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Abstract

The floral microbiome is of significant relevance to plant reproduction and crop productivity. While plant genotype is key to floral
microbiome assembly, whether and how genotypic variation in floral traits and plant-level mutualistic and antagonistic interactions
at the rhizosphere and phyllosphere influence the microbiome in the anthosphere remain little known. Using a factorial field
experiment that manipulated biotic interactions belowground (mycorrhizae treatments) and aboveground (herbivory treatments)
in three strawberry genotypes, we assessed how genotypic variation in flower abundance and size and plant-level biotic interactions
influence the bidirectional relationships between floral volatile organic compounds (VOCs) and the floral microbiome using structural
equation modeling. We found that plant genotype played a stronger role, overall, in shaping the floral microbiome than biotic
interactions with mycorrhizae and herbivores. Genotypic variation in flower abundance and size influenced the emission of floral
VOCs, especially terpenes (e.g. α- and β-pinene, ocimene isomers) and benzenoids (e.g. p-anisaldehyde, benzaldehyde), which in
turn affected floral bacterial and fungal communities. While the effects of biotic interactions on floral traits including VOCs were
weak, mycorrhizae treatments (mycorrhizae and herbivory + mycorrhizae) affected the fungal community composition in flowers.
These findings improve our understanding of the mechanisms by which plant genotype influences floral microbiome assembly and
provide the first evidence that biotic interactions in the rhizosphere and phyllosphere can influence the floral microbiome, and offer
important insights into agricultural microbiomes.

Introduction
The floral microbiome that consists of thousands or
more taxa of bacteria and fungi mediates processes that
are essential for plant reproduction and crop produc-
tivity [1–5]. While we are just beginning to understand
the principles and functions of microbiome assembly
in flowers [2, 3], studies have revealed that the floral
microbiome is governed by plant genotype [1], and it
overlaps with the leaf microbiome harboring a subset of
the microbiota hosted by the root microbiome following a
source–sink gradient [5]. Thus, plant genotypic variation
in floral traits and species interactions that dictate the
microbiomes in the rhizosphere (roots) and phyllosphere
(leaves) are expected to influence the microbiome in the
anthosphere (flowers).

Floral traits can influence the floral microbiome via
distinct mechanisms. For instance, flower size is hypoth-
esized to affect the niche availability for microbiota [6].
Flower abundance, on the other hand, can influence
floral microbiome assembly by governing the source pool

of colonizing microbes [1, 7] and by enhancing pollinator-
mediated microbial dispersal [1]. In particular, floral
volatile organic compounds (VOCs) have been shown to
mediate pollinator foraging [8], which can potentially
influence microbial dispersal [3]. In addition to the
pollinator-mediated effect of floral VOCs on the floral
microbiome, VOCs are known for their antimicrobial
properties (e.g. terpenes, benzenoids, aliphatics) [9–12]
and their roles as carbon sources (e.g. methanol) [9], and
thus can potentially reduce pathogenic microbes [10, 13],
modulate microbe–microbe interactions [14] and thereby
affect microbial communities [12]. Microbiota, in turn,
can influence plant VOCs by directly contributing to VOC
emissions [3] or indirectly by metabolizing plant VOCs
and/or affecting plant physiology that can influence
plant VOC emissions [9, 10, 13]. Thus, the effect of micro-
biota on floral VOCs is determined, in part, by the quan-
tity and quality of plant metabolites [9] in the antho-
sphere. Such bidirectional relationships between floral
VOCs and floral microbiome are likely to be influenced
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Figure 1. Experimental design. This factorial, potted strawberry experiment used split plot with randomized complete block design. The four
treatments (control, herbivory, mycorrhizae, and herbivory + mycorrhizae) were grouped into and randomized within blocks (N = 1–12). The three
strawberry genotypes (Seascape, Tribute, and Wasatch) were assigned to and completely randomized within each treatment. Floral microbiome
samples were collected from 93 plants flowering on August 16, 2019, which represented a subset of 144 total plants in the experiment [18].

by biotic interactions experienced by the whole plant. For
instance, plant interactions with rhizosphere mutualists
(e.g. mycorrhizae) [15] and phyllosphere antagonists (e.g.
herbivores) [16, 17] may affect the source–sink dynamics
of microbes that colonize the anthosphere and/or affect
floral traits including VOCs [13, 15], which can influence
floral microbiome assembly. Despite the connections
between whole-plant biotic interactions, floral VOCs and
the floral microbiome, no study has evaluated the rela-
tive importance of genotypic variation in floral traits and
plant-level interactions in shaping the floral microbiome,
nor in affecting the bidirectional relationships between
floral VOCs and floral microbiome.

Here we leveraged a factorial field experiment [18]
that manipulated biotic interactions belowground (myc-
orrhizae treatments) and aboveground (herbivory treat-
ments) in three day-neutral strawberry cultivars (Fragaria
×ananassa “Seascape”, “Tribute” and “Wasatch”; Fig. 1). As
clonal plants of each cultivar were used in this study, we
referred to cultivars as genotypes. We first examined how
epiphytic bacterial and fungal communities in flowers
responded to plant genotype, mycorrhizae treatments
and herbivory treatments. We then assessed how plant
genotypes varied in floral traits (flower abundance, size
and VOCs) that may shape the floral microbiome. Lastly,
we used structural equation modeling to link genotypic
variation in flower abundance and size and biotic treat-
ments to the bidirectional relationships between floral
VOCs and floral microbiome (bacterial and fungal α- and
β-diversity).

