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Abstract

Tissue phase mapping (TPM) is an MRI technique for quantification of regional biventricular 

myocardial velocities. Despite the potential, its clinical use is limited due to the requisite labor-

intensive manual segmentation of cardiac contours for all time frames. The purpose of this study 

was to develop a deep learning (DL) network for automated segmentation of TPM images, without 

significant loss in segmentation and myocardial velocity quantification accuracy compared with 

manual segmentation. We implemented a multi-channel 3D (2D + time) dense U-Net that trained 

on magnitude and phase images and combined cross-entropy, dice, and Hausdorff distance loss 

terms to improve the segmentation accuracy and suppress unnatural boundaries. The dense U-Net 

was trained and tested with 150 multi-slice, multi-phase TPM scans(114 scans for training, 36 

for testing) from 99 heart transplant (HTx) patients(44 females, 1–4 scans/patient), where the 

magnitude and velocity-encoded (Vx, Vy, Vz) images were used as input and the corresponding 

manual segmentation masks were used as reference. The accuracy of DL segmentation was 

evaluated using quantitative metrics (dice scores, Hausdorff distance) and linear regression and 

Bland-Altman analyses on the resulting peak radial and longitudinal velocities (Vr and Vz). The 

mean segmentation time was ~2 hours per patient for manual and 1.9 ± 0.3 seconds for DL. 

Our network produced good accuracy (median dice = 0.85 for left ventricle [LV], 0.64 for right 

ventricle [RV], Hausdorff distance = 3.17 pixels) compared with manual segmentation. Peak Vr 

and Vz measured from manual and DL segmentations were strongly correlated (R≥0.88) and 

in good agreement with manual analysis (mean difference and limits of agreement for Vz and 

Vr were −0.05±0.98cm/s and −0.06±1.18cm/s for LV, and −0.21±2.33cm/s and 0.46±4.00cm/s 

for RV, respectively). The proposed multi-channel 3D dense U-Net was capable of reducing 

the segmentation time by 3600-times, without significant loss in accuracy in tissue velocity 

measurements.
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INTRODUCTION

Cine cardiovascular magnetic resonance (CMR) using balanced steady-state free precession 

(1) is the gold-standard imaging modality for the evaluation of cardiac function (2,3). Global 

cardiac functional parameters such as end diastolic volume, end systolic volume, stroke 

volume, ejection fraction, and mass of the left ventricle (LV) and right ventricle (RV) are 

routinely evaluated from cine CMR images. However, for most diseases, intramyocardial 

abnormalities may precede global functional abnormalities (e.g. ejection fraction). CMR has 

the ability to non-invasively characterize intramyocardial function using techniques such as 

myocardial tagging (4,5), strain-encoded (SENC) (6), cine displacement-encoded imaging 

with stimulated echoes (DENSE) (7,8), and tissue phase mapping (TPM) (9,10). These 

techniques have proven useful in diagnosing and monitoring abnormal myocardial function 

in a wide range of cardiovascular conditions including congenital heart diseases (11,12), 

cardiotoxicities (13,14), cardiac transplantation (15–17), left ventricular dyssynchrony 

(18,19), and various cardiomyopathies (20–22).

In this study, we will focus on TPM, which is a black-blood 2D cine phase contrast MRI 

pulse sequence with three-directional tissue velocity encoding for quantification of regional 

biventricular myocardial velocities (23). Recently, several studies have demonstrated 

significant differences in biventricular global and regional velocities in heart transplant 

(HTx) patients (adult and pediatric) with and without transplant rejection (15,16). Despite 

these studies demonstrating feasibility, the clinical translation of TPM is hampered by the 

requisite labor-intensive manual segmentation of the myocardial contours for all cardiac 

frames. In general, manual segmentation of TPM images is more challenging for the RV 

than the LV, because the former has thinner wall, highly trabeculated myocardium, and 

epicardial fat partially superimposing on the myocardial wall. For clinical translation of 

TPM, there is a need to automate segmentation of bi-ventricular contours.

