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Abstract

The phenotypic diversity of cortical GABAergic neurons is probably necessary for their functional 

versatility in shaping the spatiotemporal dynamics of neural circuit operations underlying 

cognition. Deciphering the logic of this diversity requires comprehensive analysis of multi-modal 

cell features and a framework of neuronal identity that reflects biological mechanisms and 

principles. Recent high-throughput single-cell analyses have generated unprecedented data sets 

characterizing the transcriptomes, morphology and electrophysiology of interneurons. We posit 

that cardinal interneuron types can be defined by their synaptic communication properties, which 

are encoded in key transcriptional signatures. This conceptual framework integrates multi-modal 

cell features, captures neuronal input–output properties fundamental to circuit operation and may 

advance understanding of the appropriate granularity of neuron types, towards a biologically 

grounded and operationally useful interneuron taxonomy.

Introduction

Understanding the biological basis of neuronal diversity is necessary for deciphering 

neural circuit organization and function1,2. In the mammalian cerebral cortex, GABAergic 

interneurons regulate the balance and dynamic organization of pyramidal neuron 

ensembles3, which in turn mediate myriad information processing streams and output 

channels4,5. The spectacular diversity of GABAergic neurons enables an elaborate division 

of labour in deploying a rich repertoire of inhibitory control mechanisms to shape highly 

nuanced spatiotemporal dynamics of cortical circuit computation6,7. This diversity of 

cortical interneurons has been apparent since Ramon y Cajal, as the morphology of these 

‘short axon cells’ were more readily visualized with the Golgi stain8. Seminal discoveries 
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have revealed the stunning specificity of interneurons in terms of their synaptic connectivity 

(for example, their selectivity in synaptic partners and subcellular compartments), their 

physiological characteristics (such as intrinsic and especially synaptic properties) and 

functional properties in circuit operations (such as their temporal integration of inputs 

and contributions to network oscillations)3,6,7,9. These studies have also revealed immense, 

and often seemingly intractable, phenotypic variations along multiple axes that defy any 

simple classification scheme10. Consequently, the issue of interneuron diversity remains 

contentious11. There have been continued debates on how interneuron ‘types’ should be 

defined and classified and the scope of their diversity (that is, how many types there are 

and with what granularity) — debates that are relevant to neuron types in general across the 

CNS. Indeed, many important problems in neuroscience can be attributed to the ambiguity 

of the definition of ‘neuron types’ in the brain circuits under investigation12. At the core of 

these debates is the issue of whether neuronal identity and classification can be grounded 

on underlying biological mechanisms and principles or are destined to remain arbitrary and 

operational.

Given that the multi-modal and multi-dimensional phenotypes of nerve cells include 

not only morphology, connectivity patterns, physiological properties and gene expression 

profiles but also developmental history and ultimately circuit and behavioural function, 

the gaps in our current knowledge and understanding are not surprising. Despite major 

advances in past decades, until recently investigators remained technically underpowered to 

measure multi-modal cell features. For example, sparse and partial (that is, non-systematic 

and incomplete) reconstructions of individual cells preclude truly quantitative analysis of 

cell morphology. Most electrophysiological recordings sample limited and often biased 

cell populations and only a fraction of the physiological parameters among the diverse 

input–output (I/O) transformation properties. Serendipitously identified molecular markers 

represent a minute fraction of gene expression profiles. Thus, overall, these studies 

remain severely limited in resolution, robustness (which includes reproducibility across 

investigators) and comprehensiveness.

The conceptual obstacle to understanding neuronal diversity manifests at multiple levels. 

First, neurons display substantial multi-dimensional variations, of which some are discrete 

whereas others seem continuous13,14. As we often cannot distinguish between biologically 

meaningful variations and stochastic or technical variations, it is difficult and often 

arbitrary to set boundaries for cell clustering by adjusting statistical and algorithmic 

parameters. Second, the inherently multi-modal nature of cell phenotypes requires 

integrative classification across modalities, but it is not clear whether different cell features, 

as defined and measured by current approaches, indeed co-cluster; this raises the issue 

of whether congruent multi-modal classification is ultimately achievable. Third, it seems 

intuitive that neurons should be viewed as members of a type if they serve a common 

function, and cell typing is useful only if it ultimately helps understand such function 

or functions. In practice, however, cell function per se is often not readily definable and 

emerges only at the circuit level, which is difficult to study and is often indirectly linked to 

behavioural performance. At the core of these challenges is the lack of an overarching 

framework of neuron-type identity that integrates and explains multi-modal variations 

relevant to circuit operation and that is grounded on biological mechanisms and principles.
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In the past few years, spectacular advances in single-cell analysis have finally 

crossed several technical thresholds and begun to generate high-resolution, quantitative 

and comprehensive data sets on single-neuron transcriptomes, morphology and 

electrophysiology. Innovative statistical and computational analyses now enable clustering 

and typing along each modality and drive efforts to integrate across modalities. In 

this Opinion article, we review large-scale single-cell RNA sequencing (scRNAseq) 

studies that have unveiled a working draft of a comprehensive transcriptomic interneuron 

taxonomy and the related single-cell morphology and electrophysiology data sets that 

contribute to multi-modal measurements. We discuss the current limitations in achieving 

correspondence among multi-feature descriptions and difficulties in cross-modality cell 

clustering, which may reflect the lack of a conceptual framework that distils the overarching 

properties that encapsulate and extend beyond traditionally described phenotypes. We 

highlight a recent finding that defines cardinal interneuron types as canonical neural 

‘communication elements’ with characteristic I/O transformation properties that are encoded 

by transcriptional signatures of key gene families. We elaborate on the implications of 

this emerging framework of neuronal identity in integrating multi-modal phenotypes and 

in facilitating cell-type classification based on biological principles beyond operational 

management. We discuss outstanding challenges and opportunities for future progress.