Results
Stronger effects of plant genotype than
treatment on the floral microbiome
Strawberry genotypes influenced the α- and β-diversity
of floral bacterial and fungal communities (Fig. 2 and
Supplementary Table 1). Bacterial Shannon diversity
differed among genotypes depending upon herbivory

treatments, as revealed by a general linear mixed model
(LMM, genotype–herbivory interaction, F = 7.06, df = 2,
P = 0.002). For instance, bacterial Shannon diversity was
higher in Tribute than Seascape in herbivory-absent
treatments (least-squares mean, LS-mean, contrast:
control, χ2 = 6.16, df = 1, P = 0.013; mycorrhizae, χ2 = 5.46,
P = 0.019; Fig. 2a), but was similar in herbivory-present
treatments (herbivory, χ2 = 2.47, P = 0.12; herbivory +
mycorrhizae, χ2 = 0.90, P = 0.34). In addition, Tribute had
lower bacterial Shannon diversity than Wasatch but only
in herbivory + mycorrhizae treatment (χ2 = 4.74, df = 1,
P = 0.030; Fig. 2a). Within genotypes, bacterial Shannon
diversity was influenced by treatments, especially for
Tribute (control > herbivory, χ2 = 7.22, df = 1, P = 0.007;
control > herbivory + mycorrhizae, χ2 = 8.93, P = 0.003)
and Seascape (herbivory > mycorrhizae, χ2 = 5.45,
P = 0.020), but not for Wasatch (Fig. 2a).

Similar to α-diversity, the β-diversity of floral bac-
terial communities was influenced by plant genotype
(Fig. 2c and Supplementary Table 1). The permutational
multivariate analysis of variance (PERMANOVA) of
Bray–Curtis dissimilarity identified genotype as the
primary source of variation in bacterial community
composition (4% of variation, F = 1.70, df = 2, P = 0.035;
Supplementary Table 1), which was driven by bacterial
community differences between Tribute and Wasatch
(pairwise PERMANOVA, F = 2.53, df = 1, P = 0.016) but
not other pairs (Seascape vs. Tribute, F = 1.08, P = 0.32;
Seascape vs. Wasatch, F = 1.32, P = 0.22). Supporting the
PERMANOVA results, the constrained principal coordi-
nates analysis (cPCoA) of bacterial communities revealed
significant separation between Tribute and Wasatch
(pairwise cPCoA, F = 2.48, df = 1, P = 0.016; Fig. 2c), with
Seascape being intermediate between them but not
different from either (Seascape vs. Tribute, F = 1.07,
P = 0.33; Seascape vs. Wasatch, F = 1.31, P = 0.23).

For floral fungal communities, although Shannon
diversity was similar among genotypes (LMM, F = 0.34,
df = 2, P = 0.71; Fig. 2b), community composition varied
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Figure 2. Stronger effects of genotype than treatment on the floral microbiome. a, Bacterial Shannon diversity (least-squares means) differed among
strawberry genotypes contingent upon treatments, after controlling for all other factors in a general linear mixed model (LMM, detailed statistics in
Supplementary Table 1). Significant least-squares mean contrasts are denoted: ∗P < 0.05; ∗∗P < 0.01. Error bars represent 1 SE. b, The least-squares
means of fungal Shannon diversity (power-transformed, power parameter = 2) were similar among genotypes and treatments (LMM, detailed statistics
in Supplementary Table 1). The least-squares mean contrasts showed that fungal Shannon diversity only differed in Wasatch between mycorrhizae
and herbivory + mycorrhizae treatments. c and d, The constrained principal coordinates analyses (cPCoAs) revealed significant effects of genotype but
not treatment on the bacterial and fungal community compositions (detailed statistics in Supplementary Table 1).

significantly with genotype (PERMANOVA, 3% of varia-
tion, F = 1.32, df = 2, P = 0.045; cPCoA, 3%, F = 1.31, P = 0.050;
Fig. 2d and Supplementary Table 1). Albeit subtler than
bacterial communities (Fig. 2c, d), fungal community
separation was also primarily between Tribute and
Wasatch (pairwise cPCoA, F = 1.42, df = 1, P = 0.067; Fig. 2c)
and less so between other genotypes (Seascape vs.
Wasatch, F = 1.32, P = 0.10; Seascape vs. Tribute, F = 0.96,
P = 0.50).

Plant genotypes differ in flower abundance, size
and VOCs
Given the significant effect of genotype on the floral
microbiome, we then examined genotypic variation in
aspects of floral phenotype (e.g. flower abundance, size
and VOCs) potentially important in governing floral
microbiome assembly. The LMM revealed that flower
abundance differed among genotypes (F = 6.06, df = 2,
P = 0.004) but not among treatments (herbivory treat-
ments, F = 1.36, df = 1, P = 0.25; mycorrhizae treatments,
F = 0.11, P = 0.74; Supplementary Table 2). In particular,
Wasatch produced more flowers than Tribute (LS-
mean contrast, χ2 = 12.1, df = 1, P = 0.001; Fig. 3a), with
Seascape being intermediate (Wasatch vs. Seascape,
χ2 = 3.3, P = 0.068; Tribute vs. Seascape, χ2 = 2.5, P = 0.12).
Similar to flower abundance, flower size (estimated by
flower diameter) also differed among genotypes (LMM,
F = 3.34, df = 2, P = 0.041; Supplementary Table 2), with
Seascape having the largest and Wasatch the smallest
(Fig. 3b). Yet, there was no significant trade-off between
flower abundance and flower size (Pearson’s correlation,
t = −0.78, df = 78, P = 0.44) across genotypes.