The task of developing a post-processing tool to automate the segmentation of myocardial 

contours in TPM data from HTx patients is challenging due to several factors. First, the 

black-blood preparation module is not perfect and often produces residual blood signal, 

which makes it challenging to define the endocardial border. Second, metal artifacts from 

open chest surgery makes it challenging to define the epicardial contours, especially for 

the RV. Third, TPM with gradient echo readouts is inherently a low signal-to-noise-ratio 

(SNR) pulse sequence, thereby making segmentation sensitive to noise. Previous studies 

have reported automatic or semi-automatic segmentation tools using traditional machine 

learning or atlas based methods for TPM images with various degrees of success (24–28). 

A major disadvantage of such methods is that they often require prior knowledge to achieve 

satisfactory accuracy. To date, none of them have enabled TPM to be translated into clinical 

practice.
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Deep learning (DL) has found many applications in medical imaging, including image 

reconstruction (29–31), segmentation (32–34), and disease classification (35–37). The major 

advantage of DL over traditional segmentation methods is that neural networks are good at 

automatically discovering intricate features from data for object detection and segmentation. 

Another advantage of DL over traditional segmentation methods is that the inference 

processing time is several orders of magnitude faster. In this study, we sought to develop a 

fully automated segmentation method for TPM images using DL and evaluate its accuracy 

compared with manual LV and RV contour delineation.

METHODS

Patient Demographics

This study was conducted in accordance with protocols approved by our institutional review 

board and was Health Insurance Portability and Accountability Act (HIPAA) compliant. All 

subjects provided informed consent in writing and agreed to future analysis of their data. 

We retrospectively identified 99 patients with heart transplantation (mean age = 50 ± 15 

years; 55 males; 44 females) who participated in a longitudinal study, where each patient 

underwent 1–4 CMR scans for post HTx cardiac monitoring (median duration post HTx: 

4.4 years; range: 6 days to 30 years). In total, 150 CMR scans were included in this study. 

For patients with more than one scan, there was a gap of at least three months between 

consecutive scans.

MRI Hardware

TPM scans were conducted on a 1.5T whole-body MRI scanner (MAGNETOM Aera 

or Avanto, Siemens Healthcare, Erlangen, Germany). The scanners were equipped with 

a gradient system capable of achieving a maximum gradient strength of 45 mT/m and 

maximum slew rate of 200 T/m/s. Body coil was used for radio-frequency excitation. Both 

body matrix and spine coil arrays (30–34 elements in total) were used for signal reception.

Pulse Sequence

TPM data were acquired in three short-axis slices at basal, mid-ventricular, and apical 

locations using a prospectively ECG-gated, black-blood prepared 2D phase-contrast 

sequence with three-directional velocity encoding (11,38–40) (VENC = 25 cm/s). 

Spatiotemporal imaging acceleration using Parallel MRI with Extended and Averaged 

GRAPPA Kernels (PEAK-GRAPPA) (41) with an undersampling factor of 5 permitted 

breath-hold data acquisitions with scan time = 24–28 heart beats per slice. Other relevant 

imaging parameters included: temporal resolution = 19–24 ms, in-plane spatial resolution 

= 2.0–2.3 mm2, slice thickness = 8 mm, TE = 3.2–3.8 ms, TR = 4.8–6.1 ms, receiver 

bandwidth = 460–840 Hz/pixel, flip angle 10° or 15°.

Manual TPM Data Analysis

TPM data post-processing and myocardial velocity estimations were made using a custom-

made software package programmed in MATLAB (The Mathworks Inc, Natick, Mass). 

