean, and u⊗2 = uuT for a px1 vector u.

An outline of the proof is presented in the Supplementary Materials (Web Appendix B). 

Essentially the proof involves applying the asymptotic properties of (αm, τm, γm, ϕm), Lemma 

1, and a Taylor series expansion of Sm(βm; α * , τ * , γ * , ϕ * ) around β* to obtain that

m1/2 βm − β * = m−1/2 E ∂βg R, Y, Z; β * , α * , τ * , γ * , ϕ * −1

∑
j = 1

m
−g Rj, Yj, Zj; β * , α * , τ * , γ * , ϕ *

+E ∂α, τg R, Y, Z; β * , α * , τ * , γ * , ϕ * E ∂α, τ
2 l α * , τ * −1∂α, τlj α * , τ *

+E ∂γ, ϕg R, Y, Z; β * , α * , τ * , γ * , ϕ * E ∂γ, ϕ
2 l γ * , ϕ * −1∂γ, ϕlj γ * , ϕ * + op(1) .

(9)

The covariance estimator for βm can be obtained based on the empirical covariance of this 

expression for m1/2 βm − β *  substituting βm, αm, γm, τm, ϕm  for (β*; α*, γ*, τ*, ϕ*), and 

substituting empirical means for expected values.
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3 | SIMULATION STUDY

3.1 | General Set-Up

We conducted simulation studies to examine the performance of our proposed estimator and 

to compare its performance to existing methods in finite samples. One thousand datasets 

were simulated, each with 1000 clusters with 2 data records each (i.e., 1000 individuals with 

data for 2 time-points each). Let j indicate the individual and i = 1, 2 indicate the time-point. 

One time-varying predictor variable of interest, Xj =
X1j
X2j

, was generated for each cluster 

from a multivariate normal distribution, N2
1.5
1.5 , 1 0.3

0.3 1 , where the first element of the 

random vector Xj corresponded to the first time-point and the second element corresponded 

to the second time-point. Similarly, three time-varying auxiliary variables were generated 

for each cluster based on the value of Xj:Z1, j =
Z1, 1j
Z1, 2j

N2
0.2 + 0.2X1j
0.2 + 0.2X2j

, 1 0.5
0.5 1 , 

Z2, j =
Z2.1j
Z2, j

N2
0.7 + 0.2X1j
0.7 + 0.2X2j

, 1 0.1
0.1 1 , and Z3,ij ~ Exp(mean = |0.7 + 0.2Xij |). In 

addition, one time-invariant auxiliary variable was generated for each cluster: Z4,1j = Z4,2j 

~ Bernoulli(0.5). Two random intercepts, aj (used to generate missingness Rij) and bj (used 

to generate the outcome Yij), were independently generated from a normal distribution with 

mean 0 and variance 1.We considered the outcome variable Yij to be continuous (presented 

in this section) and binary (see Web Appendix C in the Supplementary Materials).

For the proposed method, separate mixed effects models were fit for missingness Rij 

(logistic mixed effect model) and the outcome Yij (linear mixed effect model) to estimate 

the working model parameters, each with a cluster-specific intercept specified as normally 

distributed with mean zero; in other words, the working model for missingness was logit{P 
(Rij = 1|Zij, aj)} = Zijα + aj and aj ~ N(0, τ), and the working model for the outcome was 

E[Yij |Zij, bj ] = Zijγ + bj and bj ~ N(0, ϕ), where Zij is a vector of covariates for data 

record i from cluster j. Since the random effects were assumed to be normally distributed, all 

intractable integrals were evaluated using Gauss-Hermite quadrature. The Newton-Raphson 

algorithm was used to solve the estimating equations Sm(β) for β. Mixed effects models 

were fit using PROC GLIMMIX in SAS. An R function written by the authors was used 

to solve the estimating equations and estimate the covariance matrix, using the estimated 

working model parameters.

The proposed method was also compared to an available case analysis (i.e., dropping 

missing records from the dataset prior to statistical analysis) and the method introduced by 

Scharfstein et al.5 for independent data (marginal approach). For the available case analysis, 

generalized estimating equations with an exchangeable working correlation matrix were 

used to estimate the marginal effect of Xij on Yij (ignoring the additional information 

provided by the auxiliary variables Zij). For the marginal approach, independent-data 

regression models were fit for Rij (logistic regression) and Yij (linear regression) conditional 

on Zij (ignoring the clustering in the data), and β was estimated as the solution to 

the estimating equations introduced by Scharfstein et al.5, where πij was predicted from 
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the estimated independent-data model for Rij and vij was predicted from the estimated 

independent-data model for Yij. Note that for the working models with a non-identity link 

function (e.g., logistic regression for Rij), even the marginal working model fit with the 

correct set of fixed effects was misspecified since Rij and Yij were generated based on 

models conditional on a random intercept.

