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Abstract

Motivation: Recent advancements in fluorescence in situ hybridization (FISH) techniques enable them to concurrent-
ly obtain information on the location and gene expression of single cells. A key question in the initial analysis of
such spatial transcriptomics data is the assignment of cell types. To date, most studies used methods that only rely
on the expression levels of the genes in each cell for such assignments. To fully utilize the data and to improve the
ability to identify novel sub-types, we developed a new method, FICT, which combines both expression and neigh-
borhood information when assigning cell types.

Results: FICT optimizes a probabilistic function that we formalize and for which we provide learning and inference
algorithms. We used FICT to analyze both simulated and several real spatial transcriptomics data. As we show, FICT
can accurately identify cell types and sub-types, improving on expression only methods and other methods pro-
posed for clustering spatial transcriptomics data. Some of the spatial sub-types identified by FICT provide novel
hypotheses about the new functions for excitatory and inhibitory neurons.

Availability and implementation: FICT is available at: https://github.com/haotianteng/FICT.

Contact: zivbj@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A number of different technologies have been recently developed for
spatial transcriptomics. In contrast to single-cell RNA-Seq most spa-
tial transcriptomics platforms rely on image analysis by extending
Fluorescence in situ hybridization (FISH) methods. This enables the
quantification of expression levels for several genes at a single-cell
resolution while still recording the location of each of the cells in the
sample. Examples of platforms for spatial transcriptomics include
MERFISH (Chen et al., 2015; Moffitt et al., 2016; Moffitt and
Zhuang, 2016), seqFISH (Eng et al., 2017; Lubeck et al., 2014),
seqFISHþ (Eng et al., 2019), osmFISH (Codeluppi et al., 2018) and
the 3D transcriptomics record (STARmap) (Wang et al., 2018).
Spatial transcriptomics techniques have now been applied to study
several different organs and tissues including lung (Schiller et al.,
2019), kidney (Park et al., 2019) and brain (Codeluppi et al., 2018;
Eng et al., 2017, 2019; Moffitt et al., 2018; Wang et al., 2018).
These studies have led to new insights about the set of cell types in
these regions, their location and their interactions (Li et al., 2020;
Partel and Wählby, 2021; Yuan and Bar-Joseph, 2020).

A key question in the analysis of single-cell expression data (both
for scRNA-Seq and for spatial transcriptomics) is the assignment of
cell types. This is often the essential task performed in any analysis
of such data and downstream analysis often relies on these

assignments (for example, when studying cell–cell interactions
(Arnol et al., 2019; Yuan and Bar-Joseph, 2020)). Several packages
have been developed to aid in such clustering for single-cell expres-
sion data (Abdelaal et al., 2019). These methods often start by clus-
tering cells (usually in low-dimensional space). Next, clusters are
assigned to known or new cell types based on the expression of a
subset of marker genes. Most spatial transcriptomics studies have
also relied on similar methods for cell-type assignment. For example,
in the osmFISH paper, hierarchical clustering of the gene expression
profiles is used to assign cell types (Codeluppi et al., 2018). For the
MERFISH data, cell-type assignment is performed by Louvain com-
munity detection applied to a neighborhood graph which is con-
structed using low-dimension representation of gene expression
profiles (Pandey et al., 2018; Shekhar et al., 2016).

While using gene expression levels often leads to successful
assignments, relying on scRNA-Seq cell assignment methods, for ex-
ample the Seurat (Stuart et al., 2019) or other clustering methods,
for spatial transcriptomics may not fully utilize the available loca-
tion information. Specifically, the set of neighboring cells which is
known in spatial transcriptomics studies may provide valuable infor-
mation about the likely cell type of a specific cell. In many cases,
specific cell types are known to reside together (Xia et al., 2019) or
next to other types of cells (Stoltzfus et al., 2020). Knowledge of the
cell types of neighboring cells may thus provide information on the
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correct assignment of the cell itself. In other cases, such knowledge
can lead to the identification of new cell types based on their neigh-
borhood profiles. Recently a method termed smfishHmrf was devel-

oped to utilize spatial information when assigning cell types (Zhu
et al., 2018). smfishHmrf starts with an initial cell-type assignment

using a support vector machine classifier, which is trained using
annotated expression data. Next, some assignments are updated
based on a neighborhood affinity score which takes into account the