First, the velocity data were pre-processed by correcting eddy currents (42) and bulk-motion 

(38,39,43). For manual segmentation, the magnitude images in short-axis views were used 
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to place approximately 10–20 coordinate points, each for epicardial LV, endocardial LV, 

epicardial RV, and endocardial RV borders for the base, mid, and apex for all time frames, 

after which the software uses spline fitting to close the contour. The anterior and inferior 

LV-RV intersections were automatically detected for all time frames and used to remove 

the septum from the RV masks. The Cartesian velocity (Vx and Vy) within the segmented 

LV and RV masks were converted into velocities along the three principal directions of the 

heart - radial shortening (Vr), tangential/circumferential shortening (Vϕ), and longitudinal 

shortening (Vz). For simplicity, only the Vr and Vz are considered for further statistical 

analyses. The expanded 16 LV +10 RV American Heart Association (AHA) model (44) 

was used to report segmental end-systolic and end-diastolic peak velocities. Global LV and 

RV peak velocities were obtained by averaging the segmental values for each ventricle. 

End-systole was detected automatically as the time frame with the smallest endocardial 

LV volume and end-diastole as the time frame with the largest LV volume (summed over 

all three slices). Analyzing each study manually from pre-processing to deriving velocities 

would take ~2 hours per patient with the most effort (95%) spent on manual placement of 

coordinate points.

Deep Learning Architecture

Consistent with prior studies (45,46), we have split our training and testing data to have 

approximately 3:1 ratio. For training, we randomly selected 114 scans (342 slices, 20–42 

time frames per slice, 10,096 2D images) and for testing, the remaining 36 scans (108 

slices, 23–36 time frames per slice, 3,288 2D images) were used. The pre-processed images 

after correction for eddy currents and bulk motion were used. While a fraction of image 

series (n=55 [12.6%] slices) had suboptimal image quality due to poor breath holding, we 

elected to include all image series in this study (n=39 [11.4%] for training; n=16 [14.8%] 

for testing.) As shown in Figure 1, the manual contours from three observers (AP, RS, AB; 

medical fellows with 2 to 8 years of experience) were transformed into multi-layer masks 

and used as the reference (i.e. labelled 0–3 for each pixel, 0: background, 1: blood pool, 2: 

RV myocardium, and 3: LV myocardium). A 3D (2D + time) dense U-Net (Figure 2) was 

used to learn the segmentation process, while 2D max pooling (2×2×1) was used to allow 

arbitrary number of time frames.

Three different ways of utilizing the TPM images as inputs are compared: 1) magnitude 

image alone; 2) magnitude image and a combined velocity image (V sum = V x
2 + V y

2 + V z
2); 

3) magnitude and three dimensional velocity-encoded (Vx, Vy, Vz) images as independent 

input channels (i.e. stacked in the channel dimension). Input 3) was used for other 

comparisons.

For the loss term, in addition to cross-entropy loss, we investigated into multi-class dice loss 

(47), and Hausdorff distance (48) loss to achieve better results. For the dice loss, each class 

was calculated separately by Equation 1.

LDSC = 1 −
2∑isiri

∑isi + ∑iri
Eq. 1,
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where si is the DL segmentation result, and ri is the ground truth at each voxel i. The 

dice losses of all three classes (i.e. blood pool, LV myocardium and RV myocardium) 

are weighted equally. The Hausdorff distance is calculated for the boundary of the entire 

segmentation (i.e. three classes combined). The total loss is described by Equation 2, where 

K is the total number of classes (i.e. 3) and LDSCk is the dice loss for class k.

Ltotal = LCE + 1
K ∑

k = 1

K
LDSCk + LHD Eq. 2

Four different combinations of loss terms are compared: 1) LCE alone; 2) LCE + LHD; 3) LCE 

+ LDSC; 4) LCE + LDSC + LHD. The loss terms were weighted equally in this study. Loss 

term 4) was used for other comparisons.

The training took 19.7 hours. As part of our efforts to ensure transparency and 

reproducibility, we have made available our dense U-Net architecture programmed in 

Pytorch (see the Data Availability Statement section). To check for overfitting, we 

performed a 5-fold cross validation experiment by repeating the training and testing as 

described above.

The DL-generated masks were converted into coordinate points and loaded onto the software 

for velocity estimations. Further analysis used the same semi-automatic procedure as for the 

manual analysis, interpolated splines were generated and LV-RV intersection points were 

identified.