Classification and taxonomy

Single-cell transcriptomics

To a considerable extent, the phenotypes and properties of cells derive from their patterns of 

gene expression. Transcription profiles of neuronal subpopulations have been characterized 

through microarray15 or RNAseq16, but studies using bulk cell populations are inherently 

limited in resolving heterogeneity. Pioneering studies of single-cell expression started more 

than two decades ago17, and the later invention of scRNAseq18 was soon applied to nerve 

cells19. However, it is only in the past 4 years that large-scale scRNAseq technology has 

been able to provide a comprehensive molecular analysis of neuronal diversity20,21.

A pilot study of ~1,600 cells from the mouse primary visual cortex used scRNAseq and 

statistical clustering to identify 49 cell types, including 23 GABAergic transcriptomic 

types (t-types)22. A subsequent large-scale study of ~23,800 cells incorporating multiple 

transgenic lines targeting neuronal subpopulations suggested 113 cortical cell types; 

these include ~60 GABAergic types conserved between visual and frontal cortex and 

56 glutamatergic types that are mostly distinct between these two areas23 (Fig. 1). This 

landmark data set represents the most comprehensive survey of cortical transcriptional 

types, establishing a scaffold for transcriptome-based classification and a working draft of 

cortical cell taxonomy, including GABAergic interneuron taxonomy. The major subclasses, 

types and their hierarchical relationships are largely consistent with previous studies7,24,25. 

Some of the finer types and branches (for example, Sst–Chodl, Sst–Calb2–Pdlim5 and Sst–
Chrna2–Glra3) are also consistent with previous studies26,27,28 (Fig. 1). Certain clusters may 

correspond to newly discovered types; for example, one of the four clusters defined by Vip 
plus Chat expression might correspond to a type of interneuron that directly excites layer 1 

interneurons and layer 2/3 pyramidal neurons (as described in a preprint report)29. However, 
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the taxonomy of cortical GABAergic neurons is not settled. The ~60 ‘atomic’ GABAergic 

t-types at the base of the hierarchy23 are probably fluidic and may well be modified by 

future scRNAseq and orthogonal data sets. Currently, the choices of statistical algorithms 

and the stringency of cluster definitions remain largely arbitrary30. For example, the number 

of Sst transcriptional clusters can vary by a factor of 2 depending on the stringency of 

clustering (30 when less stringent and 15 when more stringent)23. These results highlight the 

issue of the extent to which ‘neuron types’ are statistical or biological.

Moreover, several results from the large analysis seem inconsistent with previous studies. 

For example, decades of developmental studies have established a clear division of 

transcription programmes between the interneurons derived from the medial and caudal 

ganglionic eminence (MGE and CGE, respectively)9,31,32,33. In particular, a transcription 

cascade involving Nkx2.1 and Lhx6 drives the MGE clade but not the CGE clade of 

interneurons31,34,35. Unexpectedly, a group of Lamp5 subclass interneurons with prominent 

Lhx6 and Nkx2.1 expression were classified as CGE-derived putative neurogliaform cells 

(NGFCs)23. However, this Lamp5–Lhx6 type was found to be transcriptionally similar to 

L5/6 chandelier cells (CHCs) known as the CHC2 type that were fate-mapped from Nkx2.1-

expressing progenitors in the MGE clade in another study28. It will be important to resolve 

this discrepancy, as the distinction between NGFC and CHC types is positioned towards 

the top of the hierarchy of interneuron classification. One possibility is that CHC2s28 are in 

fact NGFCs and that Nkx2.1 and Lhx6 are not strictly restricted to the MGE lineage and 

are also expressed by certain CGE cell types; this would cast a doubt on the stringency of 

the core transcription programmes that separate the fundamental MGE and CGE lineages. 

Another possibility is that Lamp5–Lhx6 cells are in fact MGE-derived deep-layer CHCs. 

In this scenario, non-essential transcriptional features (such as those derived from technical 

or tangential factors) could have overtaken key biologically meaningful signals and misled 

the clustering algorithm. It is also possible that CHC2s may represent or contain an MGE-

derived but uncharacterized cell type. Resolving this discrepancy will not only clarify the 

distinction between two well-characterized bona fide types (NGFCs and CHCs) but also 

may reveal the power of, and glitches in, statistical clustering. For example, clustering 

algorithms may need to be supervised so that certain foundational core transcripts (such as 

Nkx2.1 and Lhx6) have greater ‘voting power’ (or are more highly weighted) in clustering 

of cell identities and relationships than other genes.