3.2 | Misspecification of Working Models by Omitting an Important Covariate

First, we considered the performance of the proposed method when either working model 

was misspecified by omitting an important covariate. The outcome variable Yij was 

generated from a normal distribution with mean (1 + Z1,ij + Z2,ij + γ3 ∗ Z3,ij + Z4,ij + Xij 

+ bj) and variance 1, where γ3 equaled 0.2 (weak effect) or 1 (strong effect). An indicator 

that Yij was observed (Rij) was generated from a Bernoulli distribution with probability 

logit−1(α0 − Z1,ij + Z2,ij + α3 ∗ Z3,ij − Z4,ij + Xij + aj), where α0 equaled 0.5 (20% missing) 

or −1 (35% missing), and α3 equaled 0.2 (weak effect) or 1 (strong effect). For both the 

proposed multilevel approach and the marginal approach, each working model was either fit 

using the correct set of fixed effects, or by excluding Z3,ij from the model.

Table 1 presents bias, empirical standard deviation of the estimates (SDE), average estimated 

standard errors (ESE), mean square error (MSE), and coverage rates for 95% confidence 

intervals (CP) for the proposed multilevel approach. Table 2 presents ratios of the empirical 

variance and MSE for the multilevel approach to the available case and marginal approaches. 

The proposed multilevel approach exhibited essentially no bias when either the working 

model for [Rj, aj|Zj] and/or the working model for [Yj, bj|Zj] were specified correctly, 

confirming the double robustness property. Bias for the multilevel approach tended to 

decrease as the percent missing decreased. Also, bias when the [Yj, bj|Zj] working model 

was misspecified tended to decrease as the magnitude of the omitted effect decreased. The 

95% confidence interval coverage rates were nearly at the nominal level when at least one 

working model was specified correctly.

The proposed standard error estimator for the multilevel approach approximated the SDE 

well in most cases. One exception was the scenario with 35% missing data and a strong 

omitted effect, where the estimated standard errors largely over-estimated the SDE for a few 

simulated datasets, resulting in an ESE that was considerably larger than the SDE; when 

the simulated datasets with the largest estimated standard errors were removed (≤5 datasets), 

the ESE approximated the SDE similarly well as the other scenarios. Additionally, when 

the proportion of missing data in each dataset was reduced to 30% (results not shown), 

the ESE approximated the SDE well, suggesting that although the proposed standard error 

estimator performs well for moderate amounts of missing data (e.g., ≤30%), it may be over-

estimated in some situations when the proportion of missing data is particularly high. Both 

the empirical variance and MSE were almost always smaller for the proposed multilevel 

approach than the marginal approach that ignored the clustering, and this difference in 

the empirical variance and MSE between those two approaches was generally greater for 

increased percent missing. Analogous simulation results considering a binary outcome 

variable (Y) are presented in the Supplementary Materials (Web Tables 1 and 2); results 

from simulations with a binary outcome variable were similar to simulations with the 
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continuous outcome presented here except that the reductions in the empirical variance and 

MSE for the proposed method compared to the marginal method were smaller for the binary 

outcome than for the continuous outcome.

3.3 | Misspecification of Working Models by Omitting a Non-Linear Effect

We also considered the performance of the proposed method when either working model 

was misspecified by omitting a quadratic term. The outcome variable Yij was generated 

from a normal distribution with mean (1 + Z1,ij + Z2,ij + Z3,ij + Z4,ij + γ5 ∗ Z2, ij
2  + Xij + 

bj) and variance 1, where γ5 equaled 0.1 (weak effect) or 0.5 (strong effect). An indicator 

that Yij was observed (Rij) was generated from a Bernoulli distribution with probability 

logit−1(α0 − Z1,ij + Z2,ij + Z3,ij − Z4,ij + α5 ∗ Z2, ij
2  + Xij + aj), where α0 equaled 0.5 (20% 

missing) or −1 (35% missing) and α5 equaled −0.1 (weak effect) or −0.5 (strong effect). For 

both the proposed multilevel approach and the marginal approach, each working model was 

either fit using the correct set of fixed effects, or by excluding the quadratic term Z2, ij
2  from 

the model.

Table 3 presents bias, SDE, ESE, MSE, and CP for the proposed multilevel approach. 

Table 4 presents ratios of the empirical variance and MSE for the multilevel approach to 

the available case and marginal approaches. The proposed multilevel approach exhibited 

essentially no bias when either the working model for [Rj, aj|Zj] and/or the working model 

for [Yj, bj|Zj] were specified correctly, confirming the double robustness property. Bias for 

the multilevel approach tended to decrease as the percent missing decreased. Also, bias 

when the [Yj, bj|Zj] working model was misspecified tended to decrease as the magnitude 

of the omitted effect decreased. The 95% confidence interval coverage rates were nearly 

at the nominal level for almost all cases where at least one working model was specified 

correctly. The proposed standard error estimator for the multilevel approach approximated 

the SDE well in most cases. Both the empirical variance and MSE were almost always 

smaller for the proposed multilevel approach than the marginal approach, and this difference 

in the empirical variance and MSE between those two approaches was generally greater 

for increased percent missing. Analogous simulation results considering a binary outcome 

variable (Yij) are presented in the Supplementary Materials (Web Tables 3 and 4); results 

from simulations with a binary outcome variable were similar to simulations with the 

continuous outcome presented here except that the reductions in the empirical variance and 

MSE for the proposed method compared to the marginal method were smaller for the binary 

outcome than for the continuous outcome.