Computer Hardware

For training and testing of the DL network, we used a GPU workstation (Tesla V100 32GB 

memory, NVIDIA, Santa Carla, California, USA; 32 Xeon E5–2620 v4 128 GB memory, 

Intel, Santa Clara, California, USA) equipped with Pytorch (Version 1.4, Berkeley Software 

Distribution), and MATLAB (R2020b, The Mathworks Inc, Natick, MA, USA) running on a 

Linux operating system (Ubuntu16.04).

Quantitative Analysis

To assess the accuracy of DL-based segmentation, we calculated the dice scores for LV 

and RV with manually contoured masks as reference. The Hausdorff distance is calculated 

for the entire heart segmentation to access the offsets of the boundaries. Peak-systolic 

and peak-diastolic LV and RV segmental velocities were compared between the manual 

segmentation and DL segmentation. A second independent observer (IO) manually analyzed 

12 scans randomly selected from the 36 testing scans to evaluate inter-observer variability.

Statistical Analysis

The statistical analyses were conducted by two investigators (DS, AP) using MATLAB. 

We tested for normality of variables using the Shapiro-Wilk test. Normally distributed data 

were reported as mean ± standard deviation; non-normally distributed data were reported as 

median and interquartile range (IQR); 25th percentile, 75th percentile. Analysis of variance 
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or Kruskal-Wallis test with Bonferroni correction were used to compare the quantitative 

metrics among different input groups and different loss term groups. Paired t-tests or 

Wilcoxon signed rank tests were used to compare the quantitative metrics between the 

manual and DL segmentations. Pearson correlation (r) and Bland Altman analyses were 

used to compare velocities derived from the manual and DL segmentations. A p < 0.05 was 

considered significant for each statistical test.

RESULTS

The mean segmentation time was approximately 2 hours per patient (3 slices per patient) 

for manual and 1.9 ± 0.3 seconds for DL segmentation. According to Shapiro-Wilk test, 

all three image quality metrics were not normally distributed (statistic = 0.874, p<0.001 

for LV dice; statistic = 0.931, p <0.001 for RV dice; statistic = 0.895, p <0.001 for 

Hausdorff distance). Therefore, the Kruskal-Wallis and Wilcoxon signed rank tests were 

used to compare quantitative metrics.

Table S1 in Supplementary Materials summarizes the quantitative metrics measured on the 

36 testing cases comparing the deep learning outcomes using different inputs. All three 

quantitative metrics were not significantly (p>0.37) different between the three groups. 

As shown in Figure S1, the magnitude + phase (Vx, Vy, Vz) as input produced better 

segmentation than other input cases, which contained noticeable discontinuity on LV or 

RV myocardium masks. Given that magnitude + phase (Vx, Vy, Vz) group produced better 

median quantitative metrics, we elected to use it throughout.

Table S2 in Supplementary Materials summarizes the quantitative comparison with different 

loss terms. While the LV and RV dice scores were not significantly (p>0.38) different among 

between four groups, the Hausdorff distance was significantly (p<0.03) different between 

the four groups. As shown in Figure S2 in Supplementary Materials, the CE + HD + Dice 

loss term produced better results than other loss terms. Thus, we elected to use it throughout.

As summarized in Table 1, the median dice scores for the LV and RV DL segmentations 

were 0.85 and 0.64, respectively. The median Hausdorff distance of the testing set is 3.17 

pixels. As shown in Table 2, for the 12 scans including analyses by two observers, the dice 

score was significantly better for DL than the second independent observer for LV (DL: 

0.86; manual IO: 0.80; p<0.001), but they were not significantly different for RV (DL: 0.62; 

second IO: 0.60; p=0.32). The median Hausdorff distance was not significantly different 

between DL and second IO (DL: 3.33 pixels; second IO: 3.58 pixels; p=0.23).

In the 5-fold cross validation experiment, all three quantitative metrics were not significantly 

(p>0.1) different among the five groups (see Table S3 in Supplementary Materials). 

Therefore, we used the first experiment results throughout.