The current fluidic nature of transcriptomic clustering is at least in part due to our 

incomplete understanding of the biological basis of neuron-type identity and granularity 

and the paucity of ‘ground truth’ knowledge. Such understanding probably requires the 

integration of multi-modal cell features, recognition of biologically meaningful variations in 

each feature and the elucidation of their mechanistic bases.

Single-cell morphology

Describing neuron types on the basis of their morphology seems intuitive. However, the 

vast diversity and seemingly endless variations of neuronal shapes present major challenges 

in morphological tracing and analysis. A century after Ramon y Cajal described ‘short 
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axon cells’, rigorous, quantitative and scalable analysis of interneuron morphology remains 

difficult11.

Quantitative single-neuron anatomy requires overcoming four technical hurdles. The first 

is labelling — to systematically, reliably and completely label specific sets of individual 

neurons. The second is imaging — to achieve large-volume imaging with axon resolution 

(~100 nm) across the brain. The third is reconstruction — to convert large image stacks into 

digital data sets of single-neuron morphology. The fourth is analysis — to register neuronal 

morphology with an appropriate spatial coordinate framework and to extract, quantify and 

classify biologically relevant attributes (for example, those related to neural connectivity). 

Most studies in past decades using traditional methods can recover only partial interneuron 

morphologies that are not well registered to a common spatial coordinate framework. 

These limitations make it difficult to achieve quantitative analysis, to distinguish random 

or technical variation versus reliable and meaningful features, and to compare results from 

different investigators.

One large-scale study in juvenile rat brain slices digitally reconstructed 1,009 cortical 

neurons24. Statistical analysis combined with literature mining and expert annotation 

classified these into 55 morphological types (m-types), including ~40 interneuron types 

with their associated laminar locations. In another study using brain slices of adult mouse 

visual cortex from a large set of transgenic lines, 254 spiny and 207 aspiny neurons were 

reconstructed36. Using unsupervised hierarchical clustering, 19 spiny m-types and 19 aspiny 

m-types were identified. Together, these efforts represent the most comprehensive morpho-

physiological analysis of cortical interneurons to date. Despite this progress, brain-slice 

preparations present inherent limitations for complete morphological reconstruction (for 

example, many of the spiny neuron axons are transected and cannot be visualized), precise 

spatial registration and truly quantitative analysis.

The recent integration of genetic labelling and axon-resolution, large-volume imaging has 

begun to overcome major technical hurdles of single-neuron anatomy in rodent brains. 

In one platform, a high-speed two-photon microscope is integrated with sparse viral 

labelling of neurons and computational tools for large-scale image analysis37. In another 

platform, dual-colour fluorescence micro-optical sectioning tomography (dfMOST) allows 

axon-resolution imaging and cell-resolution spatial registration of individual genetically 

labelled neurons38. A recent fMOST (fluorescence micro-optical sectioning tomography) 

study achieved complete reconstruction of over 60 CHCs in the mouse neocortex. Analyses 

of their laminar position and the distribution of their dendritic and axonal arborizations 

suggested that multiple CHC subtypes can be distinguished by different patterns of I/O 

connectivity39. These technical advances signal the rise of high-resolution, quantitative and 

scalable single-neuron anatomy in the mouse brain.

A major current bottleneck is morphological reconstruction, which is mostly achieved 

by manual procedures that are particularly labour intensive. Innovations in more 

automated reconstruction and registration will be necessary to generate high-throughput 

and comprehensive data sets40,41. In terms of analysis, conceptual as well as technical 

questions remain. How can or should biologically meaningful features be distinguished from 
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stochastic variations? To what extent can morphology inform cell typing? As morphology is 

a proxy for connectivity, how should it be interpreted in the context of connectivity?42

Electrophysiology

The electrophysiological properties of neurons are proximal to their roles in circuit 

operation but are even more difficult to measure comprehensively and quantitatively at 

scale, especially in vivo. Different neuron types probably mediate distinct sets of I/O 

transformations that are supported by their intrinsic, synaptic and network properties, which 

span orders of spatiotemporal scales (from dendritic spines to axon terminals, and from 

submilliseconds to seconds) and are further influenced by brain state and behaviour.

Largely owing to technical limitations, only a small set of physiological properties can 

be routinely measured, the most common being intrinsic properties at the cell soma 

and a limited set of synaptic properties, predominantly in brain slices in vitro. For 

example, analysis of the responses of >3,900 rat cortical neurons to a standardized battery 

of stimulation protocols revealed 11 electrophysiological types (e-types), including 10 

inhibitory types and 1 excitatory type24. Using a similar approach, another impressive study 

of 1,938 neurons in the visual cortex of a set of transgenic mouse lines (in which neuronal 

subpopulations were labelled) classified 4 excitatory e-types and 13 inhibitory e-types36. 

These data sets are highly valuable, although the intrinsic responses measured at the cell 

soma in vitro provide a rather limited glimpse of the sophisticated spatiotemporal operations 

of neurons in their network niche.

Measuring synaptic properties requires multiple simultaneous patch-clamp recordings, 

which are technically demanding and even more difficult to scale. An impressive profiling 

of cortical cell types using octuplet whole-cell recording in adult mouse cortex mapped 

connectivity between more than 11,000 pairs of identified neurons43 and identified 15 

types of interneurons, each exhibiting a characteristic pattern of connectivity with other 

interneuron types and pyramidal neurons. However, as each neuron receives inputs from 

and transmits outputs to multiple presynaptic and postsynaptic neurons, respectively, a 

more comprehensive profiling of synaptic signalling is prohibitively challenging, even with 

octuplet patch recording by expert physiologists.

