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Abstract
Hepatitis C virus (HCV) infections are emerging as one of the foremost challenges in healthcare owing to its chronicity 
and the virus’s quasispecies nature. Worldwide, over 170 million people are chronically infected with HCV, with an annual 
mortality of over 500,000 people across the world. The emerging pathophysiological evidence links HCV infections to a risk 
of developing liver diseases such as cirrhosis and hepatocellular carcinoma. Despite the great strides that have been made 
towards understanding the pathophysiology of disease progression, the tailored treatments of HCV infection remain to be 
established. The present review provides an update of the literature pertaining to evolving therapeutic approaches and pro-
phylactic measures for the effective management of HCV infections. An extensive discussion of established and experimental 
immune prophylactic measures also sheds light on current developments in the design of vaccination strategies against HCV 
infection. We have also attempted to address the application of nanotechnology in formulating effective therapeutic interven-
tions against HCV. Pointing out the limitations of the existing diagnostic methods and therapeutic approaches against HCV 
might inspire the design and development of novel, efficient, reliable, and cost-effective diagnostic technologies as well as 
novel therapeutic and immune prophylactic interventions for the effective management of HCV.

Introduction

Viral hepatitis can be caused by various viruses, including 
hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis 
C virus (HCV), hepatitis D virus (HDV), hepatitis E virus 
(HEV), and hepatitis G virus (HGV) [1]. Since its first detec-
tion in 1989 [2], it has become clear that HCV is a major 
cause of chronic hepatitis. HCV belongs to the genus Hepa-
civirus in the family Flaviviridae [3]. More than two decades 
since its discovery, HCV continues to be a major cause of 
concern and a huge burden on national public health systems 
worldwide. A recent report estimates that over 71 million 
people worldwide are chronically infected with HCV [4], 

and approximately 170 million people are estimated to be at 
risk of HCV infection. This virus has the highest prevalence 
in Africa and Asia, where it is four times more prevalent 
than HIV, and hence, HCV has the potential to cause the 
next pandemic, as the mortality has reached over 500,000 
per annum [5]. The incubation period of HCV ranges from 
weeks to several months, with an average of around 7 weeks 
until symptoms occur [6]. HCV infection is often asymp-
tomatic, making it very difficult to detect in its early stage. 
This is the main reason why patients do not receive early 
treatment, and HCV is often referred to as a “silent killer” 
[7]. This disease can have various outcomes, ranging from 
mild (minimal inflammation of the liver) to severe, and can 
lead to scar tissue formation. Chronic infection eventually 
causes cirrhosis, leading to hepatocellular carcinoma and, 
ultimately, death [8]. A report from the Centers for Disease 
Control and Prevention (CDC) states that HCV-related cir-
rhosis is observed in 5-20% of patients experiencing chronic 
HCV infections over a prolonged period of 20-30 years. 
Moreover, advanced cirrhosis is associated with end-stage 
liver disease, liver failure because of portal hypertension, 
hepatic encephalopathy, hepatorenal syndrome, and hepa-
tocellular carcinoma [9]. As the most commonly observed 
type of liver cancer, research data from the last three decades 
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suggest that hepatocellular carcinoma occurs in approxi-
mately 1-3% of HCV patients [10]. Of note, effective anti-
HCV treatments can help to reduce the overall mortality 
rates in HCV patients with compensated cirrhosis [11].

HCV has a single-stranded positive-sense RNA genome 
of around 9.5 kb that encodes a single polyprotein precur-
sor of 3011 to 3033 amino acids [12, 13]. Upon protease-
mediated cleavage, the polyprotein precursor yields two 
distinct types of proteins that can be categorized as struc-
tural (Core, E1, E2, and p7) and non-structural (NS2, NS3, 
NS4A, NS4B, NS5A, and NS5B) proteins [14]. Owing 
to the importance of these proteins in the pathogenesis of 
HCV, we have reviewed recent advancements in the devel-
opment of drugs targeting the structural and non-structural 
proteins of HCV. The evolving genetic heterogeneity of 
HCV serotypes is one of the important limiting factors in 
the effective management of HCV patients, and also in the 
development of novel pan-genotypic treatment modalities. 
The high genetic variability exhibited by HCV has resulted 
in the generation of seven to eight major genotypes. These 
genotypes appear to be quite diverse at the genetic level. 
For example, the identified genotypes show 30% difference 
in their genome sequences. Within these major genotypes, 
84-86 subtypes have been identified that exhibit differences 
ranging from 15 to 25% at the nucleotide level [15, 16]. In 
the mainstream of HCV research, there are still questions 
waiting to be answered. For instance, it is not clear whether 
HCV genotypes originated from a single cross-species trans-
mission and further diversified within the human population 
or whether it originated from separate zoonotic sources in 
different geographical regions [17].