fraction of cells assigned to the same cluster. While smfishHmrf uti-
lizes some the spatial information, it only assumes that cells of the

same type reside in close proximity and does not look at the overall
distribution of cell types in the neighborhood of each cell. Thus, im-
portant information about the neighborhood of the cell may not be

fully utilized which can lead to decrease in assignment accuracy.
To enable the use of both expression and spatial information for

cell-type assignment, we developed FICT (FISH Iterative Cell-Type
assignment). FICT maximizes a joint probabilistic likelihood func-
tion that takes into account both the expression of the genes in each

cell and the joint multi-variate spatial distribution of cell types. We
discuss how to formulate the likelihood function and present a

method for learning and inference in this model.
We applied FICT to both simulated and real spatial transcrip-

tomics datasets. As we show using the simulation data FICT can cor-
rectly determine both expression and parameters that provide
information on the distribution of neighboring cell types for each

cell for different cell types, improving on generative and discrimina-
tive methods that rely only on expression levels and on methods that

do not take into account the complete neighborhood of each cell.
For the real data, we show that the models learned by FICT for dif-
ferent animals for the same tissue are in good agreement, that it can

indeed use the spatial information to correct errors resulting from
noise in the expression values and that it can be used to identify spa-

tially different cell sub-types even when their expression profiles are
similar.

2 Materials and methods

Our goal is to cluster spatial transcriptomics data using both gene
expression levels and cell location. A generative mixture model is

defined first: each cell is assigned a cell type given its neighborhood,
and then the dimension-reduced representation of gene expression
levels are drawn from cell-type specific distribution. We next learn

the parameters of this generative model by maximizing the joint
likelihood of gene expression and cell location (Fig. 1). The cell type
is then inferred by the posterior distribution of this generative model

given the gene expression level and cell location.

2.1 A generative model for spatial transcriptomics data
We assume an undirected, weighted graph G representing cell neigh-

borhoods. Each node in G is a cell. We assume a total of M cell types
in the dataset. We denote by Z the cell type assignments for nodes in
G where zi is the cell type of cell i and denote by X ¼ xi the gene ex-

pression matrix. Here, xi is the gene expression levels vector for cell
i and X is the gene expression matrix for the expression of all cells.

Finally, we define the neighbors of cell i in G using NGðiÞ.
Neighborhood is either defined using the k-nearest neighbors (we
used k¼10 in this article) or a cutoff on the distance between i and

other nodes in G (a cutoff on the edge weight). Using these defini-
tions, we assume the following generative model for a single-cell

transcriptomics dataset.: (i) First, a cell type is selected according to
PhðZÞ /

Q
i PðzijNGðziÞÞ, in which PðzijNGðziÞÞ is the conditional

distribution for the assignment of cell i given its neighborhood cap-

turing the relationship between neighboring cells NGðzÞ in G. (ii)
Next, expression levels X are generated according to a cell type spe-

cific probability distribution PðxijziÞ.
Given this model the likelihood of a dataset with a set of gene ex-

pression levels X and cell locations (G) is:

PðXÞ ¼
X

Z

ðPðXjZÞ � PðZÞÞ /
X

z2Z

ð
Y

i

PðxijziÞPhðzi;NGðziÞÞÞ (1)

We use a multinomial distribution to model the relationship
with neighborhood cells and so the product of the conditional prob-
ability can be written as:

Phðzi;NGðziÞÞ ¼ PðyijziÞ (2)

where yi is a vector summarizing the cell-type assignments for neigh-
bors of i. Specifically, yi is of dimensions M (number of cell types)
and each entry j demotes the number of neighbors of cell i assigned
to cell type j. Combined, the overall likelihood function is:

PðX;YÞ ¼
YD

i¼1

X

k

Pðzi ¼ kÞPðxijzi ¼ mÞPðyijzi ¼ mÞ (3)

where X is the dimension-reduced gene expression matrix and Y is
the neighborhood cell type count matrix for each cell, m denotes the
mth cell type, we also change the order of product and sum as y is
now treated as a property of the cells. We assume that Pðxijzi ¼ kÞ
follows a Gaussian distribution and Pðyijzi ¼ kÞ follows a multi-
nomial distribution.