The firing patterns of hippocampal interneuron types during various in vivo network 

oscillations are highly characteristic44,45, but because network oscillations are less easily 

discernible in the neocortex, similar measurements are not yet feasible for cortical 

interneurons. Therefore, current measurements of electrophysiological properties provide 

only a limited view of the sophisticated and probably characteristic spatiotemporal and 

network operations. As most common data sets on intrinsic properties in vitro may not 

reflect the essence of neuronal physiological operations, it is perhaps not surprising that 

they have not been particularly informative in neuronal classification. Proper distinction 

of physiological neuron types may require the innovation and integration of multiple 

novel technologies to distil overarching functionally relevant features — for example, by 

measuring the I/O properties in the context of circuit operation.
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Multi-modal data correspondence

With the broad application of scRNAseq, it is now possible to begin to correlate 

transcriptomic, morphological and physiological data sets with the aim of building 

a multi-modal cell-classification scheme. One such integrative approach is Patch-seq, 

which combines whole-cell patch-clamp recordings, scRNAseq and morphological 

characterization46,47.

Another approach is to integrate multi-modal measurements of the same neuronal 

subpopulation labelled by a common mouse driver line. The same large-scale analysis of 

adult mouse visual cortex36 used 28 Cre driver lines to enable broad coverage, selective 

targeting of rare populations and linking to previous single-cell transcriptomic data sets23 

— the intrinsic properties of >1,900 neurons (928 spiny and 1,010 sparsely spiny) were 

analysed and the morphologies of 461 neurons (254 spiny and 207 aspiny) were partially 

reconstructed. This analysis suggested a trend of correspondence between the identified 17 

e-types, 38 m-types and 46 jointly classified me-types; for example, thick tufted cells in L5 

(called the spiny7 m-type) corresponded quite well to an e-type called Exc_3. However, in 

many cases, the correspondence between e-types and m-types was not strong. To examine 

the relationship between t-types to e-types and m-types, the same driver lines that each 

corresponded to a small number of t-types were used to characterize e-types and m-types36. 

The best example of multi-modal correspondence is the L5/6 Sst–Chodl long projection 

GABA neurons, which are captured by Nos1–Sst intersection27,28. In general, however, the 

correspondence among t-types, e-types and m-types is relatively coarse. Thus, the extent to 

which the 60 t-types23 correspond to the 17 e-types and 38 m-types and 46 me-types36 is 

currently not well established.

Given these results, one might conclude that there is probably not a tight correspondence 

among the transcriptomic, morphological and electrophysiological features of GABAergic 

neurons. However, such a conclusion is premature for several reasons. Given that intrinsic 

properties measured using arbitrary stimulation parameters in vitro poorly represent 

the overall electrophysiological features and the limitations of morphological analysis 

of partially reconstructed neurons from brain-slice preparations, the current relatively 

weak correspondence between e-types and m-types is not surprising. Furthermore, 

as morphological and physiological measurements have far lower resolutions than do 

transcriptomic measurements (which, given the number of mRNA transcripts in each cell, 

have thousands of dimensions), the relatively weak correspondence between the t-types, 

e-types and m-types is also not unexpected. The current ambiguity and disparity in cell 

clustering across modalities might reflect the lack of a conceptual framework that captures 

the essence of neuron type and distils the overarching properties that encapsulate or extend 

beyond the traditionally described cell phenotypes.

Communication elements

Transcription profiles of cellular machines shape I/O properties

Despite progress in large-scale single-cell transcriptomics, the problem of neuronal diversity 

and classification is unlikely to be solved without understanding the biological principles 
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that underlie neuronal identity and the organization of cell types. Considerable progress has 

been made by analysing high-resolution single-cell transcriptomes through leveraging the 

deep, although incomplete, knowledge in GABAergic neuron anatomy and physiology.

One study28 differed from other single-cell transcriptomic studies in three important 

ways: experimental design, RNAseq method and data analysis (Fig. 2). Unlike efforts 

to discover diversity and classify neurons using unsupervised statistical clustering of 

transcriptomes, Paul et al. focused on understanding the molecular basis of neuronal identity 

by analysing the transcriptomes of six cardinal, phenotypically characterized populations 

(PCPs) of GABAergic neurons captured by intersectional genetic targeting. These PCPs 

were described according to previous anatomical, physiological and developmental research, 

providing a solid basis for the interpretation of and correspondence to the transcriptomic 

data set. This study also used a modified version of CEL-seq (cell expression by linear 

amplification and sequencing), called DIVA-Seq (double in vitro transcription with absolute 

molecule counts sequencing)48, to detect ~9,000 genes expressed per single cell and to count 

mRNA transcripts in single cells. This transcription profiling method achieves substantially 

higher resolution than Drop-Seq and 10x Genomics platforms and more accurate mRNA-

level measurements than Smart-Seq. The study aimed to extract key transcription features 

that contribute to, explain and predict cell properties. This strategy was based on the premise 

that most cellular properties arise from the operations of macromolecular machineries 