4 | APPLICATION TO CHNS

We applied the proposed method to data from the CHNS. Starting in 2009, CHNS collected 

fasting blood samples on participants age seven years or older, providing data on a variety 

of cardiovascular and nutrition biomarkers8. For our analysis, we are interested in estimating 

the mean trajectory of triglycerides (mg/dL) as measured via fasting blood samples, both 

continuous (mg/dL) and dichotomized (high triglycerides defined as ≥ 150 mg/dL), adjusted 

for sex and age in 2009 (the first wave that collected fasting blood samples). Fasting blood 

samples were collected during 2009 and 2015 study waves, and so analysis was restricted 
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to those two study years. The analysis was restricted to participants who were from the nine 

provinces included in the study in 2009, were adults (at least 18 years old) in 2009, and 

participated in the 2009 and/or 2015 wave of data collection (13,370 study participants). 

However, 7,225 individuals from this sample did not participate in either the 2009 or 2015 

wave, and an additional 1,444 individuals who participated in both waves did not provide 

a valid fasting blood sample for either 2009 and/or 2015. In particular, there were 7,141 

individuals in the analytic sample who were missing biomarker data for one wave, and 1,528 

individuals missing biomarker data for both the 2009 and 2015 waves, resulting in missing 

biomarker data for 38.1% of data records in the analytic sample.

For the purposes of this example analysis, the proposed method accounted for within-

individual clustering only (i.e., resulting in clusters with a size of 2 data records per 

cluster), and ignored higher levels of clustering (Section 5 will discuss the extension of 

the proposed method for more than one level of clustering). For the working models for 

missingness and the outcome, we considered individual-level variables, household-level 

variables, community-level variables, and study design variables; see Table 5 for a complete 

list of covariates included in the working models. While some covariates, such as time-

invariant variables and variables that could be calculated based on the study design, were 

available for all records for all individuals in the analytic sample, time-varying variables 

were missing for waves for which the individual, household, or community of residence did 

not participate in data collection. In addition, some participants refused to provide data for 

variables at some waves (i.e., variable-level missingness). Since the focus of this example 

is to handle missing data on the response variable (i.e., triglycerides), and since most 

individuals had data for these covariates from other waves, missing data on time-varying 

auxiliary variables were handled in the following way: (1) if the covariate was reported in 

other waves of data collection, then the missing covariate was imputed (i.e., filled-in) as 

the value of the variable from the closest wave in which the variable was observed, and (2) 

if the individual did not report the covariate at any wave, then the individual was dropped 

from the analytic sample; 381 individuals (2.8% of the analytic sample) were dropped due to 

having no observed data for at least one of the time-varying auxiliary variables at any wave, 

resulting in a final sample size of 12,989 participants.

The final regression models of interest were the linear regression model E[triglycerides|time, 

sex, age] = β0 + β1time + β2sex + β3age and the logistic regression model logit{P(high 
triglycerides|time, sex, age)} = β0 + β1time + β2sex + β3age, where continuous triglycerides 

(mg/dL) and dichotomized triglycerides (≥ 150 mg/dL) were the outcome variables for the 

linear and logistic regressions respectively, and the predictor variables were time since 2009, 

sex, and age in 2009. These final regression models were estimated using available case 

analysis, the marginal approach ignoring clustering, and the proposed multilevel approach 

(i.e., using the same methods as in the simulation study). For the proposed multilevel 

approach, the working models for missingness and the outcome variables were specified 

as a logistic mixed effect model and generalized linear mixed effect model (linear mixed 

effect model for continuous triglycerides and logistic mixed effect model for dichotomized 

triglycerides) respectively, with a random intercept for the individual, and fixed effects for 

the covariates listed in Table 5 and the specified interactions; standard errors were estimated 

using the proposed estimator for the asymptotic covariance matrix introduced in (8). For the 
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marginal approach (i.e., ignoring clustering), the marginal working model for missingness 

was specified as a logistic regression model with only fixed effects including the same fixed 

effects as included in the multilevel working model, and the marginal working model for 

the outcome was specified as a linear regression model for continuous triglycerides and 

logistic regression model for dichotomized triglycerides with only fixed effects including 

the same fixed effects as included in the multilevel working models; standard errors were 

estimated using a bootstrap procedure. Table 6 presents the regression coefficients and 

standard errors based on all three methods for both outcomes. All methods suggest that 

triglycerides were higher for older individuals, higher for men, and lower in 2015 than 

2009, based on models for both continuous triglycerides (mg/dL) and high triglycerides (≥ 

150 mg/dL). Most estimated associations for the available case approach were attenuated 

compared to the proposed multilevel approach, especially for the estimated associations 

of age and time with continuous triglycerides, and for the estimated association of time 

with dichotomized triglycerides. In addition, standard errors for the marginal approach were 

similarly or less precise than the standard errors for the proposed multilevel approach, which 

was consistent with the results from the simulation study in Section 3.

5 | DISCUSSION

This research extended the doubly robust approach for handling missing outcome data in 

semi-parametric regression introduced by Scharfstein et al.5 to the case with clustered, and 

thereby correlated, data. The new approach estimates separate hierarchical working models 

for the missingness mechanism and the outcome, with random effects specified to account 

for within-cluster correlation for each model. A set of estimating equations were proposed, 

where the estimating equations are averaged across unknown random effects. This approach 

was shown to have the double robustness property, and was shown in simulation studies to 

be generally more precise than the approach ignoring clustering in the data.