Figure 3 shows four representative cases of TPM segmentation using manual contouring 

and deep learning. These example results show good agreement between manual and DL 

segmentation. For dynamic display of Figure 3, see Video S1 in Supplemental Materials. 

Figure 4 shows example Vr and Vz time curves of LV and RV for manual and DL 

contours on the right and the corresponding velocity maps at end-systolic and end diastolic 
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time frames on the left. This example shows good agreement in time-resolved velocity 

measurements derived from manual and DL segmentation. For dynamic display of Figure 4, 

see Video S2 in Supplemental Materials.

Figure 5 shows scatter plots resulting from linear regression analysis illustrating strong 

correlation between manual and DL segmentation methods (R ≥ 0.88) and between two 

independent observers (R ≥ 0.89) for peak Vr and Vz (LV and RV, systole and diastole). 

All 26 segments (LV and RV 16+10 segment AHA model) are plotted with the basal, 

mid-ventricular, and apical segments color-coded as red, blue and green, respectively. 

Figure 6 shows Bland-Altman plots illustrating good agreement between manual and DL 

segmentation for LV Vz (mean = 3.85 cm/s; mean difference = −0.05 cm/s (1.3 % of mean); 

the upper and lower limits of agreement [LOA] = −0.05 ± 0.98 cm/s); LV Vr (mean = 3.38 

cm/s; mean difference = −0.06 cm/s (1.8% of mean); and the upper and lower LOA = −0.06 

± 1.18 cm/s); RV Vz (mean = 2.96 cm/s; mean difference = −0.21 cm/s (7.1% of mean); and 

the upper and lower LOA = −0.21 ± 2.33 cm/s); RV Vr (mean = 3.95 cm/s; mean difference 

= 0.46 cm/s (11.7% of mean); and the upper and lower LOA = 0.46 ± 4.00 cm/s).

Figure 6 also shows good agreement between independent observers for LV Vz (mean = 3.54 

cm/s; mean difference = −0.07 cm/s (2.0% of mean); and the upper and lower LOA = −0.07 

± 1.10 cm/s); LV Vr (mean = 3.33 cm/s, mean difference = −0.13 cm/s (3.9% of mean); and 

the upper and lower LOA = −0.13 ± 1.21 cm/s); RV Vz (mean = 2.82; mean difference = 

−0.32 cm/s (11.4% of mean); and the upper and lower LOA = −0.32 ± 2.92 cm/s); RV Vr 

(mean = 4.11 cm/s; mean difference = 0.47 cm/s (11.4% of mean); and LOA = 0.47 ± 4.06 

cm/s).

DISCUSSION

This study describes the implementation and evaluation of a DL-based automated image 

segmentation method for TPM images. As expected, the processing time is 3,600-times 

shorter for DL (~2 s) than manual segmentation (~7,200 s). The resulting accuracy (LV dice 

= 0.85, RV dice = 0.64, Hausdorff distance = 3.17 pixels) in segmentation with DL was 

slightly better than inter-observer agreement (LV dice = 0.80, RV dice = 0.60, Hausdorff 

distance = 3.58 pixels).

This study has several points that warrant further explanations. First, we used a 3D 

dense U-Net architecture in this study. Compared to a traditional convolution layer with 

increasing channel sizes in the deeper layers, the dense layer uses a series of convolutions 

of relatively small sized channels (i.e. 16) and concatenates the feature maps from previous 

convolutions (49,50). This largely reduces the overall number of parameters (3D U-Net: 

18.8M, ours: 2.7M) by efficiently utilizing every feature extracted throughout the CNN, 

thereby reducing the significant computational demand (e.g. GPU memory) for 3D CNNs 

(51–53). Second, by utilizing the magnitude and phase (Vx, Vy, Vz) images together, the 

dense U-Net produced better results than using magnitude alone (see Figure S1 and Video 

S3 in Supplementary Materials). Previously, our team found similar results in a cohort 

of 26 pulmonary hypertension patients and 8 healthy controls (54). A 4-channel network 

using the magnitude and 3 phase images together showed better results than a 1-channel 