The floral VOC profile consisted of 22 identified
VOCs: 10 terpenes (α-pinene, β-pinene, 6-methyl-5-
hepten-2-one, d-limonene, ocimene isomers, geranyl
acetate, dihydro-β-ionone, β-ionone, α-muurolene and
α-farnesene), seven benzenoids (anisole, benzalde-
hyde, benzyl alcohol, methyl salicylate, p-anisaldehyde,
3-hexen-1-ol benzoate and benzyl benzoate), three

aliphatics (trans-2-hexen-1-al, (E)-3-hexen-1-ol and cis-
3-hexenyl acetate), one (sulfur) S-containing compound
(benzothiazole) and one C5 branched-chain compound
(hexenyl tiglate). Plant genotype explained the largest
source of variation in VOCs (PERMANOVA, 12%, F = 4.47,
df = 2, P = 0.001; cPCoA, 11%, F = 3.81, P = 0.001; Fig. 3c
and Supplementary Table 3), with the first two axes
of VOC cPCoA (cPCoA1 and cPCoA2; Fig. 3c) driven
primarily by variation in benzaldehyde and cis-3-hexenyl
acetate, respectively (Supplementary Table 3). Pairwise
PERMANOVAs and cPCoAs further revealed that all
three genotypes produced significantly different VOC
profiles from each other (all P < 0.05). The random forest
classification identified the specific VOCs that differed
between genotypes, that is, α-pinene, β-pinene, geranyl
acetate and benzaldehyde between Seascape and Tribute
(out-of-bag error, OOB = 6.12%), α-pinene and benzalde-
hyde between Seascape and Wasatch (OOB = 17.5%), and
α-pinene, ocimene isomers and benzyl alcohol between
Tribute and Wasatch (OOB = 9.3%).

SEMs linking floral phenotype and treatment to
the floral microbiome
Given the significant genotypic differences in both floral
phenotype and microbiome, we then used SEMs to link
genotypic variation in flower abundance, size and VOCs,
as well as treatments, to the α- and β-diversity of floral
bacterial and fungal communities (Figs. 4a and 5a). The
SEMs focused on VOCs at three different levels: (1)
individual VOCs that differed between genotypes as iden-
tified by the random forest classification (see above), and
that predicted the α- or β-diversity of bacterial and fungal
communities based on backward predictor selection (see
Materials and methods; Supplementary Tables 4 and 5);
(2) the major classes of VOCs (terpenes, aliphatics,
benzenoids, S-containing compounds and C5 branched-
chain compounds); and (3) VOC profile (VOC cPCoA1 and
cPCoA2; Fig. 3c). The SEMs were examined in parallel
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Figure 3. Strawberry genotypes differ in floral phenotype. a and b, The least-squares means of square-root transformed flower abundance and
power-transformed flower diameter (power parameter = 2) are plotted for each genotype, after controlling for all other factors in general linear mixed
models (LMMs; detailed statistics in Supplementary Table 2). Significant contrasts of least-squares means are denoted: ∗P < 0.05; ∗∗∗P < 0.001. Error
bars represent 1 SE. c, The constrained principal coordinates analysis (cPCoA) revealed significant differences in floral volatile organic compounds
(VOCs) among genotypes (detailed statistics in Supplementary Table 3).

considering overall genotypic (within- and between-
genotype) variation using lavaan [19] (Figs. 4 and 5), and
within-genotype variation alone using piecewiseSEM [20]
(with genotype as a random effect; Supplementary Figs. 1
and 2). This approach was used to confirm whether
the detected relationships based on overall genotypic
variation were also supported within genotypes.

The SEMs based on overall genotypic variation
revealed that α-pinene and β-pinene were negatively
linked with bacterial Shannon diversity (r = −0.21,
P = 0.050 and r = −0.26, P = 0.017, respectively; Fig. 4b,c
and Supplementary Table 4). Bacterial ASVs associ-
ated with the emission of α-pinene and β-pinene
(Supplementary Table 6) were common residents of the
floral microbiome in cultivated strawberry [1] and wild
strawberries [5], including, for instance, Hymenobacter,
Massilia, Deinococcus and nectar taxa (Acinetobacter,
Arthrobacter, Methylobacterium, Nocardioides, Sphingomonas
and Streptomyces) [21]. While treatments and flower
abundance showed no notable effects (P > 0.10), flower
size influenced bacterial Shannon diversity indirectly via
enhancing the emission of α-pinene (r = 0.41, P < 0.001;
Fig. 4b) and β-pinene (r = 0.41, P < 0.001; Fig. 4c). Different
from α-pinene and β-pinene, other VOCs, major VOC
classes and VOC profile (VOC cPCoA1 and cPCoA2)
were not linked with bacterial Shannon diversity
(Supplementary Table 4). For fungal Shannon diversity,
only S-containing compound (benzothiazole) showed
a positive relationship (r = 0.31, P = 0.039; Fig. 5b). Eight
fungal ASVs that were commonly found in strawberry
flowers [1] were identified as associated with the emis-
sion of the S-containing compound (Kendall’s correlation
coefficient, P < 0.05; Supplementary Table 6), including
those positively associated with the S-containing com-
pound such as Cystofilobasidium macerans (yeast found
in both flowers [1] and pollinators [22]), Phaeosphaeria
caricicola (strains of this genus often pathogenic [23])
and Ramularia pratensis (some strains with biocontrol
activities [24]), as well as those negatively associated
with the S-containing compound such as pathogenic
Blumeria graminis [25]. These detected relationships based
on overall genotypic variation were also supported

by the SEMs that examined within-genotype variation
(Supplementary Fig. 1b, c; Supplementary Fig. 2b).