In this review, we provide an update on advancements 
in the field of therapeutics and diagnosis of HCV. Previ-
ous reviews have mainly described diagnosis, therapy, or 
management of HCV infections [18–21] and have focused 
on individual genotypes [22, 23]. In contrast, in the present 
review, we provide an extensive literature survey on current 
diagnosis and therapeutic modalities for various genotypes 
of HCV and their associated shortfalls. Taking into con-
sideration the current state of the art, the current review 
offers updated information on the development of novel drug 
strategies and factors limiting the effective management of 
HCV infections.

Attempts to develop new HCV therapeutic 
modalities: successes and failures

With the advent of the COVID-19 pandemic and the 
acknowledgment of the HCV research of Michael Houghton, 
Harvey Alter, and Charles Rice by the Nobel Committee 
in 2020, the search for novel and effective antiviral agents 
has accelerated, and some of these agents might also find 

use in the management of HCV. In HCV drug development 
programs, a sizable amount of human resources and capital 
is being invested in developing antiviral drugs. Although 
there is still no completely effective antiviral therapy tai-
lored specifically for treatment of HCV infection, dozens of 
small-molecule drugs for stand-alone use or combination 
therapy have been approved and recommended by the FDA 
(Table 1), and others are in different phases of development, 
including clinical trials. These inhibitors mostly target viral 
nonstructural proteins such as NS3/4A, NS5A, and NS5B, 
or the internal ribosome entry site (IRES) [24]. Some of the 
most recently identified HCV antiviral agents are shown in 
Figure 1.

Setrobuvir is a potent small-molecule, non-nucleoside 
inhibitor of the HCV genotype 1 NS5B RNA polymerase. 
This drug reached clinical trials at Roche Pharmaceuticals 
[25, 26]. However, it was removed from the development 
pipeline and from phase II clinical trials in 2015 due to 
adverse effects. Patients receiving setrobuvir monotherapy 
and those receiving setrobuvir in combination with other 
direct-acting antivirals developed rashes. Danoprevir is a 
macrocyclic, peptidomimetic, small-molecule compound 
that was developed at Roche Pharmaceuticals. This drug 
competitively inhibits the HCV NS3/4A protease [27–29]. 
After successfully completing phase III clinical trials, this 
drug was launched in the market in China in August 2018. 
Mericitabine is an oral, small-molecule nucleoside analogue 
that is phosphorylated intracellularly, resulting in two dis-
tinct active triphosphate forms that target the NS5B RNA-
dependent RNA polymerase of HCV, affecting the viral 
replication [29–31]. However, this drug was discontinued 
in phase II clinical trials in 2016 because of an inadequate 
number of HCV patients participating in the trials [32]. Iri-
doids (such as the aglycones of shanzhiside methyl ester 
loganin and verbenalin) and amphipathic DNA polymers 
are novel antiviral molecules that were designed to inhibit 
entry of HCV into cells [33]. The drug telaprevir (VX-950), 
which targets the NS3-4A protease, showed some success in 
clinical trials [34]. It is being marketed worldwide by Jans-
sen R&D Ireland. Different analogues of ribavirin, namely 
4-iodo-1-beta-ribofuranosylpyrazole-3-carboxamide, 4-pro-
pynyl-1-beta-ribofuranosylpyrazole-3-carboxamide, and 
4-phenylethynyl-1-beta-ribofuranosylpyrazole-3-carbox-
amide, are now being considered as alternative candidate 
drugs [35].

BMS-824393 is a small molecule that targets the NS5A 
protein [36–38], and it was discontinued in phase II clinical 
trials due to severe adverse effects. Zinc meso-porphyrin 
holds immense potential as a novel drug to treat HCV infec-
tion [39]. In the last decade, the NS5B protein has been 
shown to be a good target for developing candidate drugs 
against HCV, and various NS5B inhibitors, such as NM-283 
[40], IDX-184, and MK-0608 have been described. NM-283, 
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developed by Idenix Pharmaceuticals, was found to be 
associated with severe gastrointestinal toxicity and hence 
discontinued from the phase II clinical trials. Despite ini-
tially promising results, the development of IDX-184 has 
been kept on clinical hold since February 2013, and no fur-
ther update is available for this agent. MK-0608, despite 
encouraging results in animal model studies, was discon-
tinued in 2011 due to unsuccessful clinical trials. Pfizer's 
PF-00868554 was discontinued from phase II clinical trials 
in February 2013 due to adverse effects, including headache, 
fatigue, insomnia, and nausea. GS-9190 (tegobuvir), pro-
duced by Gilead Corporation, is an NS5B protease inhibitor 

