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Abstract

Motivation: Inter-protein (interfacial) contact prediction is very useful for in silico structural characterization of
protein–protein interactions. Although deep learning has been applied to this problem, its accuracy is not as good as
intra-protein contact prediction.

Results: We propose a new deep learning method GLINTER (Graph Learning of INTER-protein contacts) for inter-
facial contact prediction of dimers, leveraging a rotational invariant representation of protein tertiary structures and
a pretrained language model of multiple sequence alignments. Tested on the 13th and 14th CASP-CAPRI datasets,
the average top L/10 precision achieved by GLINTER is 54% on the homodimers and 52% on all the dimers, much
higher than 30% obtained by the latest deep learning method DeepHomo on the homodimers and 15% obtained by
BIPSPI on all the dimers. Our experiments show that GLINTER-predicted contacts help improve selection of docking
decoys.

Availability and implementation: The software is available at https://github.com/zw2x/glinter. The datasets are avail-
able at https://github.com/zw2x/glinter/data.

Contact: jinboxu@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins perform functions by interacting with other molecules or
forming protein complexes. As a result, the full characterization of
protein–protein interactions with structural details is crucial to
atom-level understanding of protein functions. The in silico struc-
tural characterization of protein complexes, or quaternary protein
structure prediction, is a longstanding challenge in computational
structural biology. Given individual protein chains (and possibly
their structures), interfacial contact prediction aims to predict which
pairs of residues on the protein surface are geometrically close to
each other after the protein chains bind together. Interfacial contacts
may facilitate generating and filtering docking decoys (Baldassi
et al., 2014; Geng et al., 2020; Hopf et al., 2014; Ovchinnikov
et al., 2014), and reveal important biophysical properties and evolu-
tionary information of protein interfaces (Uguzzoni et al., 2017).
They are also useful for the redesign of protein–protein interfaces
(Laine and Carbone, 2015) and prediction of binding affinity
(Vangone and Bonvin, 2015).

Co-evolution analysis by global statistical methods (Burger and
van Nimwegen, 2008; Weigt et al., 2009) has been used for inter-
protein contact prediction. A recent study (Cong et al., 2019)
showed that co-evolution-based in silico protein–protein interaction
screening methods produced more true protein–protein interactions
than high-throughput experimental techniques. Nevertheless, accur-
ate co-evolution analysis needs a large number of sequence

homologs and thus, may not work well on a large portion of hetero-
dimers for which it is very challenging to find sufficient number of
interacting paralogs (interlogs) (Bitbol et al., 2016; Gueudré et al.,
2016; Zeng et al., 2018). On the other hand, protein language mod-
els, which are trained on individual protein sequences or multiple se-
quence alignment (MSAs), are shown to perform similarly as or
better than global statistical methods on intra-chain contact predic-
tion when few sequence homologs are available (Rao et al., 2021;
Rives et al., 2021). It was shown before that a deep learning model
trained by individual protein chains works fine on protein complex
contact prediction (Zeng et al., 2018; Zhou et al., 2018). Therefore,
we hypothesize that a deep language model trained on individual
protein chains may also generalize well to protein–protein interac-
tions, reducing the required number of interlogs. Protein language
models are also much faster since they require only one-time for-
ward computation during inference and thus, more suitable for
proteome-scale screening of protein–protein interactions.

RaptorX ComplexContact (Zeng et al., 2018; Zhou et al., 2018)
possibly is the first deep learning method for interfacial contact pre-
diction. It is mainly developed for heterodimers, although can be
used for homodimers. Nevertheless, its deep models are purely
trained on individual protein chains instead of protein complexes.
Further, ComplexContact does not make use of any (experimental
or predicted) structures of constituent monomers of a dimer.
Recently, some deep learning methods are developed specifically for
contact prediction of a homodimer, e.g. DNCON_inter (Quadir
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et al., 2021) and DeepHomo (Yan and Huang, 2021), both using
ResNet originally implemented in RaptorX (Wang et al., 2017). In
addition to evolution information, DeepHomo uses docking maps,
native intra-chain contacts, and experimental structural features
derived from monomers to achieve state-of-the-art performance.
However, it is slow in calculating docking maps and thus, cannot
scale well to proteome-scale prediction. Some deep learning methods
also use learned representations of tertiary structures, including vox-
els (Derevyanko and Lamoureux, 2019; Townshend et al., 2019)
and radial/point cloud representations on protein surfaces (Dai and
Bailey-Kellogg, 2021; Gainza et al., 2020; Sverrisson et al., 2020).
Meanwhile, some representations include anisotropy information in
the structures (Fout et al., 2017; Pittala and Bailey-Kellogg, 2020)
while others do not.