We derived the asymptotic covariance matrix for the proposed doubly robust estimator 

βm, and proposed an empirical covariance estimator based on these asymptotic results. 

However, an alternative approach could be to estimate the covariance matrix using a 

bootstrap approach. Nonparametric bootstrap sampling approaches for variance estimation 

with clustered data have been described elsewhere, where the recommended bootstrap 

sampling approach involves randomly sampling the highest level clusters with replacement, 

and then selecting all data records within each randomly sampled cluster from this highest 

level10. Further research is needed to verify the performance of a bootstrap approach for 

variance estimation for this proposed doubly robust estimator.

The proposed method accounts for within-cluster correlation by including random cluster-

specific effects in the working models, with an assumed distribution for the random effects. 

However, an alternative approach could have instead incorporated cluster-specific fixed 

effects11. There are a couple key advantages for using the random effects modeling approach 

employed in the proposed method. First, the CHNS data considered in Section 4 contained 

a large number of clusters with comparatively few data records per cluster (i.e., data 

were clustered within 12,989 individuals with 2 records per cluster). However, maximum 

likelihood estimation may be unstable and may not be statistically consistent for a model 
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with fixed effects for such a large number of relatively small clusters12. On the other hand, 

using a random effects modeling approach reduces the number of unknown parameters 

estimated by maximum likelihood estimation, and allows prediction of cluster-specific 

random effects to “borrow” information from the average (i.e., marginal) distribution, where 

the amount of “borrowing” for each cluster depends on cluster size (with smaller clusters 

“borrowing” more)13,14. Also, a random effects framework can easily accommodate cluster-

specific regression coefficients in addition to a cluster-specific intercept (e.g., a cluster-

specific slope for time when modeling longitudinal data). One notable disadvantage of the 

random effects modeling approach employed in the proposed method is that it requires 

additional distributional assumptions about the random effects, which are not required for 

a comparable fixed effects modeling approach. Although it is not possible to verify the 

assumption that the working distribution for the random effects is specified correctly, the 

sensitivity of the working model to these distributional assumptions for the random effects 

can be tested15,16. In practice, a convenient choice for the working distribution of the 

random effects would be a normal distribution, since assuming normally distributed random 

effects would allow the use of Gauss-Hermite quadrature to estimate integrals (e.g., for 

maximizing the observed data likelihoods, for solving the proposed estimating equations in 

(4)), which is generally simpler and faster to implement than alternative approaches such 

as the EM algorithm or Markov Chain Monte Carlo. However, note that the asymptotic 

properties of the estimator βm hold regardless of whether the true random effects are 

normally distributed (as long as at least one of the working models [Rj, aj|Zj] and/or 

[Yj, bj|Zj] is specified correctly). Exploratory simulation studies have shown a benefit in 

precision for the effect estimates of interest when both the random effects distribution for the 

missingness and outcome model were specified correctly, but future research should further 

explore this in detail.

Hierarchical working models have been employed elsewhere to adjust for bias due to 

informative missing data or confounding in statistical analyses of clustered data. Kasim and 

Raudenbush17 have developed a two-level linear imputation model for normally-distributed 

data that can be used with fully conditional specification imputation methods, which has 

been implemented in the mice package in R18. In addition, random effects models have 

been used to estimate propensity scores to adjust for unmeasured cluster-level confounding 

when estimating causal effects19,20. The methods proposed in this research have further 

contributed to this growing literature by employing hierarchical working models to model 

both missingness and a regression outcome in a doubly robust approach to adjust for bias 

due to informatively missing data.

The approach proposed here addresses missing data in the outcome variable for a semi-

parametric regression. However, there may be cases with missing data on the predictor 

variables for the regression model of interest and/or auxiliary variables used in the 

hierarchical working models. One possibility for handling this situation could be to impute 

any missing predictor or auxiliary variables using a model that accounts for correlation 

due to clustering, use these imputed data to estimate the doubly robust regression estimator 

described here in the presence of missing outcome data, and then obtain standard errors 

using multiple imputation3 or a bootstrap approach21. However, although this approach 
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would be robust to misspecification of the imputation model for the outcome variable (i.e., 

the working model for Y ), it would not be robust to misspecification of the imputation 

model for the other missing variables.

For illustration, we specified the hierarchical working models for the missingness 

mechanism and the outcome as generalized linear mixed effect models with a cluster-

specific random intercept. More general models could be used to increase the chance 

that the working model(s) are specified correctly. For example, higher-order polynomial 

terms, interaction terms, or splines could be included as fixed effects in the working 

models. Additional random effects could also be included in the working models. However, 

specification of higher-dimensional random effects will generally be more computationally 

intensive, both for estimating the parameters of the hierarchical working models and for 

averaging the final set of estimating equations across the random effects to estimate Sm(β). 

Generally, specification of the working models can be viewed as a trade-off between 

specifying models that are general enough to make it more likely that the model is correctly 

specified and simple enough to be computationally feasible.