2.2 Inferring cell types (E-step)
We use an Expectation Maximization (EM) approach to learn the
parameters of the model. EM iterates between the expectation (E)
and maximization (M) steps. Given the generative model, to infer
cell types, we need to calculate the posterior probability Pðzjx; yÞ.
However, computing these assignments is challenging since chang-
ing the assignment of a specific cell type (i.e. changes to Z’) also
change the neighborhood count Y for other cells. Thus, we perform
an iterative procedure as follows: In the first phase, Y is treated as a
fixed vector for each cell, and is used to calculate the posterior distri-
bution of cell i given the gene expression matrix xi and current
neighborhood count yi by setting:

Pðzi ¼ mjxi; yiÞ / N ðxi; lm;RmÞMðyi; hmÞ (4)

In which Nðlm;RmÞ is a multi-variate Gaussian distribution
with mean lm and covariance matrix Rm, and MðhmÞ is a
Multinomial distribution with hm as the frequency parameter, and
we use w ¼ ðl;R; hÞ to denote all the model parameters. We next use
the posterior distribution calculations to update cell-type assign-
ments for a subset of the cells. Specifically, we randomly select a set
of non-adjacent cells in the adjacency graph G and update their
types by the posterior probability. Next, the neighborhood count
matrix for all cells, Y, is updated, and is used in the next iteration.
We continue with this iterative process until convergence. This
method extends the well-known Iterative Condition Modes (ICM)
update method (Besag, 1986) by updating multiple cells in each iter-
ation instead of a single one. However, since we only update non-
adjacent cells, those updated cells still have the same neighborhood
after each round of updates guaranteeing convergence due to the
monotonical increase in overall likelihood.

2.3 Learning model parameters (M-step)
For M-step, we have:

QðwjwoldÞ ¼
XD

i¼1

X

m

log½Pwðxi; yi; zi ¼ mÞ� � Pwold
ðzi ¼ mjxi; yiÞ (5)

When conditioning on the cell type, the values observed for the
gene expression xi and neighborhood for a cell become independent.
Thus, we can write:

QðwjwoldÞ ¼
XD

i¼1

X

m

log½Pwðxijzi ¼ mÞ � Pwðyijzi ¼ mÞ

�Pwðzi ¼ mÞ� � Pwold
ðzi ¼ mjxi; yiÞ

(6)
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Pwold
ðzi ¼ mjxi; yiÞ ¼

Pwold
ðxijzi ¼ mÞ � Pwold

ðyijzi ¼ mÞ � Pwold
ðzi ¼ mÞP

zi Pwold
ðxijziÞ � Pwold

ðyijziÞ � Pwold
ðziÞ

(7)

So as mentioned earlier (Section 2.2), the posterior distribu-
tion is calculated using an alternated ICM algorithm, in which

Pðxijz ¼ mÞ follows a multivariate Gaussian distribution

Nðlm;RmÞ, and the neighborhood vector for each cell Pðyijz ¼ mÞ
follows a Multi-Nominal distribution MðhmÞ. We set

Pðyijz ¼ mÞ ¼ k!
yi

1
!...yi

M
!
h

yi
1

m;1 � � � h
yi

M

m;M, where M is the number of cell

types, k is the number of neighborhood cells, ðhijÞ 2 RM�M is the

neighborhood frequency of cell type j given the current cell type
i, and is row-wise normalized so that jjhmjj1 ¼ 1, where hm is the

mth row of h. pm ¼ Phðzi ¼ mÞ is the prior distribution for cell
types.

With P/old
ðzi ¼ mjxi; yiÞ ¼ cim, then by maximizing the given Q

function, we can obtain the parameters:

lm ¼
P

i cim � xi

P
i cim

; Rm ¼
P

i cim � ðxi � lmÞðxi � lmÞTP
i cim

;

pm ¼
P

i cimP
i;m cim

; hm;j ¼
P

i cim � yi
jP

i;j cim � yi
j

Fig. 1. FICT pipeline. A reduced dimension expression profile is generated using a Denoising Autoencoder (Vincent et al., 2008), and an undirected graph is constructed

according to the spatial locations information. Cells are initially clustered using an expression only GMM. Next, the model is iteratively optimized using an EM algorithm to

improve the joint likelihood of the expression and neighborhood models given both the gene expression representation and the spatial graph. The final output is an assignment

of cells to clusters, a Gaussian gene expression model and a Multinomial neighborhood model for each class