Given the tremendous progress in protein structure prediction
(Jing and Xu, 2020; Jumper et al., 2021; Wang et al., 2017; Xu,
2019; Xu et al., 2021) and the fast growing number of protein
sequences, it is important to leverage predicted structures of con-
stituent monomers and large sequence corpus to produce accurate,
proteome-scale interfacial contact predictions. An interfacial contact
prediction method shall effectively extract coevolution signals from
a small number of interlogs, and make use of predicted structures of
constituent monomers. Here, we propose a new supervised deep
learning method GLINTER for interfacial contact prediction that
integrates representations learned from (experimental and predicted)
monomer structures and attentions generated by the MSA
Transformer (ESM-MSA) (Rao et al., 2021) from interlogs of the
dimer under prediction. GLINTER applies to both heterodimers and
homodimers, outperforming ComplexContact, DeepHomo and
BIPSPI on the 13th and 14th CASP-CAPRI datasets. The contacts
predicted by GLINTER may also improve the ranking of the
HDOCK-generated docking decoys (Yan et al., 2017). Further, our
method runs very quickly, which makes it suitable for proteome-
scale study.

2 Materials and methods

2.1 Network architecture
As shown in Figure 1, our network, denoted as GLINTER, consists
of two major modules: a Siamese graph convolutional network
(GCN) (Hashemifar et al., 2018) and a 16-block ResNet (He et al.,
2016). The GCN extracts local features from three types of graphs
derived from monomer structures. The ResNet takes as input the
outputs of the GCN module and the attention weights generated by
the MSA Transformer (Rao et al., 2021) and yields interfacial con-
tact prediction. One ResNet block has two convolutional layers,
each with 96 filters and a 333 kernel. ELU and BatchNorm are used
in each block. ResNet is connected to a fully connected layer and a
softmax layer for contact probability prediction.

At each graph convolution layer (denoted as CaConv), we calcu-
late the message for a graph edge and node as follows. For an edge
e, we feed its feature and the features of its two ends to a subnet-
work to generate a message. For a node q, we first aggregate all mes-
sages of its adjacent nodes using max pooling, and then pass the
result to a subnetwork to generate a message of q, i.e.

gq¼g(maxv2Nqf([xq,xv,e(q,v)]))where xq is the feature of node q, v
is a node in the neighborhood Nq of q, xv is the feature of v, e(q,v) is
the feature of edge (q, v) and the non-linear functions g and f are
two fully connected layers of 128 hidden units with BatchNorm and
ReLU.

Both coordinates and normals are used to represent the geomet-
ric properties of a monomer structure (Sverrisson et al., 2020). We
standardize the geometric features so that they are invariant to the
coordinate system used by the monomer structure. While calculating
an message for any node q (i.e. computation of f), all the adjacent
nodes of q are first translated using q as the origin, and then rotated
using its predefined local reference frame (Pagès et al., 2019; Sanyal
et al., 2020). The standardized features are then concatenated with
other features to form the actual inputs of function f.

We use a separate graph convolution network (GCN) module to
process each graph. When multiple graphs are used for a monomer,
the outputs of all its GCN modules are concatenated to form a single
output vector of this monomer. The outputs of two monomers are
then outer-concatenated to form a pairwise representation of this
dimer. When the ESM row attention weight is used, the attention
matrix generated by Facebook’s MSA Transformer is concatenated
to the pairwise representation, which is then fed to the ResNet for
interfacial contact probability prediction.

2.2 Features
Graph representation of protein structures

We build three different graphs from one protein structure: residue
graph, atom graph and surface graph. In a residue graph, a node is a
residue represented by its CA atom, and there is an edge between
two residue nodes if and only if the Euclidean distance between their
CA atoms is within a certain cutoff, e.g. 8 Å. In an atom graph, a
node is a heavy atom or a residue represented by its CA atom, and
there is one edge between one residue node and one atom node if
and only if their Euclidean distance is within a certain cutoff.