(or ‘cellular modules’) that each consists of multiple interacting protein components49; 

an individual protein component is often implemented as a member of a gene family 

that contains several variants, each differing in biochemical and biophysical properties 

that modify their shared function. Thus, the differential expression of certain variants 

of protein components may tailor the features of these macromolecular machineries, 

thereby customizing the phenotypes that together characterize a cell type (Fig. 2). Paul 

et al.28 applied a supervised machine learning-based algorithm (MetaNeighbour50) to 

screen the ~620 HGNC (Human Genome Nomenclature Committee) gene families for 

those whose differential single-cell expression reliably distinguish these PCPs. Strikingly, 

PCPs were best distinguished by the expression of members of a set of only ~40 

gene families. These gene families comprise six functional categories that include cell-

adhesion molecules, neurotransmitter and modulator receptors, ion channels, regulatory 

components of membrane-proximal signalling pathways, neuropeptides and vesicular 

release components, and transcription factors. The expression of certain combinations 

of gene family members from across these functional categories seems to shape the 

characteristics of a molecular scaffold at the cell membrane that contribute to presynaptic 

and postsynaptic properties — that is, I/O characteristics (Fig. 2). Using the expression of 

these ~40 gene families to discriminate interneuron type in data sets from two other studies 

with disparate experimental designs21,22 was similarly effective. These findings suggest that 

cardinal neuron types can be defined as neural communication elements that are rooted 

in transcriptional programmes that orchestrate functionally congruent expression across 

certain gene families to customize the patterns and properties of I/O transformation. This is 

consistent with an independent proposal to define projection neuron types on the basis of I/O 

relationships51.
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An overarching and mechanistic framework of neuronal identity

The concept of ‘modular organization’ of cortical architecture dates back more than four 

decades52,53,54. Yet the neurobiological basis of ‘canonical circuits’ has remained elusive 

and contentious55, largely owing to the lack of quantitative, comprehensive and multi-modal 

data and a limited understanding of neuron types. The definition of neuron type as a neural 

communication element rooted in a transcription programme is a higher-level abstraction 

that integrates multi-modal cell phenotypes, provides a framework for understanding 

neuronal diversity and may facilitate biologically principled cell-type classification beyond 

statistical algorithms and arbitrary criteria (Fig. 3). The two fundamental features of a 

communication element are its connectivity (that is, communication partners) and I/O 

transformation (that is, communication mode), which encapsulate and extend the more 

conventional descriptions of cell features.

Although location and morphology have been prime descriptors of neurons, they reflect 

the more fundamental property of connectivity. Thus, seemingly intractable variability in 

morphology may belie the more constant patterns of connectivity between presynaptic 

and postsynaptic elements56. Indeed, computational algorithms have been developed to 

reliably identify m-types from dense connectome data sets57,58. In terms of physiological 

features, the intrinsic, synaptic and network properties of a neuron type probably all serve 

in the transformation of information from various synaptic input patterns to appropriate 

synaptic output patterns, often characterized by a cell-intrinsic style of neurochemical 

release. Defining neuronal types on the basis of their ‘function’ seems intuitive and the 

most relevant to nervous system operation9,51, but neuronal functions manifest at multiple 

levels that carry different meanings, vary according to behavioural context, and thus seem 

not to be well suited for use in defining cell types. A key feature of the communication 

element concept is that it seamlessly incorporates the functional attributes of neuron types 

across levels. Neuronal communication elements with specific I/O transformation algorithms 

carry out a specific set of definable circuit operations (such as feedforward inhibition, 

lateral inhibition, disinhibition, gain control or γ-oscillations) — their proximal level 

functions. These elements can be task-dependently recruited into larger brain networks for 

systems-level information processing and computation, representing their distal behavioural 

and cognitive functions59,60. Thus, the communication element concept incorporates the 

functional definition of neuron types by clarifying and integrating different levels of 

functional explanations. The cardinal identity of a cell is probably already instilled 

at the postmitotic stage during development9,61,62,63,64, and its subsequent phenotypic 

differentiation and expression are regulated by extrinsic signals such as cell interactions and 

neural activity. Importantly, key communication properties are shaped by specialized cellular 

modules that are encoded through transcriptional programmes. Although the transcription 

profile of a cell is influenced by extrinsic factors of the cellular milieu (including neural 

activity)65, core transcription programmes are primarily shaped by cell-intrinsic epigenomic 

landscapes (Box 1), which mainly derive from differential developmental programming 

of the genome. Therefore, the communication element definition may coherently integrate 

molecular, anatomical, physiological, functional and developmental genetic features (Fig. 3); 

it is a testable hypothesis (Box 2).
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An intriguing corollary is that although communication is inherently a cell-extrinsic 

feature that is directly affected by communication partners, it is rooted in cell-intrinsic 

transcription programmes. Therefore, as part of its core identity, a cardinal cell type may 

be driven by its genetic information to establish characteristic connectivity patterns with 

other appropriate cell types63. Cell-intrinsic transcription programmes (derived largely from 

epigenomes) might therefore represent an intermediate step through which the genome 

ultimately orchestrates the self-assembly of canonical features of neural circuits. Thus, 

the communication element definition of neuron types should facilitate the delineation 

of higher-level modular organization of neural circuit architecture24,53 by clarifying the 

developmental genetic basis of elemental building blocks.