Fig. 2. Evaluation using simulated data. Top: Simulated ground truth cell-type assignments. Cells locations are from the MERFISH dataset (see Supplementary Fig. SA4 for

selected cells). Four neighborhood frequency configurations were simulated: (A) Addictive configuration where cells prefer to aggregate with cells from same type. (B)

Exclusive configuration where type 1 and type 2 cells are mixed (green and purple cells) while type 3 cells (yellow cells) cluster together. (C) Consecutive configuration where,

type 1 cells surround type 2 cells but not type 3 cells. (D) Cell-type assignments from the MERFISH paper (yellow—Ependymal cells, green—Excitatory cells and purple—in-

hibitory cells). (E) A mixture model where neighborhood distribution for each cell type is a mixture of the distributions in A and D. Bottom: performance of the five methods

we tested on simulated datasets. Accuracy for each method is averaged from 50 random expression assignment (Section 2). P value is calculated using paired samples t-test.

****P<0.0001 (Color version of this figure is available at Bioinformatics online.)
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The above likelihood function assumes equal weight for each
term in the two types of data (expression and neighborhood).
However, there are often much more genes than cell types which
can lead to over reliance on the expression data. We use two ways
to address this problem, first our model is using the dimensional-
reduced gene expression as input, instead of the raw expression pro-
file. But the dimension of this input can still be high, e.g. 20, com-
pared with the typical cell type number to be clustered, for example
7, thus then we include a weight term that balances the contribution
of the gene and spatial components, named power factor (see
Supplementary Section SA1.1). And also during EM training, the
neighborhood count is calculated in term of the assigned probability
(a soft update), while usual multinomial distribution is defined in N,
so we expand the scope of the multinomial distribution to R to ad-
dress this. See Supplementary Appendix SA1.2 for details.

2.4 Dimensionality reduction using denoising

autoencoder
A dimension-reduced representation of the original gene expression
data is used as the input to our model. While the original gene ex-
pression data usually does not follow a Gaussian distribution, using
a denoising autoencoder, we can transform the data to better fit
such model (Vincent et al., 2008). We use a single-layer linear neural
network for the auto-encoder though it is possible to adapt the
method to use multi-layered networks if the outcome does not fit the
required Gaussian distribution. We note that when comparing FICT
to the expression only GMM method, we use the same reduced di-
mension data as input to both. Thus, the only difference between the
GMM model and FICT is the use of the spatial information.

2.5 Generating simulated data for testing the method
We tested our method on both real and simulated data. While it is

not trivial to simulate data for these experiments, simulation data
provide an opportunity to test methods against ground truth which
is hard to do with real data.

To perform simulations, we first selected the location of 2000
cells from one of the MERFISH datasets (Supplementary Fig. SA4).

We used the cell-type assignments as in the original paper and three
other cell groupings (shown in Results, Fig. 2) to assign cell type to

each cell. We next generated expression distributions for each cell
type. For this, we simulate 1000 genes. Of these genes, 100 are cell
type specific (i.e. cell-type-specific mean and variance) and the

others have the same distribution in all cell types. Finally, we sample
for each cell, a 1000 gene expression profile from the distribution

parameters for the cell type to which the cell is assigned to. We also
performed a second simulation in which we set both the expression
and location of the cells to test the robustness of the method to other

spatial cell-type neighborhoods not seen in the MERFISH data. For
these, we first generate a neighborhood graph, then generate a cell-
type assignment on the neighborhood graph which gives the desired

neighborhood frequency, and finally we sample expression data for
each cell based on its type. See Supplementary Methods SA1.4 for

detail.

2.6 Software used for comparison to other methods
We used Seurat 4.0.3, Scanpy 1.7.2 and smfishHmrf 0.1 to perform

the comparison. Seurat and Scanpy use the Leiden clustering and we
used the recommended value for the resolution number (0.9 for

coarse cluster assignment and 1.1 for sub cluster analysis).

Fig. 3. Mean Adjusted Rand index (ARI) based on cross-validation analysis of the MERFISH dataset. Results presented for expression only GMM, smfishHmrf and FICT.