Shen et al. Page 7

NMR Biomed. Author manuscript; available in PMC 2022 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



network using only the magnitude images and a 2-channel network using the magnitude 

and a combined velocity (V sum = V x
2 + V y

2 + V z
2). While the phase images are hard to be 

used by human, they can be utilized to enrich the image features learned by DL networks, 

thereby improve the performance of DL networks. Third, incorporating cross-entropy loss, 

dice loss and Hausdorff distance into the loss function produced better results (see Figure S2 

and Video S4 in Supplementary Materials). Forth, the dice scores were significantly better 

for DL than second IO for LV (DL: 0.86; second IO: 0.80; p<0.001) but not for RV (DL: 

0.62; second IO: 0.60; p=0.49). For more accurate segmentation, DL results can be used as 

an initial guess and then further improved with minor manual adjustments, at the expense of 

increased processing time. This semi-automated method may still be fast enough for clinical 

translation of TPM.

DL-based RV myocardial segmentation is challenging due to its complex crescent shape 

that varies across slices and phases. The inhomogeneity in shape and myocardial signal 

intensity in our cohort of post-cardiac transplant subjects adds to this problem. Previous 

works on RV myocardial segmentation are limited. The finalists of the MICCAI 2012 Right 

Ventricle Segmentation Challenge used either automated or semi-automated approaches, 

three of which are atlas-based methods, two are prior-based methods, and two are prior-free, 

image-driven methods that make use of the temporal dimension of the data (55). An end-to-

end DL-based CNN architecture was implemented by Tran et al. to segment the LV and 

RV myocardium from short-axis cine slices (56). All of these prior works were conducted 

using cine CMR images, which have a high blood-to-myocardial contrast. A future work is 

warranted to improve the RV segmentation performance in TPM images.

This study has several limitations that warrant further discussion. First, we did not document 

the manual segmentation time from prior analysis. For this study, one observer (AS) with 

prior experience with TPM analysis repeated the analysis for three training datasets to derive 

an approximate segmentation time of 2 hours per patient. Second, the DL segmentation 

results may be influenced by poor image quality (i.e. image artifacts caused by breathing 

motion, metals), whereas manual contours is less sensitive to artifacts because trained 

observers may use prior knowledge to over read poor image quality. One approach to 

improve DL based segmentation is by incorporating shape models. Third, as shown in 

Figure 6, the agreement in Vz and Vr was significantly worse for RV than LV. This may 

be due to: 1) partial volume averaging, as the RV myocardium is thinner than the LV; 2) 

susceptibility artifact from open chest surgery (i.e. signal void caused by sternal wires), 

which is closer to the RV; 3) epicardial fat signal, which makes it harder to determine 

epicardial RV boundary. The agreement in Vr for RV was worse for diastole with negative 

velocities than systole with positive velocities. This may be due to: 1) partial volume 

averaging, as the RV is thinner at diastole than systole; 2) proximity to signal void caused 

by sternal wires, which is closer at diastole than systole. Fourth, we did not compare our 

DL-based method to previously published semi-automated or automated methods for TPM 

(24–27) due to lack of access to such methods. A future study is warranted to conduct a 

head-to-head comparison for segmentation accuracy and computational efficiency. Fifth, this 

study used data obtained from a single site, scanner vendor, and field strength, which may 

limit generalizability to other sites, scanner vendors and field strengths. Sixth, we used equal 
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weight for the different loss terms in this study. A future study is warranted to determine the 

optimal weight for each loss term to achieve best results.

