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Abstract

Motivation: Inference of identity-by-descent (IBD) sharing along the genome between pairs of individuals has im-
portant uses. But all existing inference methods are based on genotypes, which is not ideal for low-depth Next
Generation Sequencing (NGS) data from which genotypes can only be called with high uncertainty.

Results: We present a new probabilistic software tool, LocalNgsRelate, for inferring IBD sharing along the genome
between pairs of individuals from low-depth NGS data. Its inference is based on genotype likelihoods instead of gen-
otypes, and thereby it takes the uncertainty of the genotype calling into account. Using real data from the 1000
Genomes project, we show that LocalNgsRelate provides more accurate IBD inference for low-depth NGS data than
two state-of-the-art genotype-based methods, Albrechtsen et al. (2009) and hap-IBD. We also show that the method
works well for NGS data down to a depth of 2�.

Availability and implementation: LocalNgsRelate is freely available at https://github.com/idamoltke/LocalNgsRelate.

Contact: ida@binf.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Inference of identity-by-descent (IBD), i.e. allelic identity due to recent
common ancestry, along the genome for pairs of individuals has proven
useful in several research fields, ranging from medical genetics, where it
can be used to map disease associated genes (Albrechtsen et al., 2009)
to evolutionary genetics where it can be used to detect natural selection
(Albrechtsen et al., 2010). There are numerous methods for such infer-
ence, e.g. the Hidden Markov Model (HMM)-based method by
Albrechtsen et al. (2009) and hap-IBD (Zhou et al., 2020). However,
they are all based on genotype data, which makes them ill-suited for the
increasingly common low-depth Next Generation Sequencing (NGS)
data, because genotypes cannot be called with high certainty for such
data (O’Rawe et al., 2015). Motivated by this, we here present a new
HMM-based method, LocalNgsRelate. It is similar to Albrechtsen et al.
(2009), but instead of basing its inference on genotypes and taking
genotype uncertainty into account via a global user-supplied error rate,
it bases its inference on genotype likelihoods (GLs) and accounts for
genotype uncertainty via these, like NgsRelate (Korneliussen and
Moltke, 2015). To investigate its performance, we apply it to low-depth
NGS data from the 1000 Genomes project and compare it to
Albrechtsen et al. (2009) and hap-IBD.

2 Materials and methods

At any given genomic locus in a diploid species, two noninbred indi-
viduals i and j share either 0, 1 or 2 alleles IBD. Based on NGS data,
we aim to be able to infer this IBD state at each locus along the gen-
ome using the following framework: let Di ¼ ðDi
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the two alleles at locus l and f A ¼ ðf A
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of A. Finally, let X ¼ ðX1; :::;XLÞ denote the unobserved IBD states
each with the value 0, 1 or 2. As in Albrechtsen et al. (2009), we
then assume X can be described using a continuous time Markov
chain with instantaneous rate matrix

Q ¼
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ak0 �aðk0 þ k2Þ ak2
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where R ¼ ðk0;k1; k2Þ are the relatedness coefficients, i.e. the
genome-wide proportion of loci where the two individuals share 0,
1 and 2 alleles IBD, respectively, and where a is the overall rate of
change in IBD state. This model has R as stationary distribution and
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leads to closed form expressions for transition probabilities that de-
pend on the distance between consecutive loci, PðXlþ1jXl;R; aÞ
(Albrechtsen et al., 2009). We also assume that the genotypes are in-
dependent conditional on the IBD states, i.e. that there is no linkage
disequilibrium (LD), and that the frequencies fA are known. Under
these assumptions, the likelihood PðDi;DjjR; aÞ can be written as
the following sum over all possible values x of X
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GLs. Based on this, we first perform maximum likelihood estimation
of R and a with the numerical optimization algorithm BFGS and
then make inferences about the IBD states, X, with standard HMM
algorithms Viterbi and posterior decoding. For details about the
performance assessment, including example run times, see
Supplementary Data.