that was discontinued due to various adverse effects in phase 
II clinical trials, including flu-like syndrome, pyrexia, head-
ache, and myalgia [41]. Several other molecules, such as 
VCH-916 (Viro Chem Pharma) [42], were discontinued 
from phase II clinical trials due to gastrointestinal disor-
ders, throat irritation, and nausea. GSK-625433 (GlaxoS-
mithKline) [43] reached phase I but was later discontinued 
(Fig. 2). ABT-333/dasabuvir (developed by Abbott Labo-
ratories) is currently being successfully marketed in Israel, 
the UK, Switzerland, and the USA, and, after completing 
phase III trials, was approved for monotherapy as well as 
combination therapy with ribavirin [44].

Fig. 1   Chemical structures of 
newly identified HCV agents

Fig. 2   Chemical structures of 
newly identified HCV agents 
that are in early clinical trials
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Evolving approaches in HCV therapeutics

The scientific community and researchers at various 
pharmaceutical companies are continuously working on 
developing novel and effective therapeutic interventions 
against HCV. In the past five years, novel lead compounds 
with improved efficacy and safety have been discovered 
[45], and a series of anti-HCV candidate drugs have been 
proposed. The following section attempts to summarize 
these new candidates and their respective drug targets. 
NS3/4A has been found to be an attractive target for series 
of therapeutic agents, including danoprevir, voxilaprevir, 
vedroprevir, MK-8831, faldaprevir, ABT493, BMS-
605339, and BMS-890068. NS4B has also proven to be 
a good drug target, as various drugs, including PTC725, 
2-oxadiazoloquinoline derivative, imidazo[2,1-b]thiazole 
derivative, and piperazinone have been proposed based 
on modulation of NS4B activity. NS5A also appears to 
be a promising drug target, and various drugs, including 
ABT-530, ruzasvir, ravidasvir, GSK2336805, EDP-239, 
samatasvir, biphenylimidazole analogues, and disulfi-
ram target this protein. NS5B has been described as an 
effective therapeutic target, and various chemical agents, 
including beclabuvir, GS-9669, thiophene carboxylate 
allosteric inhibitor, mericitabine, deleobuvir, DAPN-PD1, 
TMC647055, filibuvir/VX-222, GS-6620, tegobuvir, JNJ-
54257099, 6-aminoquinolone derivative, and pyrazoloben-
zothiazines have been proposed as inhibitors of NS5B. In 
addition, the structural proteins E1/E2 and p7 are being 
explored as therapeutic targets for drugs such as benzimi-
dazole derivative, cynaropicrin/grosheimol, saikosaponin 
b2, chlorcyclizine derivative, flunarizine, monoclonal anti-
bodies and adamantane/rimantadine. In addition to direct-
acting antivirals, immunostimulators such as alisporivir, 
bis-amide derivative, NIM258, phenylepyrrolidine deriva-
tive, isothiazolo[5,4-b] pyridine, ITX-5061, MA026, and 
soraphen A are also under consideration for repurposing as 
anti-HCV agents. These drugs have been reviewed exten-
sively by Li and De Clercq [45]. Table 1 summarizes the 
therapies that are now commonly offered to patients with 
HCV infection, and Fig. 3 provides a brief overview of 
the location of the genes for these drug targets in the HCV 
genome. Table 2 summarizes the profile of clinical trials of 
promising anti-HCV candidate drugs that are in the early 
stages of development and has enormous potential to act 
as effective antivirals.

Current immunoprophylactic approaches 
for the management of HCV infections

The growing incidence of HCV infections and related 
public-health complications prompted the World Health 
Organization to establish a program to eliminate HCV by 
2030. To achieve this goal, there is a need for an effective, 
safe, and affordable vaccine against HCV.