Each entry (i, j) in the matrix represents the ARI of the two cluster assignments (one learned on animal A and applied to animal B and the other learned directly on B). (A–C)

Results for the 7 Male animals (A) GMM, (B) smfishHmrf and (C) FICT. (D–F) Results for the 4 Females (D) GMM, (E) smfishHmrf and (F) FICT. The x and y axes are the

index of the dataset being cross validated on
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3 Results

We developed a joint expression and location clustering method to infer
cell types in spatial transcriptomics studies. To test the method, we used
both simulated and real single-cell spatial transcriptomics data.

3.1 Evaluation using simulated data
While a number of spatial transcriptomics datasets exist, we do not
have ground truth information about cell types in these studies.
Thus, we first tested our method using simulated data where we can
assign both expression and cell type and test if the method can cor-
rectly recover the cell types. As noted in Section 2, generating simu-
lated data for such analysis is not trivial since the data needs to
satisfy both expression and location constraints. To enable a realis-
tic setting for simulation analysis, we used the spatial information
from a real dataset (subset of the MERFISH dataset (Supplementary
Fig. SA4). (See Section 2 for details about the simulation setup.) We
used the simulated data to test FICT and to compare it with four
prior generative and discriminative methods that have been previ-
ously used to assign cell types in spatial transcriptomics data. Three
of these [ GMM (Tian et al., 2019; Xie et al., 2016), scanpy (Traag
et al., 2019; Wolf et al., 2018) and Seurat (Blondel et al., 2008;
Butler et al., 2018; Stuart et al., 2019)] only use expression data for
clustering while the fourth, smfishHmrf combines gene expression
data with cell location and neighborhood information. However,
unlike FICT smfishHmrf only considers neighboring cells of the
same type (similar to only manually setting the diagonal values in
the FICT cell neighborhood matrix and ignoring the off diagonal
elements).

In addition to using the cell-type assignments from the original
paper, we also simulated four other cell-type assignment settings.
Results are presented in Figure 2. As can be seen, for all simulation
settings, FICT is the best-performing method followed by Seurat.
FICT obtains almost perfect accuracy on all settings, significantly
improving upon Seurat and all other methods, we compared with
(P < 0.0001 using paired samples t-test) A1. Cluster assignment
examples for all methods can be found in Supplementary Figure SA5.

We also compared FICT and the other methods using simulated
location and expression data (Section 2). Again, FICT significantly
outperformed all other methods (Supplementary Fig. SA1 and
Supplementary Table SA2). We also tested the robustness of FICT
and determined that it was robust to random initialization and to a
wide range of values for determining the set of neighbors for each
cell (Supplementary Figs SA15 and SA14).

3.2 Performance on the MERFISH dataset
We next tested FICT using real single-cell spatial transcriptomics
data. We first focused on mouse hypothalamus data generated by

the multiplexed error-robust fluorescence in situ hybridization
(MERFISH) method (Moffitt et al., 2018). The MERFISH data pro-
files the expression of 258 genes in 480 000 cells from 11 animals
(4 females and 7 males). Since there is no ground truth for this data,
we used a different approach to compare the different clustering
methods. For all gender pairs (i.e. 21 male pairs and 6 female pairs),
we performed the following analysis. Let A and B be a pair of ani-
mals from the same gender. We first train FICT on A and use the
parameters learned for the model trained on A to assign cells in B.
We next learn a FICT model for B. We then compare the Adjusted
Rand Index (ARI) of the clustering results for the two animals.
Higher ARIs mean that the results are more consistent between ani-
mals indicating better fit to the underlying biology. Note that, this
process is not symmetric and so results for training on A and testing
on B would be different from those trained on B and tested on A.

Results for this comparison are presented in Figure 3 for both fe-
male and male animals. Note that, since both Seurat and scanpy are
not generative methods the models they learn on one dataset cannot
be directly applied to another. Thus, for the real data, we compared
FICT with smfishHmrf and GMM. Results show that for 32 of the 54
pairs (59%) FICT is more consistent than GMM. The result for the
larger dataset of male pairs is (29/42, 69%). The improvement upon
smfishHmrf is even larger than that and FICT is more consistent in
52 of the 54 pairs (96.3%). We also tried to compare Seurat and
scanpy by learning a classifier using the clustering of one animal and
comparing the assignments of the learned classifier to the unsuper-
vised clustering using Seurat and scanpy on another animal. As
expected, results indicate that performance of such supervised/un-
supervised comparisons is inferior to the results of the generative
models as we show in Supplementary Figure SA12. We note that
based on prior studies that indicated that gene expression and cell dis-
tribution differ based on gender (Dewing et al., 2003; McCarthy and
Arnold, 2011), the above analysis was performed by only testing
models learned from male animals on male animals and from female
animals on female animals. An example of the difference in assign-
ments between expression only GMM clustering and FICT is pre-
sented in Figure 4. As can be seen, the yellow cells (Ependymal cells)
are spatially clustered in the center of the hypothalamus tile profiled.
However, due to small variations in gene expression, GMM assigns
some cells in that cluster as OD Immature cells. In contrast FICT is
able to correctly assign these cells as shown in the inset.