Although doubly robust estimators, such as the estimator presented here, can protect 

against bias due to a misspecified outcome model if the missingness model is specified 

correctly (and vice versa), it should be noted that simulation results from previous research22 

have illustrated situations where methods that depend on only a missingness model (e.g., 

inverse probability weighting) or only an outcome model (e.g., imputation) performed better 

than doubly robust estimators when both models are misspecified, which highlights the 

importance of carefully specifying working models that are as plausible as possible. In this 

research, we used fully parametric working models for both missingness and the outcome 

variable. However, an alternative could be to instead specify non-parametric working models 

for both missingness and the outcome variable. In the case of independent data, previous 

research has shown that if the estimators for the non-parametric working models converge at 

faster than n−1/4 rates, then the asymptotic behavior of the resulting doubly robust estimator 

would be the same as if the working models were correctly specified parametric models 

(e.g., n-consistent and asymptotically normal)23,24. Therefore, assessing the statistical 

properties of the proposed method for doubly robust estimation with missing multilevel 

data using non-parametric working models is an important topic for future research.

The statistical derivations and simulation studies presented in this paper involve two-level 

data (e.g., longitudinal data for independently sampled study participants, cross-sectional 

data collected on all individuals within a sample of households). However, many large 

cohort studies contain data consisting of more than two levels. For example, the CHNS 

collected longitudinal data on all people living in households included in the cohort, and 

these households were clustered within neighborhoods, which were further clustered within 

cities/counties. Extending the approach described in this paper to data with an arbitrary 

number of levels of clustering is straightforward in theory. One could fit hierarchical 

working models with a vector of random effects for each level of clustering. Then the 

final set of estimating equations Sm(β) would be obtained by averaging across all random 

effects from the hierarchical working models. Assuming that the entire set of random effects 

(for all levels of clustering) are independent between the two working models, then the 
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double robustness property would still hold. However, in practice increasing the dimension 

of the random effects in either working model would increase the computational burden, 

both for estimating the hierarchical working models and for averaging the final set of 

estimating equations across the random effects to estimate Sm(β). Therefore, for datasets 

with many levels of clustering (e.g., CHNS), it may be more reasonable to carefully select 

just a few levels of clustering that are most important to account for in either working 

model (e.g., the levels of clustering that are hypothesized to induce the most correlation 

after conditioning on the observed covariates), and/or to include fixed effects for observed 

covariates that help explain the within-cluster correlation for levels of clustering for which 

no random effects are included (e.g., include fixed effects for household income to help 

account for within-household correlation, include community-level variables to help account 

for within-community correlation).

One key assumption required for this method to be doubly robust is that the random 

effects for the working models for the missingness mechanism and the outcome need to be 

independent of each other. If the random effects from both working models are correlated, 

then misspecification of one of the working models (e.g., ignoring an important covariate, 

specifying the wrong functional form for a covariate, specifying the wrong link function) 

would necessarily misspecify the other working model. Therefore, when the random effects 

from both models are in fact correlated, the proposed method would only produce unbiased 

results when both working models are specified correctly, and therefore would no longer 

possess the double robustness property. Extending this methodology to the case with 

correlated random effects is a topic for future research.

In the simulation studies presented in Section 3 and Web Appendix C in the Supplementary 

Materials, the proposed method was generally less precise when the missingness model 

was correctly specified and the outcome model was misspecified than when the outcome 

model was correctly specified. In addition, previous research has shown that the doubly 

robust estimator of Scharfstein et al.5, from which our proposed method was derived, is 

inefficient when the outcome model is misspecified25. For the case with independent data, 

some doubly robust methods have been proposed that have improved efficiency, particularly 

for this scenario where the missingness model is correctly specified and the outcome model 

is misspecified26,27. Extending our proposed methodology to improve the efficiency in this 

case is not straightforward, and so this is another topic for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This research uses data from China Health and Nutrition Survey (CHNS). The authors are grateful to research grant 
funding for CHNS from the National Institute for Health (NIH), the Eunice Kennedy Shriver National Institute 
of Child Health and Human Development (NICHD) for R01 HD30880, National Institute on Aging (NIA) for 
R01 AG065357, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) for R01DK104371 
and R01HL108427, the NIH Fogarty grant D43 TW009077 since 1989, and the China-Japan Friendship Hospital, 
Ministry of Health for support for CHNS 2009, Chinese National Human Genome Center at Shanghai since 2009, 
and Beijing Municipal Center for Disease Prevention and Control since 2011. We thank the National Institute 
for Nutrition and Health, China Center for Disease Control and Prevention, Beijing Municipal Center for Disease 

Butera et al. Page 16

Stat Med. Author manuscript; available in PMC 2023 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Control and Prevention, and the Chinese National Human Genome Center at Shanghai. The authors are also 
grateful for support from the Carolina Population Center (P2C HD050924, T32 HD007168), the University of 
North Carolina at Chapel Hill. This research including the analysis was supported by grant R01DK104371 from 
the NIDDK, NIH, by grant U01DK098246 from the NIDDK, NIH, for the Glycemia Reduction Approaches in 
Diabetes: A Comparative Effectiveness (GRADE) Study, and by grant P01CA142538 from the National Cancer 
Institute (NCI), NIH.

Data availability statement

The data that support the findings of this study are available from the China Health and Nutrition Survey (CHNS). 
Public use versions of the data from CHNS can be downloaded from https://www.cpc.unc.edu/projects/china/.