3 Results

We investigated the performance of LocalNgsRelate on 1000
Genomes NGS data for five pairs of LWK individuals with different
degrees of relatedness: a parent-offspring (PO), a full-sibling (FS), a
half-sibling (HS), a first cousin (C1), and an unrelated (UR) pair and
used NGS data from 94 additional LWK individuals for allele fre-
quency estimation (Supplementary Table S3). We downsampled the
NGS data from �6� to 4�, 2� and 1�, estimated GLs and allele
frequencies at each sequencing depth using ANGSD (Korneliussen
et al., 2014), and applied LocalNgsRelate. Then we compared these
results to those from Albrechtsen et al. (2009), applied to high-qual-
ity genotype data from the same samples, which we used as a proxy
for the truth. We performed this comparison using a set of loci
obtained by quality filtering and LD pruning the high-quality geno-
type data. Encouragingly, LocalNgsRelate accurately estimates R
(Supplementary Fig. S1) as well as IBD states down to depths of at
least 2� (Fig. 1). Moreover, performing the same assessment of
Albrechtsen et al. (2009) and hap-IBD applied to genotypes called
from the low-depth NGS datasets showed that LocalNgsRelate has
higher accuracy, lower false negative rates, and only modestly higher
false positive rate than both these methods for all related pairs
(Fig. 1 and Supplementary Fig. S3A). As Albrechtsen et al. (2009)
takes a user-supplied genotype error rate, we not only performed
this comparison using the default error rate, but also a range of
other values. As expected, the performance of Albrechtsen et al.

(2009) depends on the error rate; however, the optimal error rate
depends both on sequencing depth and the degree of relatedness
(Supplementary Figs S4 and S5) and in all cases LocalNgsRelate per-
formed better.

Next, we considered the effect of reduced sample size, which
impacts allele frequency estimation, on LocalNgsRelate. From the
101 NGS samples, we took subsets of size 50, 25, 15 and 7 (including
the 7 samples that make up the related pairs), and repeated the analy-
ses (Supplementary Fig. S6). Interestingly, the performance is not
affected much until only 15 samples are available. Then the accuracy
starts to decrease, especially at 1� depth. Similarly, we investigated
how robust the method is to the use of allele frequencies from other
populations more or less similar to the population the samples of
interest are from, here represented by YRI and CEU, respectively.
Not surprisingly, this showed that the method can be used with allele
frequencies from a similar population without much loss in perform-
ance, but that its performance is markedly decreased if the allele fre-
quencies are from a less similar population (Supplementary Fig. S7).

We also evaluated the importance of accurate LD pruning for
the performance of LocalNgsRelate. To do so we called SNPs from
the NGS data, and then thinned the new SNPs based on distance as
an approximation for LD pruning. When we applied
LocalNgsRelate to this set of SNPs instead we did not see a substan-
tial performance effect, and this result was robust across several
choices of distances (Supplementary Figs S8–S11). If anything, at
lower depths and samples sizes LocalNgsRelate actually performs
better on this less accurately LD pruned dataset.

Finally, we note that the above results for LocalNgsRelate were
obtained using Viterbi inference; however, when using posterior
decoding and a posterior cutoff, we observed comparable results
(Supplementary Figs S12 and S13).

4 Discussion and conclusion

We have presented LocalNgsRelate, a new method for inferring IBD
sharing along the genome of two individuals. We have shown that it
performs well and outperforms the state-of-the-art genotype-based
methods Albrechtsen et al. (2009) and hap-IBD on low-depth NGS
data. For hap-IBD, this result is not surprising as this method is
designed for phased genotype data, and, like genotype calling, phas-
ing is difficult for low-depth NGS data. In fact, hap-IBD’s perform-
ance is likely markedly worse when, unlike in our example, there is
no reference panel available for phasing, as is often the case for non-
model organisms. On the other hand, to be fair it should be noted
that the hap-IBD results are based on genotypes imputed using
GLIMPSE and thus part of the reduced performance may be due to
the performance of GLIMPSE rather than hap-IBD itself.

For Albrechtsen et al. (2009), the result is perhaps more surpris-
ing since this method basically only differs from LocalNgsRelate in
the way genotype uncertainty is handled. However, our results sug-
gest that using GLs not only makes a user-supplied error rate obso-
lete, it also better reflects the nature of uncertainty in low-depth
NGS data. It should be noted that Albrechtsen et al. (2009) has one
feature that LocalNgsRelate does not: an ad hoc correction for LD
based on LD estimates obtained from genotype data.
LocalNgsRelate instead requires LD pruned data. Because it is chal-
lenging to estimate LD from low-depth NGS data (Fox et al., 2019),
it is difficult to use the same correction as Albrechtsen et al. (2009)
and it may even be difficult to prune for LD. However, encouraging-
ly, we obtained comparable results when we LD pruned simply by
thinning SNPs based on distance, suggesting that LocalNgsRelate
can be used even when LD cannot be estimated.
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Fig. 1. Performance of LocalNgsRelate, Albrechtsen et al. (2009) and hap-IBD for

five pairs of individuals at different sequencing depths. Performance was assessed by

comparing the IBD state assigned by each method when applied to NGS data to the

IBD state assigned by Albrechtsen et al. (2009) applied to high-quality genotype

data for the same individuals
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