In summary, this study describes an automated image segmentation method for biventricular 

TPM images with deep learning that is significantly faster than manual contouring, without 

significant loss in segmentation accuracy and TPM parameters, thereby verifying clinical 

translatability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The manual contours were transformed into multi-layer masks (i.e. 0 for background, 1 for 

blood pool, 2 for RV myocardium, and 3 for LV myocardium). We used the magnitude 

image and three dimensional velocity-encoded (Vx, Vy, Vz) images as independent input 

channels and the multi-class masks as the reference to train a 3D dense U-Net.
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Figure 2. 
a) A 3D (2D + time) Dense U-Net was used to learn the segmentation process, while max 

pooling (2×2×1) was used to allow arbitrary number (N) of time frames. b) The structure of 

dense block used in the 3D Dense U-Net.
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Figure 3. 
Four representative patients comparing manual and DL segmentations. (Left column) The 

magnitude image; color-coded contours produced by manual (second column) and DL (third 

column): LV epicardium (red), LV endocardium (blue), RV epicardium (green) and RV 

endocardium (yellow). (4th and 5th column from the left) The multi-layer masks produced by 

manual (fourth column) and DL (fifth column). The dice scores of LV and RV myocardium 

for each case are labeled on the lower right corner of the DL masks.
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Figure 4. 
Linear regression plots illustrating strong correlation between segmentation methods (top 

row, manual vs. DL, 36 testing cases, R ≥ 0.88) and between independent observers (bottom 

row, 12 manual IO cases, R ≥ 0.88) for peak Vr and Vz (LV and RV, systole and diastole). 

All 26 segments are plotted with the basal, mid-ventricular, and apical segments color-coded 

as red, blue and green, respectively.
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Figure 5. 
Bland-Altman plots illustrating good agreement between segmentation methods (top row, 

manual vs. DL, 36 testing cases) and between independent observers (bottom row, 12 

manual IO cases) for peak Vr and Vz (LV and RV, systole and diastole). All 26 segments 

are plotted with the basal, mid-ventricular, and apical segments color-coded as red, blue and 

green, respectively.
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Figure 6. 
(Left) Biventricular velocity maps derived from manual and DL segmentations at the peak-

systolic and peak-diastolic time frames. Myocardial longitudinal velocities are color-coded 

and in-plane velocities are depicted by regionally averaged velocity vectors. (Right) Time 

resolved Vr and Vz curves of LV and RV. The red and blue vertical lines represent the 

time frames shown on the left (peak-systole and peak-diastole), while the black and blue 

curves represent manual and DL contours, respectively, with each time-frame represented by 

a rhombus.
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Table 1.

Summary of quantitative metrics of 36 testing cases comparing deep learning segmentation versus manual 

segmentation. Reported values represent median and 25th to 75th percentiles (parenthesis).

LV Dice Score RV Dice Score Hausdorff Distance

Basal 0.84 (0.81–0.89) 0.69 (0.62–0.76) 3.19 (2.48–4.06)

Mid 0.85 (0.82–0.89) 0.67 (0.60–0.73) 2.93 (2.49–3.53)

Apex 0.84 (0.78–0.85) 0.46 (0.37–0.62) 3.59 (2.66–3.94)

Combined 0.85 (0.80–0.88) 0.64 (0.47–0.73) 3.17 (2.52–3.93)
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Table 2.

Summary of quantitative metrics (dice and Hausdorff distance) of image quality from all 12 testing cases 

compared with second independent observer (IO) as reference. Reported values represent median and 25th to 

75th percentiles (parenthesis).

LV Dice Score RV Dice Score Hausdorff Distance

DL Second IO DL Second IO DL Second IO

Basal 0.88 (0.84–0.89) 0.80 (0.76–0.85) 0.73 (0.64–0.78) 0.70 (0.62–0.73) 2.81 (2.34–3.75) 3.14 (2.79–3.80)

Mid 0.86 (0.79–0.89) 0.80 (0.74–0.82) 0.67 (0.54–0.73) 0.64 (0.52–0.70) 3.04 (2.58–3.98) 3.11 (2.93–3.94)

Apex 0.83 (0.78–0.88) 0.74 (0.71–0.83) 0.39 (0.33–0.53) 0.38 (0.26–0.51) 3.82 (3.43–5.58) 4.36 (3.38–5.33)

Combined 0.86 (0.80–0.89) 0.80 (0.73–0.83) 0.62 (0.49–0.73) 0.60 (0.47–0.71) 3.33 (2.56–4.70) 3.58 (2.89–4.38)

P-value <0.001 0.32 0.23
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