References

1. Popkin BM, Du S, Zhai F, Zhang B. Cohort profile: The China Health and Nutrition 
Survey - monitoring and understanding socio-economic and health change in China, 1989–2011. 
International Journal of Epidemiology 2009; 39(6): 1435–1440. [PubMed: 19887509] 

2. Little RJA, Rubin DB. Statistical Analysis with Missing Data. Hoboken, NJ: John Wiley & Sons, 
Inc. 2nd ed. 2002.

3. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons, Inc. . 
1987.

4. Tsiatis AA. Semiparametric Theory and Missing Data. New York: Springer. 2006.

5. Scharfstein DO, Rotnitzky A, Robins JM. Rejoinder to adjusting for non-ignorable drop-out 
using semiparametric non-response models. Journal of the American Statistical Association 1999; 
94(448): 1135–1146.

6. Zeng D, Chen Q. Adjustment for missingness using auxiliary information in semiparametric 
regression. Biometrics 2010; 66: 115–122. [PubMed: 19432773] 

7. Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated 
measures and longitudinal data. Statistics in Medicine 1997; 16: 2349–2380. [PubMed: 9351170] 

8. Yan S, Li J, Li S, et al. The expanding burden of cardiometabolic risk in China: The China Health 
and Nutrition Survey. Obesity Reviews 2012; 13(9): 810–821. [PubMed: 22738663] 

9. Jones-Smith J, Popkin BM. Understanding community context and adult health changes in China: 
Development of an urbanicity scale. Social Science & Medicine 2010; 71(8): 1436–1446. [PubMed: 
20810197] 

10. Ren S, Lai H, Tong W, Aminzadeh M, Hou X, Lai S. Nonparametric bootstrapping for hierarchical 
data. Journal of Applied Statistics 2010; 37(9): 1487–1498.

11. Allison PD. Fixed Effects Regression Methods for Longitudinal Data Using SAS. Cary, NC: SAS 
Institute. 2005.

12. Neyman J, Scott EL. Consistent estimates based on partially consistent observations. Econometrica 
1948; 16: 1–32.

13. Stein C Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. 
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1955; 1: 
197–206.

14. Naumova EN, Must A, Laird NM. Evaluating the impact of “critical periods” in longitudinal 
studies of growth using piecewise mixed effects models. International Journal of Epidemiology 
2001; 30: 1332–1341. [PubMed: 11821342] 

15. Hausman JA. Specification tests in econometrics. Econometrica 1978; 46: 1251–1271.

16. Tchetgen EJ, Coull BA. A diagnostic test for the mixing distribution in a generalized linear mixed 
model. Biometrika 2006; 93: 1003–1010.

17. Kasim RM, Raudenbush SW. Application of Gibbs Sampling to Nested Variance Components 
Models with Heterogeneous Within-Group Variance. Journal of Educational and Behavioral 
Statistics 1998; 23(2): 93–116.

18. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. 
Journal of Statistical Software 2011; 45(3): 1–67.

Butera et al. Page 17

Stat Med. Author manuscript; available in PMC 2023 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cpc.unc.edu/projects/china/


19. Arpino B, Mealli F. The specification of the propensity score in multilevel observational studies. 
Computational Statistics & Data Analysis 2011; 55(4): 1770–1780.

20. Li F, Zaslavsky AM, Landrum MB. Propensity score weighting with multilevel data. Statistics in 
Medicine 2013; 32(19): 3373–3387. [PubMed: 23526267] 

21. Efron B Missing data, imputation, and the bootstrap. Journal of the American Statistical 
Association 1994; 89(426): 463–475.

22. Kang JDY, Schafer JL. Demystifying double robustness: A comparison of alternative strategies for 
estimating a population mean from incomplete data. Statistical Science 2007; 22(4): 523–539.

23. van der Laan MJ, Rubin D. Targeted maximum likelihood learning. The International Journal of 
Biostatistics 2006; 2(1): Article 11.

24. Kennedy EH, Balakrishnan S. Discussion of “Data-driven confounder selection via Markov and 
Bayesian networks” by Jenny Haggstrom. Biometrics 2018; 74(2): 399–402. [PubMed: 29099991] 

25. Rubin D, Laan v. dMJ. Empirical efficiency maximization: Improved locally efficient covariate 
adjustment in randomized experiments and survival analysis. The International Journal of 
Biostatistics 2008; 4(5): Article 5. [PubMed: 19381345] 

26. Bounded Tan Z., efficient and doubly robust estimation with inverse weighting. Biometrika 2010; 
97(3): 661–682.

27. Rotnitzky A, Lei Q, Sued M, Robins JM. Improved double-robust estimation in missing data and 
causal inference models. Biometrika 2012; 99(2): 439–456. [PubMed: 23843666] 

Butera et al. Page 18

Stat Med. Author manuscript; available in PMC 2023 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
A directed acyclic graph (DAG) to illustrate the assumed relationships between all variables 

based on Assumption (A1) in Web Appendix A in the Supplementary Materials.
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TABLE 1