Since the discovery of HCV more than 30 years ago, 
there have been significant advances in understanding the 
molecular aspects of HCV pathophysiology, the molecular 
immunological mechanisms involved in spontaneous viral 
clearance, and the rational design of vaccines. There is 
a need to develop effective prophylactic vaccines against 
HCV, as current HCV treatment approaches are not effec-
tive in preventing recurrent infections and are not afford-
able in economically challenged parts of the world restrict-
ing their clinical use to developed countries [73, 74]. In 
general, antiviral therapies require long-term treatment, 
are expensive and toxic, and are effective only in about 
50% of patients against the majority of the HCV geno-
types [75]. There have been a number of reports indicat-
ing progress toward the development of therapeutic vac-
cines for the management of HCV infections. For example, 
IC41, a synthetic peptide vaccine containing HCV T-cell 
epitopes has been shown recently to be safe and is cur-
rently undergoing a phase I clinical trial. IC41 can induce 
HCV-specific INF-gamma-secreting CD4+ and CD8+ T 
cells in healthy individuals. It has been shown to induce 
HCV-specific Th1/Tc1 responses in a subset of difficult-
to-treat HCV non-responder patients [76]. Another inter-
esting candidate for a peptide vaccine is the HCV-specific 
HLA-A2-restricted epitope NS3-1073 [77]. Table 3 sum-
marizes the promising candidate vaccines against HCV 
that are in clinical trials, and Table 4 lists the important 
CD8 and CD4 epitopes of HCV recognized by T cells 
that have been identified in the past five years [78]. The 
epitopes identified before this period have been reviewed 
by Yu and Chiang [79]. These epitopes have potential for 
use in peptide-based subunit vaccine formulations.

Challenges in HCV disease management

Challenges in vaccine design

The major challenge in the development of a vaccine 
against HCV infection is the unusual genetic diversity of 
the virus [83–85]. There are seven or eight known geno-
types and more than 84-86 subtypes, making this virus 
even more diverse than human immunodeficiency virus 
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[15, 16, 85–87]. HCV has 30% genetic diversity at the 
genotype level and 15% at the strain level. The error-prone 
polymerase of HCV and immune selection generate related 
but genetically diverse virus variants, even within the same 
infected individual, thereby posing the problem of resist-
ance to antibody and T-cell-mediated immune responses 
[88–91]. The use of live-attenuated whole virus particles is 
a common strategy for vaccine development. However, in 
the case of HCV, the feasibility of live vaccines is uncer-
tain, as in vitro-grown strains of HCV have a high rate of 
adaptive mutation, which eventually leads to the genera-
tion of highly efficient replicative strains [92–94]. How-
ever, for unknown reasons, the infectivity of such strains 
in primate cell lines and primate animal models is very 

low [95–97]. Adaptive mutations in such highly replica-
tive strains of HCV are linked to the nature of viral geno-
types [87, 93]. Another setback in the field of HCV vac-
cine development is the lack of immunocompetent animal 
models. Although chimpanzees can be used as an alterna-
tive natural host for HCV, factors such as low chronicity 
and a lack of clinical signs of infection, limit their utility 
as an animal model [98]. Other primates such as rhesus 
macaques (Macaca mulatta), doguera baboons (Papio anu-
bis), chacma baboons (Papio ursinus), Japanese macaques 
(Macaca fuscata), green monkeys (Chlorocebus sabaeus), 
and New World monkeys (Saguinus mystax, Saguinus labi-
atus, and Saguinus oedipus) develop asymptomatic HCV 
infections [99–102]. Although HCV-like viruses have been 

Fig. 3   Map of the HCV genome, showing the positions of genes 
encoding viral proteins that are targets for antiviral therapy. The drugs 
are color coded according to their target: NS5B (green, PDB 4KAI), 

NS4B (magenta, PDB 6NZV), NS4A (blue, PDB 4CL1), NS3-4A 
(orange, PDB 3LOX).
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found in rats, allowing them to be used as a small-animal 
model for HCV-like infection, the genetic diversity of rat 
hepacivirus limits its usefulness in vaccine testing.

Surface protein modification through mutations in vari-
ous regions of the envelope proteins E1 and E2 is one of 
the ways in which HCV escapes from adaptive immune 
responses of the host. Mutations in hypervariable region 
1 (HVR1) subvert the neutralizing antibody response by 
masking conserved epitopes. Furthermore, post-translation 
processes such as glycosylation have been reported to cause 
steric interference with the binding of neutralizing antibod-
ies [103]. Various experimental studies of the effects of gly-
cans at different positions have demonstrated that changes 
in glycosylation can lead to antibody resistance [104, 105]. 
This is supported by studies showing that natural and site-
directed mutations at various glycosylation sites on the E2 
protein decrease the sensitivity of cell-culture-grown HCV 
(HCVcc) and HCV pseudoparticles (HCVpp) to neutralizing 
antibodies [105].