The β-diversity of floral bacterial communities was
linked with a different set of VOCs relative to the
α-diversity (Fig. 4), as revealed by the SEMs based on
overall genotypic variation. Specifically, p-anisaldehyde
was positively linked with the first axis of bacterial
community composition (cPCoA1, r = 0.24, P = 0.019;
Fig. 4d), which was dominated by Lactobacillus micheneri
(found in both flowers [1] and pollinators [1, 26]) and
Methylobacterium and Acinetobacter nectaris (nectar taxa
[21]) on the positive axis and Delftia (common taxa in
strawberry flowers [1]) on the negative axis (Fig. 2c;
Supplementary Table 1). Moreover, ocimene isomers
(r = −0.32, P = 0.029; Fig. 4e), aliphatics (r = −0.18, P = 0.069;
Fig. 4f) and the C5 branched-chain compound (hexenyl
tiglate, r = −0.28, P = 0.023; Fig. 4g) were negatively linked
with the cPCoA2 of bacterial communities, which was
dominated by Delftia, Lactobacillus micheneri, Methylobac-
terium and Acinetobacter nectaris on the positive axis and
Phaseolibacter (common taxa in strawberry flowers [1])
and Sphingomonas and Rosenbergiella (nectar taxa [21]) on
the negative axis (Fig. 2c; Supplementary Table 1). The
cPCoA2 of bacterial communities was also influenced by
flower size indirectly via the enhanced emission of VOCs
(ocimene isomers, r = 0.28, P = 0.021, Fig. 4e; aliphatics,
r = 0.29, P = 0.008, Fig. 4f), but was not influenced by
flower abundance or treatments (Fig. 4). These relation-
ships based on overall genotypic variation were also
detected within genotypes (Supplementary Fig. 1).

The β-diversity of fungal communities, on the other
hand, were influenced by treatments and flower abun-
dance (Fig. 5c–f), as revealed by the SEMs based on
overall genotypic variation. Relative to the control,
mycorrhizae treatment positively affected the cPCoA1
of fungal communities (all P < 0.10; Fig. 5c, e, f and
Supplementary Table 5), which was dominated by Pseu-
dopithomyces chartarum (potentially pathogenic [25]) and
Candelaria concolor (lichenized fungal taxon [27]) on the
positive axis and pathogenic Alternaria alternata [28]
and Cladosporium delicatulum [25] on the negative axis
(Fig. 2d; Supplementary Table 1). In addition, herbivory
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Figure 4. Structural equation models (SEMs) linking floral phenotype and treatment to floral bacterial microbiome. a, Hypothesized effects of flower
abundance and size as well as treatments on floral volatile organic compounds (VOCs) and bacterial microbiome. The floral bacterial microbiome was
characterized using α-diversity (Shannon diversity) and β-diversity (the first two axes of constrained principal coordinates analysis, cPCoA1 and
cPCoA2). VOCs were evaluated at three levels (see Materials and methods): individual VOCs, major classes of VOCs, and VOC profile (VOC cPCoA1 and
cPCoA2). The bidirectional links between VOCs and bacterial microbiome reflected potential reciprocal influence on each other. Treatments were
coded using the control treatment as the reference level. SEMs were fitted based on overall genotypic variation using lavaan [19]. b-g, SEMs that
contained notable positive (solid black) and negative (dashed black) links between VOCs and bacterial microbiome, as well as other variables, were
presented (see SEM details in Supplementary Table 4): †P < 0.10; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. Grey links indicate P > 0.10. Link width and the
numbers adjacent to links indicate standardized path coefficients.

+ mycorrhizae treatment positively affected the cPCoA2
of fungal communities (r = 0.48, P = 0.003; Fig. 5g), which
was dominated by C. concolor and A. alternata on the
positive axis and Rhodotorula graminis (nectar yeast
[21]) and Naganishia randhawae (=Cryptococcus randhawai
[29], yeast also found in strawberry flowers [1]) on
the negative axis (Fig. 2d; Supplementary Table 1). In
addition to treatments, flower abundance affected
the cPCoA1 of fungal communities indirectly via the
reduced emission of VOCs per unit flower dry weight
(Fig. 5c–f), including benzenoids (r = −0.24, P = 0.014;
Fig. 5e) such as benzaldehyde (r = −0.21, P = 0.024; Fig. 5c)
and VOC profile (VOC cPCoA1, r = −0.26, P = 0.027;
Fig. 5f) that also primarily reflected the variation in
benzaldehyde (Fig. 3c), as well as ocimene isomers
(r = −0.24, P = 0.053; Fig. 5d). For the cPCoA2 of fungal
communities, flower size exhibited an indirect effect via
the enhanced emission of terpenes (r = 0.39, P < 0.001;

Fig. 5g). While most of these relationships were also
detected within genotypes (Supplementary Fig. 2), the
links between fungal cPCoA1 and benzaldehyde (and
related VOCs including benzenoids and VOC cPCoA1 that
was dominated by benzaldehyde; Fig. 5c, e, f) as well as
mycorrhizae treatment showed otherwise, indicating the
role of among-genotype variation in driving some of the
relationships.