As such, the recent finding that there has been relatively poor correlation between currently 

described m-types and e-types is perhaps not surprising, as morphology indirectly reflects 

connectivity, whereas electrophysiological properties measured at somata are just a few of 

many contributing factors that determine I/O transformations. Key connectivity and I/O 

features might potentially be highly correlated once they can be measured at a high enough 

resolution. Certain morphological features might be more tightly linked to connectivity 

(for example, CHC axon arborizations39), and certain intrinsic and synaptic features might 

be better linked to I/O properties (for instance, fast-spiking basket cells show fast in–fast 

out signal dynamics66). Once identified, tighter correlations in specific subpopulations may 

emerge.

Box 1 Single-cell epigenomics

The transcriptome of an individual mature neuron is the transcriptional output of its 

epigenome, which consists of a record of the chemical modifications of the genome 

(including DNA methylation and histone modification and so on) that influence how 

genes are expressed in that neuron. Epigenomes in the organism are customized from 

a singular genome, largely through developmental genetic programming. In addition to 

single-cell RNA sequencing (scRNAseq), technical advances now enable the delineation 

of genome-wide DNA-methylation patterns83 and chromatin accessibility (using the assay 

for transposase-accessible chromatin (ATAC) sequencing84) in single cells. Assaying the 

DNA-methylation pattern from ~6,000 single mouse and human frontal cortex nuclei, 

cell-type-specific regulatory elements with differential methylation patterns were identified 

across neuron types83. In another complementary study, potential master transcriptional 

regulators were inferred from chromatin accessibility assay in ~15,000 single nuclei using 

ATAC-seq84.

Although these single-cell epigenomics techniques have yet to reach the resolution and 

scale of scRNAseq, they have begun to resolve major cortical cell classes and subclasses 

(including glutamatergic neurons, GABAergic neurons, parvalbumin-expressing neurons, 

somatostatin-expressing neurons, glial cells and so on). With further technical improvement, 

integrated analyses of single-cell transcriptomic and epigenetic data sets62 will not only 

facilitate molecular cell typing but also may provide deeper insight into the underlying gene-

regulatory basis for cell typing. For example, developmental time series data sets may reveal 

the emergence of epigenomic landscapes that establish an essential set of transcriptional 
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enhancers, which orchestrate core transcriptional programmes to shape key gene family 

expression profiles, thereby customizing the synaptic communication properties that define 

cell types (Fig. 3).

Box 2 Communication elements as a testable hypothesis

The communication element definition of neuron type should be viewed as a testable 

hypothesis, with the prediction that input–output (I/O) transformation properties correlate 

with key transcriptional signatures and together define cardinal neuron types.

Recently developed tools that combine genetic targeting27,85, anterograde, retrograde and 

trans-synaptic viral tracing (such as TRIO; tracing the relationship between input and 

output86), and optogenetic mapping are well poised to facilitate the discovery of the I/O 

streams of neuronal subpopulations2,51. In parallel, dense connectomics data sets obtained 

using volume electron microscopy (EM) may reveal the complete connectivity of individual 

neurons and enable investigators to discern key patterns that are characteristic of cardinal 

types. Current efforts on EM reconstruction of a cortical column may reveal the local 

connectomes of interneurons and begin to allow investigators to examine the relationship 

between connectivity and cell identity87. Larger-volume EM connectomes will be necessary 

to fully examine the I/O streams of cortical neurons.

There is currently no single method to measure I/O transformation. Instead, different 

components, such as synaptic inputs and integration, spike initiation and propagation, 

and synaptic release, are measured separately only in a few abundant and accessible cell 

populations (for example, parvalbumin-expressing fast-spiking basket cells66). Alternatively, 

I/O transformations can be probed on the basis of the position of neurons in cellular-

resolution-defined anatomical pathways via advances in subpopulation-targeted and wiring-

dependent optogenetic control, activity readout and perturbations51. However, despite much 

progress, large-scale measurement of I/O transformations in neuronal subpopulations in vivo 

remains a considerable challenge and may require entirely new technologies.

Importantly, I/O transformation properties seem to be encrypted in key transcription 

signatures28. Proper analysis of high-resolution transcriptomes may guide the 

characterization and validation of neuronal I/O patterns and facilitate the discovery of 

neuron types (that is, beyond statistically defined transcriptomic types). Recent advances 

in spatial transcriptomics and its increasing integration with modern anatomical and 

imaging tools88,89,90,91,92 may facilitate the correlation of I/O properties with transcriptional 

signatures. Applying this strategy to a modest set of cardinal types, such as glutamatergic 

pyramidal neurons, seems feasible. Once a correspondence between key transcription 

signatures and I/O properties has been established, scalable high-resolution transcriptome 

analysis may guide the large-scale discovery of cardinal neuron types.

Granularity of neuron types

In addition to understanding the nature of neuronal identity, the appropriate granularity of 

cell types needs to be defined for a meaningful classification and taxonomy14. The question 

of how many cell types a given brain region contains is frequently asked but will not have 
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a clear answer until investigators can determine how finely and firmly cell types should be 

distinguished to be useful for understanding circuit function. Inherently related to the issue 

of neuron-type identity, the question of granularity presents similar technical and conceptual 

challenges at a finer resolution.

