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Abstract

Biophysically detailed modeling provides an unmatched method to integrate data from many 

disparate experimental studies, and manipulate and explore with high precision the resultin brain 

circuit simulation. We developed a detailed model of the brain motor cortex circuits, simulating 

over 10,000 biophysically detailed neurons and 30 million synaptic connections. Optimization and 

evaluation of the cortical model parameters and responses was achieved via parameter exploration 

using grid search parameter sweeps and evolutionary algorithms. This involves running tens of 

thousands of simulations requiring significant computational resources. This paper describes our 
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experience in setting up and using Google Compute Platform (GCP) with Slurm to run these 

large-scale simulations. We describe the best practices and solutions to the issues that arose during 

the process, and present preliminary results from running simulations on GCP.
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1 INTRODUCTION

The cerebral cortex is the outermost layer of the brain and is responsible for most high-level 

functions like vision, language and reasoning, each implemented by circuits in different 

“bespoke” regions. Biophysically detailed modeling provides an unmatched method to 

integrate data from many disparate experimental studies, and manipulate and explore with 

high precision the resulting brain circuit simulation [1–3]. Some examples of brain regions 

simulated using detailed computational multiscale models include motor cortex (M1), visual 

(V1) [4], somatosensory (S1), and auditory (A1) cortices, as well as other cortical areas such 

as hippocampus [3] and cerebellar cortex [5]. We have developed a highly detailed model of 

M1, simulating a volume of cortical tissue with over 10,000 biophysically detailed neurons 

and 30 million synaptic connections [6], including 15 neural populations with cell density, 

distribution and synaptic connectivity patterns derived from experimental data. The model 

has been used to investigate circuit information pathways, oscillatory coding mechanisms 

and the role of noradrenaline in modulating output to spinal cord and movement initiation.

Running such simulations and data analysis requires significant computational resources, 

such as the High Performance Computing (HPC) resources that are available through the 

National Science Foundation’s Extreme Science and Engineering Discovery Environment 

(XSEDE) program [7], or cloud computing resources provided by commercial cloud 

providers such as Google Cloud Platform (GCP) [8]. This is because calculating the 

electrical currents within each neuron – including synaptic inputs received from thousands 

of other neurons – requires solving thousands of differential equations every fraction 

of a millisecond: simulating one second of the full M1 cortical circuit model requires 

approximately 50 HPC core hours. Distributing cells across compute nodes parallelizes each 

network simulation, and many of these simulations are typically executed in parallel to 

explore different parameter combinations. Finding model parameters that reproduce biology 

and investigating neural coding via in silico experiments involve exploring large parameter 

spaces [9, 10]. Optimization and evaluation of the cortical model parameters and responses 

is achieved via parameter exploration methods including grid search parameter sweeps and 

evolutionary algorithms [9]–[13]. This involves running tens of thousands of simulations, 

with each simulated second of the full circuit model requiring approximately 96 core hours
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We have previously used evolutionary algorithm optimization to train a cortical model to 

control a virtual arm using XSEDE supercomputers [9]. We were recently awarded the NSF/

Internet2 Exploring Clouds for Acceleration of Science (E-CAS) grant [14] to continue our 

research by simulating large-scale models of brain circuits using GCP. This poster describes 

our experience in setting up and using GCP with Slurm to run these large-scale simulations, 

best practices and solutions to the issues that arose during the process, and preliminary 

results from running simulations on GCP.

2 SETTING UP THE CLOUD ENVIRONMENT

2.1 Requirements

Integration of Slurm [17] as the cluster management and job scheduling system with GCP 

compute resources is integral for our project computing needs for the following reasons:

Model characteristics: One mode of running the model requires launching multiple 

jobs for high throughput computing (HTC), e.g., 1000 jobs in parallel, where each job 

is an MPI-based HPC job requiring multiple cores. As described in section 1, our study 

involves performing parameter optimizations, which requires significant HPC resources. For 

example, grid search parameter optimization or exploration involves searching exhaustively 

through a specified subset of parameters, evaluating all combinations of parameter values. 

This requires submitting thousands of jobs simultaneously, one for each parameter 

combination. Similarly, evolutionary algorithm optimization requires running hundreds 

or thousands of generations, each evaluating many individuals, where each individual 

corresponds to a simulation with a parameter combination. Slurm is well suited to handle 

this task by enabling the user to submit multiple jobs at once to the queue. Slurm then 

assigns computing resources as they become available.