Results from simulation study for the multilevel approach with a continuous outcome where working models 

were misspecified by omitting an important covariate

β 0 β 1

Effect strength % Miss. R
a

Y
a Bias SDE ESE MSE CP Bias SDE ESE MSE CP

Weak 20 T T 0.003 0.104 0.103 0.011 95.0 −0.002 0.055 0.054 0.003 95.0

T F 0.006 0.104 0.103 0.011 94.7 −0.002 0.055 0.054 0.003 95.3

F T 0.003 0.104 0.103 0.011 94.7 −0.002 0.055 0.054 0.003 95.2

F F 0.011 0.104 0.103 0.011 94.7 −0.003 0.055 0.054 0.003 95.3

35 T T 0.005 0.127 0.123 0.016 95.4 −0.002 0.064 0.062 0.004 95.6

T F 0.011 0.128 0.124 0.016 95.3 −0.003 0.065 0.062 0.004 95.4

F T 0.005 0.127 0.123 0.016 95.2 −0.002 0.064 0.061 0.004 95.6

F F 0.019 0.127 0.123 0.017 95.0 −0.003 0.065 0.062 0.004 95.1

Strong 20 T T −0.001 0.107 0.105 0.011 95.1 0.000 0.059 0.057 0.003 94.3

T F 0.026 0.111 0.109 0.013 93.7 −0.006 0.060 0.059 0.004 94.4

F T −0.001 0.106 0.105 0.011 95.1 0.000 0.058 0.057 0.003 94.6

F F 0.112 0.112 0.111 0.025 80.6 −0.026 0.060 0.060 0.004 91.5

35 T T −0.004 0.125 0.163 0.016 95.1 0.001 0.065 0.080 0.004 94.7

T F 0.060 0.142 0.195 0.024 92.8 −0.011 0.073 0.084 0.006 93.5

F T −0.004 0.120 0.159 0.014 94.6 0.001 0.063 0.079 0.004 94.7

F F 0.246 0.137 0.151 0.079 58.5 −0.045 0.070 0.077 0.007 89.6

a
T = Working model specified correctly. F = Working model misspecified by excluding the covariate Z3,ij.
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TABLE 2

Comparison of multilevel approach with the marginal approach and the available case approach from 

simulation study for continuous outcome where working models were misspecified by omitting an important 

covariate

β 0 β 1

Emp var ratio
b

MSE ratio
b

Emp var ratio
b

MSE ratio
b

Effect 
strength

% 
Miss. R

a
Y

a
Available 

case 
approach

Marginal 
approach

Available 
case 

approach

Marginal 
approach

Available 
case 

approach

Marginal 
approach

Available 
case 

approach

Marginal 
approach

Weak 20 T T 0.994 0.844 0.992 0.845 1.103 0.858 1.104 0.858

T F 0.993 0.847 0.994 0.850 1.104 0.861 1.106 0.862

F T 0.993 0.846 0.991 0.847 1.101 0.861 1.102 0.861

F F 0.993 0.848 1.002 0.851 1.102 0.863 1.105 0.864

35 T T 1.002 0.671 0.971 0.672 1.042 0.667 1.040 0.667

T F 1.009 0.679 0.983 0.684 1.054 0.676 1.053 0.677

F T 0.997 0.671 0.966 0.671 1.037 0.668 1.036 0.669

F F 1.003 0.679 0.991 0.684 1.050 0.676 1.049 0.677

Strong 20 T T 0.901 0.891 0.626 0.891 0.965 0.907 0.905 0.907

T F 0.964 0.935 0.707 0.985 1.023 0.954 0.968 0.963

F T 0.892 0.913 0.620 0.912 0.951 0.928 0.892 0.928

F F 0.996 0.937 1.385 0.973 1.021 0.953 1.136 0.965

35 T T 0.877 0.739 0.398 0.738 0.915 0.762 0.824 0.762

T F 1.123 0.857 0.602 1.010 1.151 0.866 1.061 0.886

F T 0.811 0.795 0.368 0.795 0.848 0.819 0.764 0.819

F F 1.044 0.890 2.016 1.007 1.058 0.896 1.338 0.946

a
T = Working model specified correctly. F = Working model misspecified by excluding the covariate Z3,ij.

b
Ratio comparing multilevel approach to corresponding comparison method.
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TABLE 3

Results from simulation study for the multilevel approach with a continuous outcome where working models 