Even neurons recognized as members of a given subclass or type often manifest 

substantial variation (discrete and continuous) along multiple modalities. Whether and when 

investigators should continue to finely cluster cells along to each modality to define more 

‘subtypes’ is unclear. For example, single-cell transcriptome data sets manifest discrete as 

well as continuous variations13,22. A major question is which variations are biologically 

meaningful and which are not (for example, they may instead be technical or stochastic). 

Similarly, morphological variations between neurons of the same class may seem continuous 

and intractable11 but may belie the more specific and discrete connectivity patterns between 

certain presynaptic and postsynaptic elements56,67. In addition, the importance of the 

variation of intrinsic physiological properties may be interpretable only in the context 

of their effect on I/O transformation. Although some argue for an emphasis on discrete 

variables that shape a hierarchical taxonomic tree with binary splits14, others suggest 

continua as a necessary and probabilistic description of cell diversity13,68. These debates 

uncover a deeper conceptual issue: what level of granularity of cell-type definition is 

necessary for understanding circuit function?

The communication element concept of neuron types may provide a mechanistic and 

functional basis for defining the appropriate granularity of a neuron type taxonomy. A 

better understanding of the I/O transformation properties of a broader neuron type may 

be necessary to define finer granularity. In some cases, seemingly subtle variations may 

endow novel properties of a generic type of I/O transformation to a subset of cells, thereby 

warranting their classification as a separate subtype (for example, the 15 types of retinal 

bipolar cell69). In other cases, a continuous I/O transformation that determines the circuit 

operation of a communication node may be achieved by implementing certain continuously 

variable features to its constituent cell members (for example, orientation-selective neurons 

in primary visual cortex all encode orientations but each has a particular orientation 

preference). It is possible that certain cardinal types might have inherent tendencies and 

mechanisms to manifest further variations in multiple modalities and thus to diversify 

into finer varieties that together better serve their overarching communication function. A 

satisfying cell-type taxonomy might need to integrate hierarchical trees of discrete cell 

classes and types with probabilistic and continuous features along certain branches. Proper 

recognition of cell-type granularity will also help to distinguish variations that are related to 

cell identity from those attributable to different physiological or pathological states.

Conclusions and perspectives

The importance of discovering and understanding neuronal diversity is now well recognized. 

We suggest that uncovering the biological basis of neuron-type identity and granularity 

is necessary to decipher neuronal diversity and to achieve a satisfying classification 

and taxonomy. High-throughput scRNAseq and epigenomic analyses will accelerate the 

generation of massive data sets, laying out the molecular landscape for systematic cell-type 
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discovery and classification. The proposed framework here — that each cardinal neuron type 

can be defined as a neural communication element with characteristic I/O transformation 

properties that are encoded by key transcriptional signatures — posits that neuron types are 

not just statistical constructs shaped by arbitrary criteria but are inherently biological entities 

built with molecular genetic mechanisms that can be understood through fundamental 

principles. High-throughput single-cell analyses grounded on the proposed neuron identity 

framework should substantially clarify the working draft of interneuron taxonomy and 

drive cell-type discovery across the cerebral cortex, a strategy with broad implications for 

exploring cell diversity in the CNS.

The two basic features of neuronal communication, connectivity and I/O transformation, 

cannot currently be measured at scale (Box 1). Technical improvements in I/O tracing 

and dense connectomics will facilitate the scalable measurement of neural connectivity. 

In parallel, continued innovation in genetic targeting, optogenetic manipulation, activity 

readout and perturbation will enable the characterization of I/O transformation in 

greater numbers of neuronal subpopulations. Fortunately, it is increasingly evident that 

transcriptomes and epigenomes contain highly rich information regarding cell identity and 

physiological state70. Indeed, the transcriptome and epigenome are not just another measure 

of cell features — together, they represent the data sets that contain mechanistic though 

encrypted information of other cell phenotypes (including morphology, connectivity and 

physiology). To retrieve and interpret such information, we must obtain high-resolution 

(high-depth) omics data sets and, further, recognize and annotate the ‘functional elements’ 

and ‘functional modules’ embedded in these molecular profiles. This may be best illustrated 

by a comparison between the transcriptomic and epigenomic approach to cell typing versus 

the genomic approach to species classification.

In this postgenomic era, contemporary geneticists and evolutionary biologists routinely 

use genome alignment and comparative analysis to deduce the identity and evolutionary 

relationships of many organisms to enable classification and the generation of a taxonomy. 

However, this approach, now almost taken for granted, can succeed only if two requirements 

are met. First, high-resolution (that is, nucleotide) and high-coverage (preferably full 

genome) sequences are needed. Random subsets of genomes (for example, obtained 

with shot-gun sequencing at 10% coverage) are far less useful for genome comparison 

across species. Second, comparative analyses of genomic information must be guided by 

genetic principles and mechanistic knowledge. Comparisons of, for example, GC content or 

overall genome-wide alignment are unlikely to be informative. The recognition of genomic 

functional elements such as the genetic code, exons, introns, promoters, enhancers and 

insulators, which constitute only a tiny fraction of the genomic landscape, is necessary to 

interpret and compare genome sequences, to extract biologically meaningful information, 

and to infer species identity and genetic (and evolutionary) relationships.