Elasticity/Walltime: While the XSEDE resources were free of cost to use, there were 

limitations, whose specifics varied by system. In general, we were restricted in walltime 

(hours that a job is allowed to be resident on the systems), number of running jobs at a given 

time per user, and total number of cores available. GCP supports elastic computing and can 

auto-scale according to job requirements, and has no specific walltime, number of jobs, or 

core number restrictions. Using Slurm with GCP enables us to submit multiple such jobs in 

a batch environment.

Ease of Use: We had used Slurm for managing our jobs on XSEDE resources, and 

were familiar with the scripts for usage and management. Additionally, NetPyNE already 

had built-in support for automatically generating Slurm scripts and submitting Slurm jobs. 

Setting up GCP with Slurm makes it easier to be used as a central lab resource to run 

simulations and share results.

2.2 GCP-Slurm Setup

Once the GCP project account was created and credits transferred, user accounts were 

created for the lab members to access GCP setup. Similar to XSEDE HPC setup, users have 
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to log in to a login node where they can submit the jobs to compute nodes using Slurm 

scheduler. The Slurm controller node runs the Slurm controller and the database.

A custom image from the CentOS-7 image was created to install and setup our custom 

software setup: NEURON [15], NetPyNE [16], and Python3. To deploy the cluster, we first 

downloaded the git repository that contained the Slurm for GCP deployment-manager files. 

The YAML file, from the git repository, contains the details of the configuration of the 

deployment, the Slurm version to deploy, and the machine instance types to deploy. The 

YAML file was modified to include the newly created disk image and the type of instances 

required for launching the compute nodes. The instructions outlined in the google cloud lab 

user guide [18] were fairly easy to follow for the initial setup.

Table 1 shows the GCP test instance setup that was needed for running 10 minutes of the M1 

model and for performing evolutionary optimization. Once the YAML file was updated we 

ran the shell scripts that execute the gcloud commands to deploy the cluster, including login, 

controller and compute nodes.

2.3 Experiences in setting up GCP-Slurm

Some of the initial challenges that we faced while setting up GCP-Slurm integration ranged 

from disk mounting to latency issues. We were able to resolve most of the issues by 

communicating with customer support and initiating discussions on the google discussion 

forum [19]. During the initial setup, /home folder was not automatically mounted via NFS. 

With helpful discussions from GCP-Slurm forum, the problem was identified as a result of 

incompatibility between python versions in the disk image and the GCP startup scripts (disk 

image having Python 3 but the GCP startup scripts required Python 2). We also faced the 

issue of shutdown of node instances that took over 3 hours. During the shutdown process, 

Slurm waits for each node to return that it’s shutdown and deleted from the list. An increase 

in the number of nodes caused an increase in the overall shutdown time. Decreasing the 

Suspend/Resume timeout settings in the configuration and removing the option to wait for 

confirmation from the nodes fixed this.

Running simulations on greater than 16 nodes resulted in crashing of the job scheduler. 

The controller node needed more memory so the issue was resolved when we increased 

the number of cores/memory for the controller node. The controller instances were initially 

created with 8 cores and later changed to 32 or 64 cores with high memory to prevent the 

node from crashing frequently due to processing and memory limitations.

However there are some issues that are still being worked out with the GCP support team. 

For example, 25% of the simulations crashed with a timeout error from the NEURON 

simulator that happened on random simulations at random times. After working closely 

with NEURON developers to debug this issue, and communicating with Google support, we 

concluded that the timeout error happens due to the internode latency. Our simulations 

require low-latency network performance necessary for tightly coupled node-to-node 

communication. We have been whitelisted in the GCP placement groups alpha program that 

provides clusters with all nodes in the same rack. Placement groups should low internode 

latency and possibly high-bandwidth that should enable us to run multinode simulations. 
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We explored the use of preemptible VMs that are significantly cheaper (approximately by 

a factor of 4) than the regular instances, but require the code to be fault tolerant in case of 

preemption. To use preemptible cores we enabled the option to perform preemptible bursting 

in the YAML file. Approximately 30–40% of the jobs were preempted when using this 

option. GCP-Slurm was set up to automatically to resubmit jobs that get preempted.

As part of ECAS grant, we were awarded $100k in GCP credits to demonstrate commercial 

cloud resources could be used to accelerate science. Most of these credits were spent on 

5.2M pre-emptible core hours and 900k non-preemptible core hours, as well as the virtual 

machines’ RAM memory. Less than 1% was employed on data storage (17k GB month) and 

networking/disk transfer. This provide us with an estimate of how much we would need to 

budget if we continue using google cloud beyond the grant period.