We use Reduce (Word et al., 1999), MSMS (Sanner et al., 1996)
and trimesh (Dawson-Haggerty,M et al., 2019) to construct the tri-
angulated surface of a protein structure (detailed in Supplementary
File). The surface can be essentially interpreted as a mesh enclosing
the protein. Two neighboring triangles in the surface share either
one edge or at least one vertex. In a surface graph, one node repre-
sents one residue or one vertex on the triangulated surface. There is
one edge between one residue node and one triangle vertex if and
only if their Euclidean distance is within a certain cutoff. It takes
only a few seconds to build a surface graph and thus, our method
scales well on large-scale prediction (Cong et al., 2019).

Features

Supplementary Table S2 summarizes all the features. The geometric
features of a residue node include its coordinates and a local refer-
ence frame derived from the N-CA-C plane. As shown in
Supplementary Figure S3, it uses the CA-C bond as the x-axis, the
vector perpendicular to the plane formed by the N-CA and CA-C
bonds as the z-axis, and their cross-product as the y-axis. Such a rep-
resentation is rotation invariant and thus, may generalize well with-
out data augmentation in contrast to the network that is not
rotation invariant. The other features of a residue node include pos-
ition-specific scoring matrix (PSSM), residue solvent accessible sur-
face areas (summation of the solvent accessible surface areas of all
atoms in the residue), the one-hot encoding of amino acid type, and
the sequence index of the residue divided by the protein sequence
length (which is used to provide order information for neural net-
work architectures that are order invariant) (Jing and Xu, 2020).

In an atom graph, an edge has a binary feature called ‘edge type’.
It is equal to 1 if the nodes of this edge belong to the same residue.
An atom is encoded by a 10-dimensional 1-hot vector, indicating
four backbone atom types (CA, N, C, O) and six side chain atom
types (CB, C, N, O, S, H).

In a surface graph, we use the coordinates and normals generated
by MSMS as the features of a triangle vertex (Gainza et al., 2020),
which indicate the contour and orientation of some local patches on
the surfaces. Normals are initially computed by MSMS, then vali-
dated by trimesh’s default protocol.

Coevolution signals generated by Facebook’s MSA transformer

(Rao et al., 2021)

We use the row attention weights generated by the MSA Transformer
as interfacial co-evolution signals. We build a joint MSA for a hetero-
dimer using the protocol proposed by ComplexContact (Zeng et al.,
2018). For a homodimer, we simply concatenate each sequence in the
MSA with itself. We then select a diverse set of sequences from the joint
MSA as the input of the MSA Transformer. That is, we filter the MSA
with HHfilter (Steinegger et al., 2019) and assign Henikoff weights to
sequences, as detailed in the Supplementary File. We further
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symmetrized the generated inter-chain attentions, following the MSA

Transformer’s protocol (Rao et al., 2021).

2.3 Datasets
Following DeepHomo (Yan and Huang, 2021), we say there is one

true contact between two residues (of two monomers) if in the ex-
perimental complex structure, the minimal distance between their

respective heavy atoms is less than 8 Å. We define the interfacial con-
tact density of a given dimer by N/(L1L2), where N is the number of
inter-protein contacts and L1 and L2 are the respective lengths of the

constituent monomers.

CASP-CAPRI data

We use all 32 dimers (23 homodimers and 9 heterodimers) with at

most 1000 residues in the 13th and 14th CASP-CAPRI datasets 40
as our test set. We do not include the dimers with more than 1000

residues since Facebook’s MSA Transformer cannot handle such a
large protein. To avoid redundancy between our training and test
sets and to fairly compare GLINTER with recently published meth-

ods, we do not use the 11th and 12th CASP-CAPRI data. We run
HHblits on the ‘uniclust30_2016_09’ database to build MSAs for

individual chains and then concatenate two MSAs to form a joint
MSA for a heterodimer using the method described in
ComplexContact (Zeng et al., 2018). We use monomer (bound) ex-

perimental structures as inputs since their unbound structures are
unavailable. We also tested the 3D structure models of individual

chains predicted by AlphaFold (Jumper et al., 2020; Senior et al.,
2020) in CASP13 and 14, except for T0974s2 which did not have a
predicted 3D model. The median interfacial contact density of this

dataset is 1.79%. Calculated by FreeSASA (Mitternacht, 2016), the
median buried solvent accessible surface area (SASA) of this dataset
is 2507Å2.