Some attributes of the host also help HCV to escape from 
antibody neutralization. High-density lipoproteins in human 
serum are known to interact with scavenger receptor class B 
type I (SR-BI). Such interactions increase the rate of virus 
entry into the cell and reduce the time window for neutral-
izing antibodies to act [106]. Apolipoprotein E is function-
ally involved in viral transport and was also demonstrated 
recently to help mature HCV particles to escape neutrali-
zation by masking their epitopes [107]. A recent study on 
HCV-infected cell cultures showed that E2-protein-coated 
exosomes were able to make HCV less sensitive to neutral-
izing antibodies. These findings may find applications in the 
development of an HCV vaccine [108].

Challenges in diagnostics

Serological methods are commonly used for the diagnosis 
of most bacterial and viral infections. In the case of HCV, 
ELISA, recombinant immunoblot assay (RIBA), and rapid 
assays are the most commonly used serological detection 
methods. These methods have the disadvantage that they 
can give false-negative results when testing immunocom-
promised patients and when used during the window period 
of HCV infection. False-positive results can also occur due 
to cross-reactivity in individuals with lupus or rheumatoid 
arthritis. NAAT (nucleic acid amplification testing) is con-
sidered the gold standard for diagnosis of various diseases, 
especially viral diseases, and it is generally found to be 
advantageous over traditional serological tests. PCR and 
transcription-mediated amplification are the two prominent 
technologies currently employed to detect viral genomes. 
NAAT has the advantage that it can discriminate between 
actively infected and recovered patients and thus provides an 
additional safety layer for preventing transfusion-transmitted Ta
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infections (TTIs). It also has the important advantage that 
it allows a diagnosis to be made at an earlier stage of infec-
tion. This is important because early treatment of an acute 
HCV infection improves the likelihood of eliminating the 
virus and preventing the establishment of a chronic infec-
tion. Using NAAT, viral RNA can be detected in an HCV-
infected sample within one week of infection [109]. The 
high sensitivity and specificity of NAAT make it more reli-
able than serological tests, with fewer false-negative results 
[110]. In a survey published in 2007, 486,676 seronegative 
blood samples were screened by NAAT, with detection 
limits of 1:97,000, 1:490,000, and 1:2800 for samples con-
taining HIV, HCV, and HBV, respectively [111]. Although 
NAAT is a highly sensitive and specific method for HCV 
detection, its high cost and requirement for skilled workers 
and sophisticated instrumentation limits its usage on a mass 
scale in resource-constrained countries. To make the method 
more affordable, institutions are using a mini-pool model of 
NAAT (MP-NAAT) for the detection of virus contamina-
tion. Moreover, highly sensitive immunological assays are 
being developed that can ensure blood safety at an affordable 
cost [112].

Other possible challenges

Another major challenge in the management of HCV-related 
disease is the large number of undiagnosed and therefore 
untreated cases of HCV infection in the population. In the 
USA, about 1.8 million people are unaware that they are 
HCV positive [113]. This is partially due to healthcare pro-
viders not taking time to ask appropriate questions when 
examining patients, as recommended in the guidelines of 
AASLD-IDSA (American Association for the Study of Liver 
Diseases and the Infectious Diseases Society of America). 
Furthermore, risk-assessment strategies sometimes fail to 
identify HCV-infected patients, and some infected patients 
do not want to disclose their risk factors. Furthermore, the 
cost of modern HCV therapies such as direct-acting antivi-
rals (DAAs) is a hurdle in HCV disease management. In the 
USA, the initial price of the drug sofosbuvir is about 1000 
USD for a single tablet, and a standard 12-week treatment 
costs approximately 10,000 USD [114]. At the global level, 
the cost issue is a major obstacle to the HCV eradication 
program.