3.2.1 Sub-type clustering

An important question in the analysis of brain single-cell data is the
identification of new sub-types of various neuronal cells (Lake et al.,
2016). We thus examined the assignments to see if FICT can identify
new subtypes of neurons. For this, we focused on the subset of exci-
tatory neurons identified in the MERFISH dataset. FICT identified

Fig. 4. FICT can correct expression noise. Cell-type assignments using expression only GMM (left) and FICT (right). Using the spatial information FICT correctly assigns

Ependymal cells along the periventricular hypothalamic nucleus. In contrast, the GMM method mistakenly classified the cell as OD Immature Cell
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three sub-types of cells that were all determined to be excitatory in
the original analysis but displayed different spatial patterns (Fig. 5).
To determine if the three sub-clusters are indeed different, we per-
formed differential expression (DE) analysis for each of the sub-
clusters. While, as expected, their overall expression profiles are
similar (leading to their similar assignment by the expression only
method), we were able to identify a number of distinct genes for
each of these sub-types using MAST (Finak et al., 2015). We next
performed GO enrichment analysis (Ashburner et al., 2000; Mi
et al., 2017; The Gene Ontology Consortium, 2019) on the signifi-
cant DE genes in each sub-clusters. Results are presented in Figure
5. As can be seen, some unique functional terms are associated with
each of the three sub-clusters. For example, the first sub-cluster (e0)
seems to be mainly related to response to chemicals. The second (e1)
seems to be related to signaling and regulation of calcium homeosta-
sis while the third (e2) is linked to responses to activity changes and
behavior. Thus, while all share similar expression profiles and act as
excitatory neurons, each of the sub-clusters may have a further spe-
cific function as predicted by the spatial clustering. We performed
similar sub-clustering analysis using the other methods we compared
with. Results are presented in Supplementary Figures SA16–SA20
and indicate that FICT finds both, relevant GO terms such as ‘be-
havior’ that are not identified by other methods for this data and
more significant enrichment for GO categories related to cell and
synapse signaling. We performed similar sub-clustering analysis for
inhibitory neurons and obtained similar results both in terms of the
more coherent placing of cells from different sub-types and in terms
of the unique genes and functions assigned to each of the sub-types
identified by FICT (Fig. 5C and D).

3.3 Performance on osmFISH and seqFISH
To demonstrate the generality of our method, we further tested it on
two other datasets from two additional spatial transcriptomics

platforms: osmFISH (Codeluppi et al., 2018) and seqFISH (Zhu
et al., 2018). The osmFISH dataset profiled 6470 cells in the mouse
somatosensory cortex. The seqFISH dataset profiled 1597 cells in
the mouse visual cortex. Since both datasets only profiled a single
animal we performed the cross validation by manually splitting each
dataset into 4 smaller regions with approximately the same number
of cells. Results for these analyses are presented in Figure 6. As can
be seen, FICT was able to successfully cluster cells not only just
based on type but also based on their layer, whereas clustering using
only the expression data, as was performed in the original study,
cannot separate layers as well. We also performed cross-validation
analysis, as we did for the MERFISH data. Given the small number
of cells for each dataset, we see a drop in performance for all genera-
tive model methods. As the figure shows, smfishHmrf was unable to
identify more than a single cell type for many of the cross-validation
runs resulting in errors. As for GMM and FICT while both were
able to successfully assign cells in the cross validation runs for the
osmFISH and seqFISH datasets, results were not as good as the
MERFISH results presented earlier. Still, even though FICT fits
more parameters than the expression only model we observe com-
parable performance on these smaller datasets suggesting that there
is no downside to using the joint expression-spatial assignment A8.