3D complex data

Our training set has 5306 homodimers and 1036 heterodimers
derived from 3DComplex (Levy et al., 2006). We do not include the
dimers with more than 1000 residues due to MSA Transformer’s
limit (Rao et al., 2021). We say two dimers are at most x% similar,
if the maximum sequence identity between their constituent mono-
mers is no more than x% and build a joint MSA as described in the
previous subsection.

The median interfacial contact density of the training set is
0.76%. The median buried SASA of the training set is 2393.Å2

PDB2018 data

We build two more test sets from the complexes released to PDB
after January 1, 2018. One test set (denoted as ‘HomoPDB2018’)
has 165 homodimers and the other one (denoted as
‘HeteroPDB2018’) has 72 heterodimers. We define homodimers and
heterodimers in the same way as the 3DComplex data. We exclude
dimers similar to the training set, judged by MMseqs2 E-value < 1.
We cluster dimers using the 40% sequence identity threshold and
also remove dimers with interfacial contact density < 0.7%, which
is slightly lower than the median interfacial contact density of the
training set. The medians of the buried SASAs of ‘HomoPDB2018’
and ‘HeteroPDB2018’ are 2557 and 2346 Å

2, respectively. The
medians of the interfacial contact densities of ‘HomoPDB2018’ and
‘HeteroPDB2018’ are 2.41% and 3.52%, respectively. It should be
noted that although we remove dimers similar to our training set,
there may be some redundancy between our test dimers and the
training sets used by the other competing methods. Therefore, the
estimated performance of the competing methods on the PDB2018
data may be overly optimistic.

2.4 Training and evaluation
We use weighted cross-entropy as the loss function since the inter-
facial contact density is very small (the median of the training set is

Fig. 1. Overview of the GLINTER architecture. L1and L2 are the lengths of the two protein chains, K is the number of channels in a CaConv layer and 144 is the total number

of heads in the row attention weights generated by Facebook’s MSA Transformer (Rao et al., 2021)
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0.76%). We initially trained our network on a small training subset
using weights 5, 10, 50 and 100 and found that the weight 5 yields
the best average top-10 precision in the first few epochs. So in the
formal training, we set the weight of a contact to be five times that
of a non-contact. We trained our deep models using Adam as the
optimizer (Kingma et al., 2014), with the hyperparameters
b1¼0.9,b2¼0.9999,�¼1e�8. The learning rate is initialized to
0.0001 and reduced by half every four epochs. All models are
trained for 20 epochs on two Titan X GPUs, with minibatch size 1
on each GPU. It takes 20–40 min to train one epoch. For a given
hyperparameter setting, we select the model with the best top-10
precision on the validation data as the final model.

Since our deep network is rotation invariant, we do not augment
the training set by rotating a monomer multiple times. Nevertheless,
we randomly rotate a monomer once before training to prevent our
deep network from learning unexpected artifacts in the dataset. For
a heterodimer, we use both of the orders of its two proteins in train-
ing. For evaluation, we predict two contact maps for one hetero-
dimer by exchanging the order of its two proteins, and then
compute the geometric average of the two predicted contact map
probability matrices as the final prediction.

We evaluate contact prediction in terms of top k precision where
k¼10,25,50,L/10 and L/5 and L is the length of the shorter protein
in a dimer. When the number of native contacts is less than k, we
still use k as the denominator while computing the top k precision.
Inter-chain contact maps are more sparse than intra-chain contact
maps, so we evaluate a smaller number of predicted inter-chain
contacts.

2.5 Methods to compare
We compare GLINTER with DeepHomo, ComplexContact and
BIPSPI. DeepHomo is a ResNet-based method developed for only
homodimers. ComplexContact is a sequence-only and ResNet-based
method developed mainly for heterodimers. Both DeepHomo and
ComplexContact take as input the coevolution information com-
puted by CCMpred (Seemayer et al., 2014) while GLINTER does
not. BIPSPI works for both homodimers and heterodimers and can
take both structures and MSAs as input.