Traditional treatment regimens: 
past and present

In the 1990s, interferon combined with the nucleotide ana-
logue ribavirin was the only therapy available and was 
the sole standard care for HCV infections [115]. Subse-
quently, the introduction of pegylated interferons (alfa-2a Ta
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and alfa-2b) in combination with ribavirin improved the 
sustained virological response (SVR) up to 40% to 50% for 
genotype 1. Similarly, the SVR was observed to improve 
to 70% to 80% for genotypes 2 and 3, which was 7 to 
12% higher than the previously used interferon-ribavirin 
combination [115, 116]. However, the use of pegylated 
interferon is associated with psychological, autoimmune, 
and blood-related side effects. Moreover, it fails to cure 
chronic cirrhosis caused by HCV infections [18]. It has 
been reported that, in some cases, complications such as 
ischemia and neuropsychiatric emergencies do not com-
pletely resolve even after withdrawal of the interferon 
medication [117]. Interferon treatment has been found to 
be associated with the suppression of bone marrow, lead-
ing to a decline in major blood cell lines [117]. Moreover, 
medications used in interferon therapy are supplied in the 
form of prefilled syringes that need to be injected subcu-
taneously, which can be intimidating for patients in the 
initial stages of the treatment, thereby requiring trained 
professionals to remain accessible during the entire course 
of treatment. Ribavirin can also cause side effects, such as 
teratogenesis, hemolysis, flu-like symptoms, and rashes 
on the skin [116]. For these reasons, patients need to be 
closely monitored throughout their treatment, and there 
is a need for very careful counseling regarding the risks 
associated with their medications. These side effects of 

pegylated interferon-ribavirin (PIR) therapy make it 
unsuitable for standard care of HCV infections.

In 2011, the FDA approved two direct-acting antiviral 
DAAs, boceprevir and telaprevir, which were marketed by 
two different companies. SVR was observed to increase to 
70% when PIR therapy was combined with either of these 
DAAs. However, complex dosages, the need for a selective 
diet, and adverse effects remain major impediments to the 
success of this therapeutic regimen. DAAs are grouped into 
three classes based on their target. These include NS3 pro-
tease inhibitors, NS5A inhibitors, and NS5B polymerase 
inhibitors [118]. The NS3 protease is involved in the cleav-
age and processing of structural and non-structural proteins 
of HCV. NS5A is a target for drugs due to its important 
role in the modulation of the interferon response. NS5B is 
the viral RNA-dependent RNA polymerase. RNA polymer-
ase inhibitors are further classified as nucleotide analogue 
inhibitors and non-nucleotide analogue inhibitors boceprevir 
and telaprevir are first-generation drugs, and grazoprevir and 
voxilaprevir are second-generation NS3 protease inhibi-
tors. The use of first-generation NS3 protease inhibitors is 
believed to contribute in the emergence of resistant strains 
in non-responder patients [119]. During monotherapy with 
telaprevir, although the HCV RNA level decreases signifi-
cantly in the early phase of treatment, the development of 
resistance is observed in a large proportion of cases, which 

Table 4   Important CD4 and CD8 epitopes of HCV recognized by T cells

Epitope type HCV 
antigen/
protein

Epitope (start position-amino acid 
sequence-end position)

HLA restriction allele Functional properties References

CD8 epitopes E2 607-CLIDYPYRL-615 A*02 An effective CD8 T-cell response was 
observed.

[81]
E2 610-DYPYRLWHF-618 A*24
NS2 838-WLARGLWWI-846 A*02
NS2 954-TPMSDWPPY-962 B*35
NS3 1367-LPTTGEIPF-1375 B*35
NS5A 2143-DEVSFSVGL-2151 B*18
NS5A 2285-LPIWARPDY-2293 B*35
NS5B 2990-RYLLLCLLI-2998 A*24

CD4 epitopes NS2 923-LLRICALARKMAGGHY-
VQMA-942

DRB1*1104 Effective IFN gamma and TNF alpha 
responses were observed.

[82]