4 Discussion

Spatial transcriptomics has emerged as a valuable tool for the ana-
lysis of single-cell expression data. Similar to scRNA-Seq, this tech-
nology provides information on the expression of genes at the
single-cell resolution. In addition, it also provides information on
the location of each of the cells and their spatial relationships which
can help understand cell–cell interactions, the organization of cells
in specific regions and tissues and how changes in such organization
impact development and disease.

Fig. 5. Cell sub-type clustering on MERFISH data from animal 1. We used smfishHmrf (A and D), expression only GMM (B and E) and FICT (C and F) to sub-cluster excita-

tory neurons cells (A, B and C) and inhibitory neuron cells (D, E and F). As can be seen, for both types of neurons FICT assignments are better spatially conserved creating a

central core for sub-cluster 2 surrounded by cells assigned to sub-cluster 0. In contrast, the expression only assignment mixes cells from different sub-types much more.

smfishHmrf with Potts model only assigns affinity score between the same cell types making it harder to infer more complex structures of synergistic activity. (E) DE genes for

the three FICT sub-clusters from the excitatory neurons and (F) inhibitory neurons. As can be seen, even though the sub-clusters are overall similar in terms of their expression

profiles, some genes can be identified for each of the sub-clusters. (G) GO enrichment analysis identifies unique functions for each of the sub-clusters on excitatory neurons and

(H) inhibitory neurons. Significance of the differential expressed genes is measured by the log of gene enrichment fold change
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A key question in spatial transcriptomics analysis is the assign-
ment of types to the cells profiled. To date, most studies relied on
the profiled expression levels for such assignment using tools and
techniques originally developed for the analysis of scRNA-Seq data.
While such methods work well, they do not fully utilize the informa-
tion obtained in spatial transcriptomics studies. Specifically, infor-
mation about the location of cells and their neighbors is usually not
used in such assignments even though in several cases cell types are
known to co-locate with other cells from the same or different types.
To enable the use of the spatial information in cell assignments, we
developed FICT which uses an EM method to learn both expression
and spatial distribution models. We presented a likelihood optimiza-
tion function and learning and inference methods for FICT and used
it to assign cell types in both simulated and real datasets.

As we have shown, for both simulated and large real datasets
FICT improves on both, gene expression only methods and methods
that only use part of the spatial information when assigning cell
types. Since FICT estimates more parameters than expression only
assignment methods its performance suffers when applied to smaller
datasets. Still, even for the smallest datasets, we tested on (seqFISH,
which profiled only 1500 cells) FICT performance was comparable
to expression only methods making it a reasonable alternative for
such methods. Since more recent studies often profile more cells,
FICT is likely to generalize better to future datasets.

In addition to improved accuracy FICT can also identify cell sub-
types that are similar in terms of their expression while differ in their
spatial organization. As we have shown, FICT divided the set of ex-
citatory neuron cells into three sub-types based on other cells in their
neighborhood. Analysis of DE genes between these spatial clusters
identified a number of biological functions that differ between the
clusters indicating that each sub-type may indeed serve a different
goal as predicted by FICT. The use of spatial information can also
improve assignment and analysis for larger regions in the brain. As
we have shown, FICT can improve the identification of layer-specif-
ic cells in the brain which is useful for both, segmenting various
regions based on the cells present and identifying specific markers
for sub-populations of cell.

While FICT worked well for most of the datasets we tested on,
there are still a number of ways in which it can be improved. We
would like to improve its run-time since it currently takes one hour
to perform the joint expression and spatial cell-type assignment on a
single animal MERFISH dataset (�100K cells). As we noted, parts
of FICT learning resemble HMRFs and so methods used to speed up
HMRF inference including belief propagation can be incorporated
to further improve in FICT (Yedidia et al. 2001). In addition, we
would like to extend FICT so that it could also be used for cell-type
assignment of data generated using the Visium (Mantri et al. 2021)
or nanostring (Lewis et al. 2021) platforms. Unlike the data ana-
lyzed in this article, these platforms do not generate single-cell level
data and so to extend FICT for them we would need to combine de-
convolution with clustering in an iterative manner.

FICT is implemented in Python and both data and an open
source version of the software are available in https://github.com/
haotianteng/FICT. Given the results presented in this article, we
hope that it can be used to improve the analysis of the increasing
number of studies that rely on spatial transcriptomics profiling.