3 Results

We test our method with the bound experimental structures while
comparing it with BIPSPI, DeepHomo and ComplexContact, as
mentioned in Section 2.5. We also study the impact of the quality of
predicted structures on our method.

3.1 Evaluation of interfacial contact prediction
Performance on the CASP-CAPRI data

As shown in Table 1, tested on the 23 test homodimers, GLINTER
has 54% top 10 precision and 51% top L/10 precision where L is
the sum of the two monomer protein sequence lengths, while
DeepHomo has 30% top 10 precision and 27% top L/10 precision.
Tested on the nine heterodimers, GLINTER has 44% top 10 preci-
sion and 48% top L/10 precision, while ComplexContact has 14%
top 10 precision and 14% top L/10 precision. Even using the mono-
mer structures predicted by AlphaFold-1 and AlphaFold-2 as input,
GLINTER has 43% top 10 precision on the homodimers and 24%
top 10 precision on the heterodimers.

Performance on the PDB2018 data

As shown in Table 1, tested on the 165 HomoPDB2018 homo-
dimers, GLINTER has 48% top 10 precision, while BIPSPI and
DeepHomo have 20 and 24% top 10 precision, respectively. Tested
on the 72 HeteroPDB2018 targets, GLINTER has 47% top 10 pre-
cision, while BIPSPI and ComplexContact have 18 and 14% top 10
precision, respectively. See detailed results in Supplementary Tables
S5 and S6.

In summary, GLINTER consistently outperforms DeepHomo
and ComplexContact by a large margin no matter which test sets

are evaluated and whether experimental or predicted monomer
structures are used.

3.2 Ablation study
We train the GLINTER models under eight different settings (differ-
ent sets of input features). Supplementary Tables S3 and S4 show
their test results with monomer experimental structures and
AlphaFold-predicted monomer structures, respectively. We have
studied the following eight settings: ‘Residue’, ‘ResidueþESM’,
‘ResidueþAtom’, ‘ResidueþAtomþESM’, ‘ResidueþSurface’,
‘ResidueþSurfaceþESM’, ‘ResidueþAtomþSurface’ and
‘ResidueþAtomþSurfaceþESM’ models. Here, ‘Residue’, ‘Atom’
and ‘Surface’ represent the residue, atom and surface graphs, re-
spectively. ‘ESM’ means that the ESM row attention weights are
used. Using the ESM row attention weights does not change the net-
work architecture, but increases the input dimension of the first
ResNet block, as shown in Figure 1.

To evaluate the contribution of the ESM row attention weights,
we test a sequence-only model called ‘ESM-Attention’ that uses only
the ESM row attention weights as input. As shown in
Supplementary Figure S1, its major module is a 2D ResNet with the
same architecture as the one used in the ResidueþESM model.

To evaluate the contribution of the graph convolution module,
we develop a sequence-structure-hybrid model denoted as
‘CNNþESM-Attention’, which uses an 1D convolutional network
(CNN) and the same set of input features. Similar to the
ResidueþESM model, the CNNþESM-Attention model consists of
two major modules: a Siamese 1D CNN and a ResNet. The 1D
CNN has four convolution layers (each with 128 filters and kernel
size 5) and the ResNet is the same as that used in the ResidueþESM
model (Supplementary Fig. S2). Both the ESM-Attention and the
CNNþESM-Attention models are trained on the same dataset using
the same protocols as the GLINTER models.

Contribution of the graph convolution module

As shown in Table 2 and Supplementary Table S3, the CNNþESM-
Attention model has similar performance as the ESM-Attention
model. The best CNNþESM-Attention model has 35% top-10 pre-
cision and 24% top-L/10 precision, while the ESM-Attention model
has 31% top-10 precision and 29% top-L/10 precision. In contrast,
the ResidueþESM model has 43% top-10 precision and 42% top-L/
10 precision, which suggests that the residue graph (derived from
monomer structures) used by GLINTER is indeed very helpful for
interfacial contact prediction.