were misspecified by omitting a quadratic term

β 0 β 1

Effect strength % Miss. R
a

Y
a Bias SDE ESE MSE CP Bias SDE ESE MSE CP

Weak 20 T T −0.001 0.110 0.109 0.012 95.2 0.001 0.060 0.059 0.004 94.9

T F −0.010 0.111 0.109 0.012 95.2 0.004 0.061 0.060 0.004 94.8

F T −0.001 0.110 0.108 0.012 95.2 0.001 0.060 0.059 0.004 95.2

F F −0.014 0.110 0.109 0.012 95.0 0.006 0.060 0.060 0.004 95.1

35 T T −0.002 0.128 0.124 0.016 95.0 0.001 0.067 0.065 0.004 94.8

T F −0.017 0.128 0.125 0.017 94.5 0.006 0.067 0.066 0.005 94.2

F T −0.002 0.126 0.122 0.016 95.0 0.001 0.066 0.065 0.004 94.6

F F −0.024 0.127 0.123 0.017 94.4 0.008 0.067 0.065 0.005 94.2

Strong 20 T T 0.001 0.134 0.130 0.018 94.3 −0.001 0.075 0.073 0.006 94.2

T F −0.059 0.148 0.143 0.025 91.1 0.015 0.081 0.079 0.007 93.6

F T 0.000 0.132 0.129 0.017 94.8 −0.000 0.074 0.072 0.005 94.7

F F −0.163 0.133 0.131 0.044 75.1 0.037 0.075 0.073 0.007 91.6

35 T T 0.008 0.156 0.149 0.024 93.8 −0.004 0.083 0.080 0.007 94.9

T F −0.091 0.186 0.170 0.043 88.8 0.019 0.098 0.091 0.010 93.0

F T 0.008 0.150 0.144 0.022 94.7 −0.004 0.080 0.078 0.006 95.2

F F −0.215 0.156 0.149 0.071 67.4 0.038 0.083 0.080 0.008 91.1

a
T = Working model specified correctly. F = Working model misspecified by excluding the quadratic term Z2, ij

2
.

Stat Med. Author manuscript; available in PMC 2023 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Butera et al. Page 23

TABLE 4

Comparison of multilevel approach with the marginal approach and the available case approach from 

simulation study for continuous outcome where working models were misspecified by omitting a quadratic 

term

β 0 β 0

Emp var ratio
b

MSE ratio
b

Emp var ratio
b

MSE ratio
b

Effect 
strength

% 
Miss. R

a
Y

a
Available 

case 
approach

Marginal 
approach

Available 
case 

approach

Marginal 
approach

Available 
case 

approach

Marginal 
approach

Available 
case 

approach

Marginal 
approach

Weak 20 T T 0.825 0.905 0.612 0.905 0.873 0.911 0.842 0.911

T F 0.835 0.898 0.625 0.906 0.889 0.903 0.862 0.907

F T 0.818 0.920 0.606 0.920 0.865 0.925 0.835 0.925

F F 0.825 0.917 0.622 0.929 0.875 0.921 0.852 0.927

35 T T 0.838 0.740 0.434 0.740 0.859 0.758 0.824 0.758

T F 0.845 0.727 0.445 0.740 0.870 0.744 0.841 0.750

F T 0.814 0.775 0.422 0.775 0.837 0.791 0.803 0.791

F F 0.825 0.776 0.442 0.795 0.852 0.792 0.828 0.800

Strong 20 T T 0.829 0.891 0.307 0.891 0.883 0.910 0.818 0.910

T F 1.007 0.765 0.433 0.888 1.042 0.791 0.996 0.816

F T 0.796 0.936 0.295 0.936 0.864 0.943 0.800 0.943

F F 0.819 0.950 0.754 1.004 0.884 0.959 1.020 0.982

35 T T 0.767 0.774 0.235 0.774 0.791 0.807 0.735 0.808

T F 1.087 0.680 0.412 0.838 1.117 0.712 1.073 0.736

F T 0.703 0.857 0.216 0.857 0.739 0.880 0.686 0.880

F F 0.766 0.893 0.677 1.008 0.789 0.903 0.887 0.940

a
T = Working model specified correctly. F = Working model misspecified by excluding the quadratic term Z2, ij

2
.

b
Ratio comparing multilevel approach to corresponding comparison method.
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TABLE 5

List of covariates included in the working models for CHNS data analysis, organized by individual-level, 

household-level, community-level, and study design variables

Individual Household Community Design

• Time since 2009
• Sex
• Age in 2009
• Education level
• Current marital status
• Current employment status
• Body mass index
• Waist circumference
• Current smoking status
• Current alcohol consumption
• Average dietary intake of nutrients from 3 daily 
24-hour dietary recalls
• MET-hours per week of physical activity from 
different lifestyle activities (including interactions 
with time)

• Total gross household 
income
• Total household expenses
• Household income from 
different sources
• Composite score 
summarizing assets owned 
by at least one household 
member

• Components of the urbanization index9

– Population density
– Economic activity
– Traditional markets
– Modern markets
– Transportation infrastructure
– Sanitation
– Communications
– Housing
– Education
– Diversity
– Health infrastructure
– Social services

• Province
• City/
county
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TABLE 6

Regression coefficient estimates and standard errors from models for triglycerides (mg/dL) and high 

triglycerides (≥ 150 mg/dL) in the CHNS, using proposed multilevel approach, marginal approach, and 

available case analysis

Triglycerides (mg/dL) High triglycerides (≥ 150 mg/dL)

Method Effect Estimate SE Estimate SE

Multilevel Intercept 163.29 2.120 −0.563 0.030

Age in 2009 (years) 0.195 0.066 0.006 0.001

Women −24.744 2.208 −0.311 0.038

Time since 2009 (years) −2.863 0.293 −0.037 0.005

Marginal Intercept 162.15 2.942 −0.569 0.042

Age in 2009 (years) 0.188 0.071 0.005 0.001

Women −23.929 2.311 −0.308 0.039

Time since 2009 (years) −2.856 0.390 −0.037 0.007

Available Case Intercept 162.04 1.738 −0.586 0.030

Age in 2009 (years) 0.129 0.072 0.006 0.001

Women −23.536 2.160 −0.293 0.037

Time since 2009 (years) −2.255 0.267 −0.026 0.005

Abbreviations: SE, standard error.
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