Discussion
Our results demonstrated that strawberry genotype
played a stronger role, overall, in shaping the floral
microbiome than whole-plant biotic interactions both
belowground (with mycorrhizae) and aboveground (with
herbivores). In particular, we found that genotypic
variation in flower abundance and size influenced floral
VOCs, especially terpenes and benzenoids, which in turn
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Figure 5. Structural equation models (SEMs) linking floral phenotype and treatment to floral fungal microbiome. a, Hypothesized effects of flower
abundance and size as well as treatments on floral volatile organic compounds (VOCs) and fungal microbiome. The floral fungal microbiome was
characterized using α-diversity (Shannon diversity) and β-diversity (the first two axes of constrained principal coordinates analysis, cPCoA1 and
cPCoA2). VOCs were evaluated at three levels (see Materials and methods): individual VOCs, major classes of VOCs, and VOC profile (VOC cPCoA1 and
cPCoA2). The bidirectional links between VOCs and fungal microbiome reflected potential reciprocal influence on each other. Treatments were coded
using the control treatment as the reference level. SEMs were fitted based on overall genotypic variation using lavaan [19]. b-g, SEMs that contained
notable positive (solid black) and negative (dashed black) links between VOCs and fungal microbiome, as well as other variables, were presented (see
SEM details in Supplementary Table 5): †P < 0.10; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. Grey links indicate P > 0.10. Link width and the numbers adjacent to
links indicate standardized path coefficients.

affected the floral bacterial and fungal communities.
While the effects of biotic interactions on floral pheno-
type including VOCs were weak (Figs. 3–5), mycorrhizae
treatments (mycorrhizae and herbivory + mycorrhizae)
directly affected the fungal communities in flowers
relative to the control (Fig. 5). By linking genotypic
variation in floral traits and biotic interactions to floral
bacterial and fungal communities, our study revealed
the mechanisms by which plant genotype influences
floral microbiome assembly [1] and also provided the
first evidence that plant-level biotic interactions at
the rhizosphere and phyllosphere can influence the
anthosphere microbiome.

In line with previous studies on the floral microbiome
[1], genotypic variation in flower abundance influenced
the floral microbiome. Flower abundance has been
shown to govern floral microbiome assembly both
directly by influencing the source pool of microbes
that colonize individual flowers [1, 7] and indirectly by

influencing pollinator visits [30] that can mediate
microbial dispersal [1]. Our results showed that flower
abundance affected fungal α- and β-diversity via the
bidirectional links between VOCs and the fungal com-
munities among genotypes but not within genotypes.
In addition to flower abundance, flower size that is
hypothesized to influence the floral microbiome has,
nevertheless, rarely been tested [6]. In this study, we
found that flower size affected bacterial and fungal
communities via the bidirectional links between VOCs
and the floral microbiome, which was supported by
SEMs based on overall genotypic variation and within-
genotype variation as well. While the causation of these
relationships awaits experimental validation, it provides
a new insight into the mechanisms by which flower
abundance and size drive microbiome assembly.

Our results provided evidence for the hypothe-
sized bidirectional relationships [9] between plant
VOCs and microbiome in the anthosphere. Specifically,
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monoterpenes, namely α- and β-pinene and ocimene
isomers contributed most to the variation in floral
VOC profile and floral bacterial communities. Bacterial
Shannon diversity was negatively associated with α- and
β-pinene, whereas bacterial community composition
was associated with p-anisaldehyde, ocimene isomers,
aliphatics and hexenyl tiglate (the only C5 branched-
chain compound in this study). These bidirectional
relationships were supported by overall genotypic
variation and within-genotype variation. On the other
hand, fungal Shannon diversity was positively linked
with benzothiazole, the only S-containing compound
detected in strawberry volatile collections here, whereas
fungal community composition was associated with
terpenes (especially ocimene isomers) and benzenoids
(especially benzaldehyde). Yet, the bidirectional rela-
tionship between benzaldehyde and fungal community
composition was only supported among genotypes.
To further verify that the relationship is not caused
by unmeasured genotypic differences, experimental
investigation that directly tests the reciprocal effects
is needed. Overall, despite the known antimicrobial
effects of floral VOCs such as terpenes, benzenoids,
aliphatics and S-containing compounds [9–12], our
results detected microbial taxa both negatively and
those positively associated with the emission of these
VOCs. This finding suggests the potential dual roles of
floral VOCs as antimicrobial agents and carbon sources
for some microbial taxa [9, 10] and/or their role in
mediating complex microbe–microbe interactions [14]
where the suppression of some taxa can potentially
increase other taxa via direct and indirect interactions
through the microbial network [1]. While how dynamic
the relationships are between floral VOCs and the floral
microbiome remains an open question, our results are
expected to hold despite the time interval between
VOC and microbiome collections, due to stable VOC
composition (i.e. relative abundances of individual VOCs)
among these genotypes detected over a longer time
period (4 weeks) in this field experiment [18]. Taken
together, our findings highlight the needs for future
research on unraveling the specific mechanisms that
underlie the relationships between floral VOCs and the
floral microbiome as well as their temporal dynamics.