NS2 975-HNGLRDLAVAVEPVVF-
SQME-994

DRB1*1301

NS3 1266-TLGFGAYMSKAHGIDP-
NIRT-1285

DRB1*1101

NS4B 1964-LHQWLSSECTTPCSG-1978 DRB1*0401
NS5A 2020-YRGVWRGDGIMHTRCHC-

GAE-2039
DRB1*0301

NS5B 2609-LPVAVMGSSYG-
FQYSPGQRV-2629

DRB1*0401

NS5B 2674-ARVAIRSLTERLYVGG-
PLTN-2694

DRB1*1301

NS5B 2852-ILMTHFFSVLIARDQLEQAL DRB1*1301
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has been associated with four mutations in the NS3 region 
[120]. Similarly, six mutations have been observed to be 
associated with resistance to boceprevir treatment [121]. 
Frequent treatment failures due to the acquisition of resist-
ance mutations due to boceprevir and telaprevir therapy have 
resulted in a shift to triple therapy primarily consisting of 
PIR and telaprevir. Despite the good results of triple therapy 
in clinical trials, 96.17% of patients experienced adverse 
effects, and 34.98% experienced severe adverse effects, 
including renal failure, skin-related problems, and anaemia 
[120]. This failure necessitated the quest for an alternative 
therapy, and a breakthrough came in 2013 with the approval 
of an NS3 protease inhibitor, simeprevir [122], and an NS5B 
inhibitor, sofosbuvir (Sovaldi, Gilead Sciences) [122, 123]. 
The combination of these two drugs, with or without PIR, 
resulted in an increase in SVR to 90%, with a well-toler-
ated daily dose [18]. Different combinations of sofosbuvir 
and simeprevir are associated with various adverse effects, 
including fatigue, headache, nausea, insomnia, anaemia, and 
decreased appetite. In addition, treatment regimens includ-
ing sofosbuvir and simeprevir have been reported to gen-
erate drug resistance-associated virus variants [124–126]. 
Further research in the field of HCV drug development has 
added well-tolerated, orally active DAAs that are effect with-
out interferon treatment, and combinations of these can be 
used to treat patients with comorbidities and chronic HCV 
infections with various genotypes [18, 127]. Clinical trials 
have been conducted on four DAA drugs (paritaprevir/rito-
navir/ombitasvir plus dasabuvir) in patients who had been 
treated previously with pegylated interferon and in untreated 
patients. The resulting SVR scores were in the range of 90.2 
to 100% for HCV genotypes 1a and 1b [128]. In a meta-
analysis of published data on the four-DAA drug regimen, 
among the 20 cohorts tested in 12 countries, SVR was 96.8% 
for genotype 1 and 98.9% for genotype 4. The same study 
reported a 1.3% virologic relapse rate among 5158 patients 
included in the analysis [129]. Thus, DAA treatments show 
promise, with improved SVR, good tolerability, and a very 
narrow range of drug resistance when prescribed in com-
bination. However, combination therapy is also associated 
with various mild, moderate, and severe adverse effects. Fur-
thermore, virological response failures due to mutations in 
the target proteins have been reported [130].

Future perspectives

DAAs and other therapies can be successful in the primary 
stage of HCV infection, provided that the infection is diag-
nosed at an early stage, and in this regard, the methods cur-
rently available for HCV diagnosis are not up to the mark in 
terms of early diagnosis. The potential of nanotechnology 
in disease diagnosis is gaining attention because it is simple, 

reliable, durable, and inexpensive. Gold nanoparticles 
(AuNP) are a well-studied nanosystem that has advantages 
over other types of nanoparticles. AuNP can be electro-
statically surface-functionalized with various biomolecules 
including antibody peptides and nucleic acids [131–133]. 
In addition, AuNPs are highly sensitive to surface plasmon 
resonance (SPR), showing a prominent color switch from 
red to blue while transforming from the dispersed state to 
the aggregate state [134]. Acetylcholinesterase E (AChE) 
enzyme-conjugated AuNP have been found to be highly 
efficient for the detection of HCV antibodies. RT-PCR can 
be used for virus detection, but it requires highly skilled 
personnel and may not be available in many places. Colori-
metric detection of HCV RNA in patient samples without 
amplification using AuNP has been suggested to be a useful 
approach. [135, 136]. In a recent study, 27-nucleotide-long 
RNA probes specific for the 5’UTR of HCV RNA were used 
for the detection of HCV RNA, either assembled on metal-
lic nanoparticles or without nanoparticles. If a sample is 
positive, the RNA probes hybridize to the viral RNA and 
aggregate upon addition of unmodified AuNP, turning the 
solution blue [135]. Other nanosystems have been used to 
detect HCV RNA. For example, chemically labelled HCV-
RNA-specific probes conjugated with iron oxide nanopar-
ticles can detect HCV in samples from patients, without 
interference from cellular DNA and RNA [137].

Cytotoxicity and adverse effects of interferon and 
pegylated interferon can be minimized by site-directed 
delivery. Hyaluronic acid (HA) is one of the abundant 
extracellular polysaccharides that naturally target the liver 
by binding to cluster determinant 44 (CD 44/HA receptors) 
and get internalized into the cell. HA-decorated AuNPs com-
bined with interferon through hydrophobic and electrostatic 
forces have been reported to be delivered efficiently to the 
liver [80]. Furthermore, the polyanionic nature of HA pre-
vents the adsorption of serum proteins onto the nanoparti-
cle-bound interferon. Using this delivery system, no side 
effects of interferon or pegylated interferon were observed 
[138]. Targeted delivery of ribavirin can be used to alter 
its distribution pattern, thereby reducing its cytotoxicity to 
erythrocytes. The use of polymeric nanoparticles consisting 
of poly-D, L-lactic acid (PLA) and arabinogalactan poly-L-
lysine (AG-PLL) conjugated with ribavirin has been shown 
not only to reduce cytotoxicity but also to result in targeted 
delivery to liver cells [138, 139].