Dependency on distance cutoff

The distance cutoff used to define graph edges is an important
hyperparameter. According to our observation, a model with a

Table 1. Average contact prediction precision (%) on the CASP-

CAPRI and PDB data

HomoCASP HeteroCASP HomoPDB HeteroPDB

No. of top predictions 10 L10 L5 10 L10 L5 10 L10 L5 10 L10 L5

BIPSPI (native) 16 16 14 11 11 14 20 21 19 18 18 19

DH (native) 30 27 23 24 25 24

CC (none) 14 14 11 14 13 14

GLINTER (native) 54 51 47 44 48 37 48 48 47 47 47 46

GLINTER (pred) 43 40 37 24 30 23

Note: ‘Native’ means the experimental monomer structures are used.

‘None’ means that tertiary structures are not used at all. ‘Pred’ means the

monomer structures predicted by AlphaFold are used. HomoCASP represents

the set of 23 homodimers in the CASP-CAPRI data. HeteroCASP represents

the set of nine heterodimers in the CASP-CAPRI data. For the PDB2018 test

sets (HomoPDB and HeteroPDB), only the native monomer structures are

used. ‘DH’ represents DeepHomo and ‘CC’ represents ComplexContact. In

each column, the entry of the best performance is in bold.
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larger distance cutoff tends to have a lower training loss, although
its prediction performance may not be as good. A model with a
smaller distance cutoff may have a higher training loss and much
worse prediction performance. As shown in Table 3 and
Supplementary Table S3, the top k precision of GLINTER models
increases along with the distance cutoff until reaching the optimal
value. For example, the top-10 precision of the ResidueþAtom
model increases from 22 to 33% as the distance cutoff increases
from 4 to 6 Å, and then decreases to 27% when the distance cutoff is
8 Å. This saturation effect on the distance cutoffs is also observed in
Townshend et al. (2019).

Different types of graphs may rely on distance cutoffs differently.
For example, the top 10 precision of the ResidueþSurface model is
around 33% when the distance cutoff defining the surface graph
ranges from 4 to 10 Å, while the precision of the ‘ResidueþAtom’
model changes a lot with respect to the distance cutoff. Here, we de-
termine the optimal distance cutoff using the experimental monomer
structures, which may not have the optimal performance when pre-
dicted monomer structures are used.

Dependency on the quality of predicted monomer structures

GLINTER models are trained with monomer experimental struc-
tures. Here, we study their prediction performance when the
AlphaFold-predicted monomer structures are used. We use the lower
TMscore (Zhang and Skolnick, 2005) of the two constituent mono-
mer models to measure the structure quality of a dimer under test.
We exclude the test dimers without any correct top k predicted con-
tacts when their native structures are used as input. Since there are
only dozens of test targets, we divide them into four groups accord-
ing to their TMscores: low quality (0.2 � TMscore < 0.5), accept-
able quality (0.5 � TMscore < 0.7), medium quality (0.7 �
TMscore < 0.9) and high quality (0.9 � TMscore < 1.0).

Supplementary Figure S6 shows that even trained on bound ex-
perimental structures, our methods work well on predicted struc-
tures with medium or high quality (i.e. TMscore > 0.7). When the
predicted monomer structures have lower quality (TMscore < 0.7),
GLINTER models perform better with experimental structures than
predicted structures. By comparing Supplementary Figure S6D and
E, we find that the ESM row attention weight may not be able to re-
duce the precision gap incurred by predicted structures. This sug-
gests that the ESM row attention weight derived purely from MSAs
may not necessarily improve the robustness of our structure-based
models.

Contribution of the ESM row attention weight

As shown in Table 1 and Supplementary Table S3, on the 32 dimer tar-
gets, the ESM-Attention model has top 10 and L/10 precision 31 and
29%, respectively, greatly outperforming BIPSPI, which has top 10 and
L/10 precision 15 and 14%, respectively. That is, even though the MSA
Transformer is pre-trained with the MSAs of single-chain protein
sequences, it works for inter-chain contact prediction. Over the nine
heterodimer targets, the top 10 precision of ComplexContact and ESM-
Attention is 14 and 28%, respectively. As shown in Supplementary
Tables S3 and S4, no matter whether native or predicted monomer
structures are used the ESM row attention weight consistently improves
the performance of GLINTER models, which confirms that coevolution
signals are very useful for inter-chain contact predictions.