While plant interactions with herbivores at the
phyllosphere have been found to influence the leaf
microbiome [16, 17], our results showed, for the first
time, that plant interactions at the rhizosphere and
phyllosphere can influence the floral microbiome.
Such effects were detected on shaping the floral
fungal communities. Specifically, the mycorrhizae
treatment caused the deviation of fungal community
composition from the control (Fig. 5) by reducing
pathogenic taxa (e.g. A. alternata, Cladosporium delicatu-
lum) in flowers, whereas the herbivory + mycorrhizae
treatment influenced fungal community composition
by reducing floral yeasts (e.g. R. graminis, Naganishia
randhawae) and increasing pathogenic taxa (e.g. A.

alternata). While the effect of mycorrhizae treatment
occurred among genotypes, the effect of herbivory +
mycorrhizae treatment was supported by SEMs based
on overall genotypic variation and within-genotype
variation as well. These effects of biotic interactions on
the floral microbiome were, nevertheless, not via floral
VOCs, although plant mutualists and antagonists have
been shown previously to alter floral VOCs [15, 31, 32].
In this study, the mycorrhizae treatments and herbivory
treatments exhibited weak effects on the VOC profile.
Yet, we could not rule out the possibility that the effects
of the biotic treatments on floral VOCs can be dynamic
and thus attenuate over time, and plant genotypes and
their floral VOCs might respond differently to natural
mycorrhizal inocula compared to a single mycorrhizal
inoculum used in this study. Whether the effects of
mycorrhizae and herbivory + mycorrhizae treatments
on floral fungal microbiome are caused by altered source
pools of microbes from the rhizosphere and phyllosphere
that can affect the source–sink dynamics or altered plant
traits not measured here that can affect floral fungal
taxa merits further investigation.

To conclude, plant genotype governs floral micro-
biome assembly via both direct and indirect mechanisms
mediated by diverse floral traits, especially the bidirec-
tional relationships between floral VOCs and bacterial
and fungal communities. In addition to the intrinsic
characteristics of plant genotypes, interactions with non-
focal mutualists and antagonists at the rhizosphere and
phyllosphere influence the anthosphere microbiome
that can profoundly affect plant reproduction [1, 2, 4].
These findings should not be unique to strawberries
but may be generalizable to other crops and wild
plants, because the VOCs of important relevance to the
floral microbiome are common among plant species
[9–13], and mycorrhizal partners and herbivore pests
are ubiquitous in natural and agricultural ecosystems
[33, 34]. We emphasize that our findings are based
on plants with pre-existing endophytic microbiomes;
as such, the extent to which endophytic microbiomes
influence the detected relationships remain to be deter-
mined. Nevertheless, our findings based on strawberries
improve the understanding of microbiome assembly in
flowers and offer important insights into agricultural
microbiomes that can influence plant reproduction and
crop productivity.

Materials and methods
Factorial field experiment
The factorial field experiment [18] was conducted
during March–September, 2019, at the Oakland Uni-
versity Student Farm, Rochester, Michigan (42.66073◦N,
83.19558◦W). Three strawberry genotypes (“Seascape”,
“Tribute” and “Wasatch”) with 48 bare-root nursery stock
plants per genotype were included in the experiment.
The fresh biomass was recorded for each bare-root
plant (i.e. initial plant weight) to account for potential
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influence of variation in initial plant size on the
experiment. These bare-root plants (N = 144 total) were
grown in 1-gallon pots filled with 2:1:1 mixture of
sphagnum peat moss (Lambert, Rivière-Ouelle, Québec,
Canada), washed play sand (Kolorscape, Atlanta, GA)
and Turface MVP (Turface, Buffalo Grove, IL) during
March 10–16, 2019, and re-potted into 2-gallon white
fabric pots (247Garden, Montebello, CA) filled with the
same media during May 24–29, 2019. These plants
were subjected to four treatments (control, herbivory,
mycorrhizae, and herbivory + mycorrhizae). Within
each treatment, a single plant from each genotype was
randomly selected (Fig. 1). The four treatments were then
grouped into and replicated across 12 blocks (Fig. 1).
For mycorrhizae-present treatments (mycorrhizae and
herbivory + mycorrhizae), plants were inoculated with
Rhizophagus irregularis spores (Elite 91 Myco Jordan,
Murietta, CA) upon initial potting by dusting roots with
inocula and also filling the 1-gallon pots half full of
media and adding a thin layer of 5 mL inocula at
the point of contact with roots. For herbivory-present
treatments (herbivory and herbivory + mycorrhizae),
plants experienced both natural herbivory from Vanessa
cardui caterpillars (Carolina Biological Supply, Charlotte,
NC; with three to five 2nd and 3rd instar larvae feeding
on a single leaf per plant for six days) and simulated
herbivory (by clipping the distal half each leaf from half
of the leaves per plant and then applying 1 mM jasmonic
acid solution in water [35] to cover all upper leaf surface)
during June 17–July 6, 2019. The combination of natural
and simulated herbivory is commonly used [36] to ensure
that plants received the stimulus of a live herbivore and
associated cues (e.g. enzymes in caterpillar saliva) while
standardizing for the leaf area damaged per unit time.