Despite the success of DAA therapy, there has been a 
significant decrease in the popularity of DAAs due to the 
issues of affordability, resistance, and genotype selectivity. 
This situation is motivating the development of new thera-
peutic options. Peptide C5A, derived from the NS5A pro-
tein of HCV, has demonstrated potent toxicity to HCV in 
Huh 7.5 cells [141]. Another peptide, from the N-terminal 
region of the NS5A protein has amphipathic properties and 
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has been observed to lyse lipid vesicles in a model system 
for lysis of the virus [141]. Peptides from the NS5A protein 
are highly toxic for HCV at sub-micromolar concentrations. 
Furthermore, these peptides were found to be non-toxic to 
the host in vitro and in vivo at doses 100-fold higher than 
those required for antiviral activity [142].

Nano-vaccines offer several advantages over traditional 
vaccines, including rapid delivery and penetration across 
the membrane of targeted cells. Recombinant core and NS3 
fusion proteins conjugated with polylactide-co-glycolide 
nanoparticles (rC–N/PLGA NPs) have been shown to induce 
a T-cell-mediated immune response [143]. The shape, size, 
and polydispersity index of rC–N/PLGA NPs determine 
their penetration capacity. Triblock copolymers (e.g., poly 
(D, L-lactic acid)-co-poly(ethylene glycol)-co-poly(D, 
L-lactic acid [PLA–PEG–PLA] and poly(D, L-lactic-co-
glycolic acid)-b-poly(ethylene glycol)-b-poly(D, L-lactic-
co-glycolic acid [PLGA–PEG–PLGA]) have been found to 
be good carriers of DNA encoding multiple viral epitopes 
[144]. Furthermore, these copolymers increase both cell-
mediated and humoral immune responses of such multie-
pitope gene constructs compared to their naked forms [145]. 
Controlled release of multiepitope antigen genes from such 
micellar systems is expected to provide immunological ben-
efits in a single-dose immunization [146].

A strong and long-lasting immune response is one of 
the ideal characteristics of an efficient vaccine. A natural 
adjuvant (heat shock protein 27) and cell penetration pro-
tein (CPP- Caddy2 and HR9) co-expressed with NS3 pro-
tein have been shown to increase the cellular Th1 immune 
response [147]. This study also showed an elevated cytokine 
profile of IgG2a, IgG2b, and IFN-γ and increased granzyme 
B secretion when using this system. A stronger immune 
response was observed in a mouse model when an NS3-
encoding genetic vaccine and an NS3 protein vaccine were 
administered together than when administered separately 
[148]. A potent immune response had been reported to be 
induced by double-stranded RNA encoding the NS3 protein. 
In mice immunized with recombinant NS3 protein (rNS3) 
and poly(I:C) emulsified in montanide ISA 720 (M720), 
the CD8 T cell immune response was found to persist for 
7 months [149]. These studies collectively show that such 
formulations can induce a strong and persistent cellular 
immune response against HCV.

Conclusion

The overall objective of the current review was to provide 
a bird-eye view of recent advancements in the field of HCV 
therapeutics and prophylaxis, giving a summary of exist-
ing HCV therapies and their limitations. We initially sum-
marized recent efforts to develop new HCV therapeutic 

modalities, discussing a few examples of successful drugs 
and failed attempts. We also attempted to summarize the 
features of existing therapies and their inherent drawbacks to 
pinpoint the opportunities and challenges to consider when 
developing novel treatments. We also summarized the fea-
tures of drugs that are in the early stages of clinical trials, 
providing their clinical trial identifiers for effective moni-
toring of new HCV therapies. We also covered the discus-
sion on emerging immune prophylactic measures, including 
new vaccine candidates and important biologicals that are in 
early clinical trials, with special emphasis on newly identi-
fied CD4 and CD8 epitopes that can be included in peptide-
based subunit vaccines. We also discussed the hurdles that 
the scientific community is facing in terms of effective dis-
ease diagnosis and challenges in existing HCV therapies. 
Finally, we attempted to provide a nanotech perspective on 
vaccine design. In summary, although we have tried to paint 
a positive picture regarding the development of novel HCV 
therapeutics, recent therapies are still far from perfect, and 
further improvements are still needed.
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