Figure 2A compares the performance of the ESM-Attention model
(which is a sequence-only model) and the ResidueþAtomþSurface model
(which is a structure-only model) when the native structures are used.
They have similar overall performance, but perform very differently on
individual test targets, which suggests that the ESM row attention weight
and structure information are highly complementary to each other. On
the majority of test targets, the ResidueþAtomþSurfaceþESM model
outperforms the ESM-Attention model (Fig. 2B) and the
ResidueþAtomþSurface model (Fig. 2C). Figure 2A and B differs only
in the y-axis by an ESM feature, so their comparison shows the impact of
the ESM features. Figure 2A and C differs only in the x-axis by
ResidueþAtomþSurf, so their comparison shows the impact of the
ResidueþAtomþSurf features. Detailed performance comparison among
the three models is shown in Supplementary Table S1. A case study on
target T0997 is in Supplementary File.

Dependency on the depth of MSAs

It is known that intra-chain contact prediction precision corre-
lates with the depth of MSAs denoted as Meff (defined in
Supplementary File). Here, we study the impact of MSA depth on
interfacial contact prediction when the ESM row attention weight
is used. To remove the impact of inaccurate predicted structures,
here, we test GLINTER models with native monomer structures.
Supplementary Figure S7 shows that there is certain correlation
(R2¼0.3093) between the number of correct top-10 predictions
by the ESM-Attention model and the ln(Meff) of the input MSA.

3.3 Application to selection of docking decoys
A simple application of predicted interfacial contacts is to select the
docking decoys. We use the top k (k¼10, 25, 50) contacts predicted

Table 2. Average interfacial contact precision (%) of the ESM-

Attention, CNNþESM-Attention and ResidueþESM models on the

CASP-CAPRI data

No. of top predictions 10 25 50 L10 L5

ESM-attention 31 27 24 29 28

CNNþESM-attention 35 28 20 24 34

ResidueþESM 43 37 34 42 32

Note: The ESM-Attention model only uses MSAs as inputs, while the

CNNþESM-Attention and ResidueþESM models use MSAs and experimen-

tal monomer structures as inputs.

Table 3. Average top-10 interfacial contact precision (%) of the

‘ResidueþAtom’ and ‘ResidueþSurface’ models on the CASP-

CAPRI data when experimental monomer structures are used

8,4 8,6 8,8 8,10

Residueþatom 22 33 27 30

Residueþsurface 33 34 33 33

Note: The first row shows the distance cutoffs used to define graph edges.

For example, ‘8,6’ for ‘ResidueþAtom’ indicates that the residue graph and

atom graph use 8 and 6 Å to define edges, respectively.

Fig. 2. Comparison of top-10 precision of three models: ESM,

ResidueþAtomþSurface and ResidueþAtomþSurfaceþESM. (A) compares

ResidueþAtomþSurface and ESM, (B) compares ResidueþAtomþSurfaceþESM

and ESM, and (C) compares ResidueþAtomþSurface and

ResidueþAtomþSurfaceþESM.
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by the ResidueþAtomþSurfaceþESM model to rank the docking
decoys generated by HDOCK. The quality of a docking decoy is cal-
culated by comparing it with its experimental complex structure
using MMalign (Mukherjee and Zhang, 2009). For each target, we
select top N decoys ranked by the predicted interfacial contacts and
define their highest TMscore as the ‘TMscore of the top N decoys’.
In Figure 3, the y-axis shows the average TMscore of the top N
decoys of all the test dimers. Generally speaking, predicted contacts
may improve the quality of top decoys by 5-8%. Except when
N�10, generally speaking using more top predicted contacts may se-
lect better decoys than using only top 10 predicted contacts.

4 Conclusion

We have presented an interfacial contact prediction method,
GLINTER, that predicts inter-protein contacts by integrating atten-
tion information generated by protein language models and graph
modeling of monomer (experimental and predicted) structures. The
attention may capture evolutionary and coevolutionary information
encoded in MSA. We demonstrate that GLINTER outperforms
existing methods and even if trained with experimental structures, it
generalizes well to predicted structures. The interfacial contacts pre-
dicted by our method may help improve selection of docking decoys.
Our ablation study shows that the attention information and struc-
tural features are complementary and important for interfacial con-
tact prediction. The features used by GLINTER can be calculated
very efficiently and GLINTER is applicable to both heterodimers
and homodimers. Therefore, potentially GLINTER is applicable to
the proteome-scale study of protein–protein interactions and
complexes.
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