Floral traits and VOC collection
In this study, we recorded the number of open flowers
produced over a two-week period (August 4–17, 2019)
prior to and during the floral microbiome collection.
We sampled floral volatile emissions eight weeks after
herbivory treatments, and 5–15 days prior to floral micro-
biome collection (July 30–August 10, 2019) to minimize
the potential influence of the activities of VOC mea-
surements that can cause artificial microbial arrival and
destructive flower collection on floral microbiome. Floral
volatiles were collected from new fully expanded flowers
between 11 AM and 3 PM on sunny to partly sunny
days, with no to little chance of rain. During the 4-h
sampling period each day, 16 floral and two blank sam-
ples were collected using a dynamic headspace sampling
method [31], by enclosing flowers in 12 oz. polyethy-
lene terephthalate cups with dome lids (Comfy Package,
Rikkel Corp, NY) and pulling air through a semi-open
system at a flow rate of 200 mL/min through volatile
traps with 30 mg of HayeSep Q adsorbent (VAS, Rens-
selaer, NY). We used either a PVAS22 portable volatile
assay system (VAS, Rensselaer, NY) or an Air Lite low-
flow air sample pump (SKC, Eighty Four, PA), which were

shown functionally equivalent in volatile collection dur-
ing initial trials. Volatiles were analyzed on an Agilent
7890A gas chromatograph (GC) with an Agilent 5977B
mass spectrometer (MS) and separated on a HP-5 column
(30 m × 250 μm × 0.25 μm) with helium as a carrier gas.
We measured flower diameter and dry weight for all
flowers sampled. Floral VOC emissions (per hour) were
standardized by flower dry weight.

Floral microbiome collection and sequencing
The floral microbiome was collected from individual
strawberry plants that flowered on August 16, 2019
(N = 93 out of 144 plants). A single flower (without
pedicel) per plant was collected into a sterile 15 mL cen-
trifuge tube using ethanol-rinsed forceps. These flower
samples were transported on dry ice to the University of
Pittsburgh and stored at −20◦C within 12 h. Following the
previous protocol [1], epiphytic microbes were collected
by sonicating flowers in 3 mL phosphate-buffered saline
at 40 kHz for 10 min and vortexing for 3 min. The
microbes were pelleted by centrifuging at 10000 x g for
5 min, and then subject to DNA extraction using Quick-
DNA Fecal/Soil Microbe Kits (Zymo Research, Irvine, CA).
Samples and one negative control (without flower but in
the process of microbial isolation and DNA extraction)
were sent to Argonne National Laboratory for bacterial
(16S rRNA V5–V6 region, 799f–1115r primer pair) and
fungal (ITS1f–ITS2) library preparation [1]. Because the
negative control failed in library preparation, the 93
samples were sequenced on a 1/2 lane of Illumina MiSeq
(paired-end 250 bp).

Microbial sequence analysis
Demultiplexed paired-end (PE) reads were used for
detecting bacterial and fungal amplicon sequence vari-
ants (ASVs) using package DADA2 v1.14.0 [37] in R v3.6.2
[38] and QIIME 2 v2019.4 [39]. Following the previous
pipeline [1] for bacterial ASV detection in DADA2, PE
reads were trimmed and filtered [truncLen = c(245, 245),
trimLeft = c(0, 10), maxN = 0, truncQ = 2], prior to specific
variant identification that took into account sequence
errors. The PE reads were then end joined (minOver-
lap = 20, maxMismatch = 4) for ASV detection. After
chimera removal, ASVs were assigned with taxonomic
identification based on the SILVA reference database (132
release NR 99) implemented in DADA2. For fungal ASV
detection in DADA2, the PE reads were first screened to
remove potential primer contaminations. Due to the low-
quality end (∼50 bp), the fungal reads were truncated
at 200 bp during quality filtering [truncLen = c(200,
200), maxN = 0, truncQ = 2] to ensure the accuracy in
ASV detection. This method provided a conservative
estimate of fungal ASVs [1], due to the potential loss
of information based on ITS length variation [37]. After
chimera removal, fungal ASVs were assigned with
taxonomic identification based on the UNITE reference
database (v8.0 dynamic release) using QIIME 2.
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Bacterial and fungal ASV tables were further filtered
separately before conversion into microbial community
matrices using package phyloseq [40]. First, we removed
non-focal ASVs (Archaea, chloroplasts and mitochon-
dria). Second, we filtered out samples of low reads (<200
reads). Third, we normalized per-sample reads to the
same number (i.e. the median reads, 4114 and 10 377,
bacterial and fungal data set, respectively) [1,5]. Lastly,
we removed low-frequency ASVs (<0.001% of total obser-
vations). The final community matrices consisted of 1500
and 976 ASVs for bacteria (N = 86 samples) and fungi
(N = 87), respectively.

Floral microbial α- and β-diversity
To evaluate how floral microbial α-diversity was influ-
enced by plant genotype, herbivory treatments (present:
herbivory, herbivory + mycorrhizae; absent: control,
mycorrhizae), and mycorrhizae treatments (present:
mycorrhizae, herbivory + mycorrhizae; absent: control,
herbivory), we analyzed the bacterial and fungal com-
munities separately using general linear mixed models
(LMMs) in package lme4 [41]. The response variable
(Shannon diversity) was calculated using package vegan
[42], and power transformed to improve normality
with the optimal power parameter determined using
the Box–Cox method in package car [43] (i.e. power
parameter = 1 and 2 for bacterial and fungal Shannon
diversity, respectively). The predictors included genotype,
herbivory treatments and mycorrhizae treatments
as well as their two-way interactions and three-way
interaction, with initial plant weight as a covariate. The
split plot with randomized complete block design in
this experiment (Fig. 1) required nested random effects
(i.e. treatment plots nested within blocks). However,
due to only a subset of the 144 samples (N = 86 and 87
for bacterial and fungal data sets, respectively) for the
LMMs, nested random effects led to difficulties in model
convergence and thus were not used. Instead, the LMMs
considered the random effect of blocks alone. Statistical
significance (type III sums of squares) and least-squares
means (LS-means) of predictors were assessed using
packages lmerTest [44] and emmeans [45].