3 SIMULATION RESULTS

3.1 Single simulation output

We present here the results from a single simulation of the M1 cortical model, with 10k 

cells and over 30M synapses. Figure 1 shows a 3D representation of the cortical network, 

including the detailed morphologies of several pyramidal neurons. Simulating the network 

required solving the differential equations that describe the electrical properties of each 

neuron, including their ionic and synaptic currents and membrane voltage (order 10ms), and 

how they generate action potentials (spikes, order 1 ms), a stiff problem. Membrane voltage 

traces of two typical network neurons are shown in Figure 2

3.2 Long duration simulation

We then investigated self-organizing criticality and avalanches in the M1 model. Neuronal 

avalanches are a cascade of bursts of activity in neuronal networks whose size distribution 

follows a power law. This is a robust and reproducible phenomenon observed experimentally 

across cortex, but whose physiological mechanisms are not currently known. Published data 

shows that avalanches exhibited a scale free pattern with a constant power law relation 

across different time scales. Therefore, investigating this phenomenon required running 

simulations for long durations, beyond the simulation durations ranging 1–5s we typically 

employed. The longest simulation we had previously ran was for 60s. Using GCP we were 

now able to run a simulation of 10 minutes, an order of magnitude higher. The simulation 

ran on 512 cores (32 nodes x 16 cores/node), took approximately 90 hours, and produced 

22,610,549 spikes and 1.2 GB of data. This was possible due to the unconstrained number of 

hours available on this platform.

3.3 Grid search parameter optimization

We ran simulations on approximately 130K cores simultaneously to perform grid-search 

parameter optimization in the M1 model. The aim was to find the values for 7 model 

parameters that produced average population firing rates that approximately matched 

experimental data. Model parameters included the overall connection strengths between 

excitatory and inhibitory populations, and the strength of long-range inputs driving the 

model.
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A total of 1152 jobs were run to evaluate different parameter combinations, where each 

job simulated 2 sec of the M1 model. Each job ran on 48 cores (6 nodes * 8 cores/node) 

for approximately 2.5 hours, making a total of approximately 130K core hours. Since 

preemptible nodes were employed, approximately 20% of the jobs were automatically 

resubmitted after being preempted. The grid search simulations generated a total of 21GB 

of output data. Exploration of the 1152 output simulations allowed us to find the parameter 

combination that best reproduced cortical experimental data. The results were presented at 

Google Next 2018 Cloud talks in San Francisco and London.

4 CONCLUSION AND FUTURE DIRECTIONS

This paper describes our preliminary efforts at using the GCP-Slurm integration to run 

simulations and optimize the parameters of our large-scale biophysically detailed cortical 

models. We have provided details of our setup as well as solutions to multiple issues, in 

the hope that this will be useful to future researchers wishing to use GCP-Slurm for similar 

projects. Significant effort was required, to setup and maintain Slurm- based instances, 

especially for researchers not involved in IT-related fields. Nonetheless, we felt that our 

lab benefited from the GCP-Slurm setup allowing us to flexibly deploy (and remove) 

clusters with fully customized specifications for tasks with different requirements, and 

access virtually unlimited resources without queue waiting times.

More rigorous work is still needed to make sure that the setup is fully functional for 

multiple lab members to use it. Given the access to a large number of simultaneous 

cores and unrestricted run times through GCP, we are planning to run large scale models 

of other brain regions, including auditory thalamocortical circuits. Google provided us 

access to a placement group, which would potentially address the latency issue. We 

are working with the Google team to be early testers of this feature and provide 

feedback. We are also planning to do further scaling studies to understand the performance 

characteristics of NetPyNE/NEURON. This can be done by carrying out detailed profiling 

and tracing analysis to understand processor and memory level performance characteristics, 

communication patterns and characteristics, and I/O behavior.
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Figure 1: 
3D representation of M1 cortical network, illustrating the detailed morphologies of multiple 

pyramidal neurons.
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Figure 2: 
Output of single simulation of the motor cortex (M1) model. Top. Raster plot showing spikes 

(points) over time (x-axis) for 10k neurons. Bottom. Membrane voltage of two example cells 

in the network, showing action potentials (brief spikes of increased voltage over baseline).
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