Funding

This work was partially supported by National Institutes of Health

[1R01GM122096, OT2OD026682, 1U54AG075931, 1U24CA268108] and

a C3.ai DTI Research Award to Z.B.-J.

Conflict of Interest: none declared.

References

Abdelaal,T. et al. (2019) A comparison of automatic cell identification meth-

ods for single-cell RNA sequencing data. Genome Biol., 20, 194.

Arnol,D. et al. (2019) Modeling cell-cell interactions from spatial molecular

data with spatial variance component analysis. Cell Rep., 29, 202–211.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology.

Nat. Genet., 25, 25–29.

Besag,J. (1986) On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser.

B (Methodological), 48, 259–279.

Blondel,V.D. et al. (2008) Fast unfolding of communities in large networks.

J. Stat. Mech. Theory Exp., 2008, P10008.

Butler,A. et al. (2018) Integrating single-cell transcriptomic data across differ-

ent conditions, technologies, and species. Nat. Biotechnol., 36, 411–420.

Chen,K.H. et al. (2015) Spatially resolved, highly multiplexed RNA profiling

in single cells. Science, 348, aaa6090.

Codeluppi,S. et al. (2018) Spatial organization of the somatosensory cortex

revealed by osmfish. Nat. Methods, 15, 932–935.

Dewing,P. et al. (2003) Sexually dimorphic gene expression in mouse brain

precedes gonadal differentiation. Mol. Brain Res., 118, 82–90.

Eng,C.-H.L. et al. (2017) Profiling the transcriptome with RNA spots. Nat.

Methods, 14, 1153–1155.

Eng,C.-H.L. et al. (2019) Transcriptome-scale super-resolved imaging in tis-

sues by RNA seqfish. Nature, 568, 235–239.

Finak,G. et al. (2015) Mast: a flexible statistical framework for assessing tran-

scriptional changes and characterizing heterogeneity in single-cell RNA

sequencing data. Genome Biol., 16, 1–13.

Lake,B.B. et al. (2016) Neuronal subtypes and diversity revealed by

single-nucleus RNA sequencing of the human brain. Science, 352,

1586–1590.

Lewis,S.M. et al. (2021) Spatial omics and multiplexed imaging to explore

cancer biology. Nat. Methods, 18, 997–1012.

Li,D. et al. (2020) Identifying signaling genes in spatial single cell expression

data. Bioinformatics, 37, 968–975.

Lubeck,E. et al. (2014) Single-cell in situ RNA profiling by sequential hybrid-

ization. Nat. Methods, 11, 360–361.

Mantri,M. et al. (2021) Spatiotemporal single-cell RNA sequencing of devel-

oping chicken hearts identifies interplay between cellular differentiation and

morphogenesis. Nat. Commun., 12, 1–13.

Fig. 6. Cluster assignment scatter plot for osmFISH dataset. (A) Clusters generated by FICT and (B) clusters based on using expression data only as was done in the original

paper. As can be seen, FICT correctly distinguishes between neurons in different layers of the brain, whereas expression only clustering mixes cells from different brain layers

Clustering spatial transcriptomics data 1003

https://github.com/haotianteng/FICT
https://github.com/haotianteng/FICT


McCarthy,M.M. and Arnold,A.P. (2011) Reframing sexual differentiation of

the brain. Nat. Neurosci., 14, 677–683.

Mi,H. et al. (2017) Panther version 11: expanded annotation data from gene

ontology and reactome pathways, and data analysis tool enhancements.

Nucleic Acids Res., 45, D183–D189.

Moffitt,J.R. and Zhuang,X. (2016) RNA imaging with multiplexed

error-robust fluorescence in situ hybridization (merfish). Methods

Enzymol., 572, 1–49.

Moffitt,J.R. et al. (2016) High-throughput single-cell gene-expression profiling

with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl.

Acad. Sci. USA, 113, 11046–11051.

Moffitt,J.R. et al. (2018) Molecular, spatial, and functional single-cell profil-

ing of the hypothalamic preoptic region. Science, 362, eaau5324.

Pandey,S. et al. (2018) Comprehensive identification and spatial mapping of

habenular neuronal types using single-cell RNA-seq. Curr. Biol., 28,

1052–1065.

Park,J. et al. (2019) Understanding the kidney one cell at a time. Kidney Int.,

96, 862–870.
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