Microbial β-diversity (Bray–Curtis dissimilarity) was
evaluated using PERMANOVA and constrained principal
coordinates analysis (cPCoA) in vegan for bacterial
and fungal communities separately. To assess the
significance of the main effects, PERMANOVA and
cPCoA included genotype, herbivory treatments and
mycorrhizae treatments, with initial plant weight as a
covariate and block as the random effect. To assess the
significance of two-way interactions, PERMANOVA and
cPCoA included both the main effects and their two-way
interaction terms. Similarly, to assess the significance
of the three-way interaction, the main effects, two-way
interactions and three-way interaction were included.
Once significant genotypic effect was identified, we
further conducted the same PERMANOVAs and cPCoAs
between pairwise genotypes to detect which specific

genotypes were divergent from each other in microbial
community composition.

Floral phenotype analysis
To evaluate whether strawberry genotypes differed
in flower abundance (sample size N = 93) and flower
size (N = 80), we conducted LMMs with the response
variables power transformed to improve normality (i.e.
power parameter = 0.5, square-root transformation, for
flower abundance, and 2 for flower diameter). The
predictors included genotype, herbivory treatments
and mycorrhizae treatments as well as their two-way
interactions and three-way interaction, with initial plant
weight as a covariate and block as the random effect.

To evaluate whether and how strawberry genotypes
differed in VOC profile (sample size N = 66), we conducted
PERMANOVA and cPCoA. The predictors included geno-
type, herbivory treatments and mycorrhizae treatments
as well as their two-way interactions and three-way inter-
action, with covariates (i.e. initial plant weight, pump ID
and average daily temperature during VOC collection)
and random effect (block). The PERMANOVA and cPCoA
were conducted as in the above-mentioned microbial
analysis to assess the significance of the main effects and
interaction terms. Once significant genotypic effect was
detected, we further identified the specific VOCs that dif-
fered between genotypes using random forest (RF) clas-
sification in packages caret [46] and randomForest [47].
The RF classification models were run for the full data
with 1000 trees, and the number of randomly selected
variables (i.e. individual VOCs) at each split of a deci-
sion tree was optimized using 10-fold cross validation
in caret. RF model performance was assessed using out-
of-bag (OOB) error. The set of important, non-redundant
VOCs (in the presence of potentially correlated VOCs)
were selected using backward variable elimination with
package varSelRF [48].

SEMs linking floral phenotype to microbial
α- and β-diversity
SEMs were conducted to link genotypic variation in
flower abundance, size and VOCs, as well as treat-
ments, to the α-diversity and β-diversity of floral
bacterial and fungal communities (Figs. 4a and 5a). We
focused on VOCs at three different levels: (1) individual
VOCs that differed between genotypes as identified
by the random forest classification (see above), and
that predicted the α-diversity (Shannon diversity) or
β-diversity (the first and second axis of cPCoA, cPCoA1
and cPCoA2) of bacterial and fungal communities based
on backward predictor selection using packages caret
and leaps [49]; (2) the major classes of VOCs (terpenes,
aliphatics, benzenoids, S-containing compounds and
C5 branched-chain compounds); and (3) VOC profile
(VOC cPCoA1 and cPCoA2; Fig. 3c). For the SEMs, flower
abundance and flower diameter were power transformed
(i.e. power parameter = 0.5 and 2, respectively). For
the categorical variables of treatments, we coded
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the control treatment as the reference level so that
the effects of the other three treatments (herbivory,
mycorrhizae, herbivory + mycorrhizae) were relative
to the control. All the variables of VOCs were log
transformed (i.e. power parameter = 0, log(x + 1)). For
floral bacterial microbiome (Fig. 4a), a total of 41 SEMs
were conducted (14 SEMs for Shannon diversity, 14 for
cPCoA1 and 13 for cPCoA2, Supplementary Table 4).
Similarly, for floral fungal microbiome (Fig. 5a), 41 SEMs
were conducted (14 for α-diversity, 13 for cPCoA1 and
14 for cPCoA2, Supplementary Table 5). To reduce the
number of models and model complexity, SEMs were
only retained when notable paths (P < 0.10) were iden-
tified, and then re-fitted with only the notable paths
present to estimate standardized path coefficients. The
SEMs were fitted using package lavaan [19] based on
overall genotypic (within- and among-genotype) varia-
tion. Model estimation used robust maximum likelihood
with Satorra-Bentler scaled χ2 that can accommodate
nonnormality in lavaan, and model fit was confirmed for
each retained SEM (comparative fit index, CFI > 0.9; root
mean squared error of approximation, RMSEA, the lower
bound of 90% confidence interval < 0.05; standardized
root mean squared residual, SRMR <0.1) [50]. With
these retained SEMs (Supplementary Tables 4 and 5),
to further confirm whether the detected relationships
based on overall genotypic variation were also supported
within genotypes, we re-fitted the retained SEMs (with
only the notable paths present) based on within-
genotype variation using package piecewiseSEM [20],
where genotype was included as the random effect using
package nlme [51]. The SEMs that contained notable
links (P < 0.10) between VOCs and bacterial and fungal
α- or β-diversity based on overall genotypic variation
were presented in Figs. 4 and 5 (six for bacterial micro-
biome and six for fungal microbiome), and the same set
of SEMs fitted based on within-genotype variation were
presented in Supplementary Figs. 1 and 2.
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