This genomic approach to species classification may apply to transcriptomic and epigenomic 

approaches to understanding the logic of cell-type diversity in individual organisms. First, 

high-resolution and high-coverage omics data sets are needed to provide the necessary 

substrates for comprehensive analysis and discovery. Large-scale, lower-resolution data sets 

alone (for example, assessing the expression on the order of 2,000 genes per cell71,72,73) 
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may preclude the delineation of functional gene expression signatures. Second, we must 

delineate from these immense data sets ‘functional transcriptomic signatures’ (FTSs; for 

example, gene batteries74,75 and cellular modules28,49) that build and customize molecular 

machines to shape cell phenotypes and properties. Furthermore, we must discover the 

biological principles that determine how genomic information encodes core transcriptional 

networks that orchestrate characteristic gene expression patterns in cardinal cell types. 

Therefore, just as the genomic approach has provided a unified framework and metric 

for species classification, transcriptomic and epigenomic analyses may provide a unified 

framework and metric for cell-type definition and classification.

Equipped with FTSs and an increasing understanding of the transcriptional algorithm 

of cardinal cell types, we may be able to make considerable strides in deciphering the 

logic of cell identity and diversity in multiple biomedical subdisciplines. For example, in 

the context of development, type-defining FTSs could provide the reference end points 

for exploring the developmental emergence and mechanism of cell identity61,64. In the 

context of evolution, where conserved cell types also acquire divergent features, core FTSs 

in mouse cardinal types could provide the essential axes with which true homologous 

cell types can be identified across species76,77, more precisely than using sporadic and 

species-variable molecular markers. Indeed, such comparisons could further facilitate the 

definition of core regulatory complexes (CoRCs) of transcription factors that have been 

suggested to enable the independent evolution of sister cell types and to regulate cell-type-

specific traits78. In the context of reprogramming, where it has been difficult to distinguish 

whether in vitro differentiated cells have acquired a small number of measurable ‘type-

resembling features’ (such as markers or measures of excitability and transmitter release) or 

a coherent cell-type identity79,80,81, FTSs should provide a compelling and comprehensive 

evaluation of the reprogrammed cell status. In the context of disease, scRNAseq promises 

unprecedented cellular-resolution molecular diagnosis. However, when comparing single-

cell transcriptomes from diseased samples with those from control samples, it is often 

difficult to determine whether differences in gene expression indicate a pathological state 

of a defined cell type in the disease sample or result from unintended comparison of 

different cell types between disease and control samples82. Comprehensive characterization 

of human type-defining FTSs would provide the necessary reference framework and 

precision to diagnose disease-related molecular alterations of specific cell types that affect 

tissue organization and function. At a fundamental level, such an explanatory framework 

may facilitate our understanding of the flow of biological information from the genomes, 

epigenomes and cell types, to tissue organization, function and behaviour, with implications 

in brain circuit evolution and disorders.
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Fig. 1: A work draft taxonomy of transcriptomic neuron types of the cortical GABAergic system.
a | Major GABAergic subclasses and cell types recognized by classic anatomical, 

physiological, molecular and developmental studies. Schematics of the characteristic 

morphology of these cell types are also shown. Light grey lines represent dendrites; dark 

grey lines represent axons. b | Current taxonomy of transcriptomic types in the primary 

visual and anterolateral motor cortex. Note that the major types and branches are consistent 

with classic studies. Currently only a few of the 60 ‘atomic types’ are well correlated 

with the anatomically and physiologically defined types. ‘?’ denotes that the correlation 

between the transcriptomic type and the indicated morphological type is not yet firmly 

Huang and Paul Page 20

Nat Rev Neurosci. Author manuscript; available in PMC 2022 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



established. A major discrepancy is the Lamp5–Lhx6-type cells, which were clustered as 

caudal-ganglionic-eminence-derived neurogliaform cells23 but were recognized as medial-

ganglionic-eminence-derived chandelier cells (CHCs)28. 5-HT3AR, serotonin 3A receptor; 

CCK, cholecystokinin; CR, calretinin; NOS1, nitric oxide 1; PVALB, parvalbumin; SST, 

somatostatin; VIP, vasoactive intestinal peptide. Part b is adapted from ref.23, Springer 

Nature Limited.
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Fig. 2: Transcriptional signatures of synaptic communication delineate cardinal GABAergic 
neuron types.
a | Six cardinal types — long projection cells (LPCs), chandelier cells (CHCs), PV-basket 

cells (PVCs), cholecystokinin-expressing basket cells (CCK-BCs), interneuron selective 

cells (ISCs) and Martinotti cells (MNCs) — are distinguished by their characteristic 

innervation of cellular and subcellular targets. Where data are available, these cardinal 

types manifest distinct input–output connectivity patterns and further display distinct 

intrinsic, synaptic and network properties indicative of mediating specific forms of input–

output transformation. b | Cell phenotypes and properties emerge from the workings of 

macromolecular machines (cellular modules) that consist of multi-protein complexes. As 

molecular components of these complexes, protein variants with different biochemical 

and biophysical properties encoded by members of a given gene family can customize 

cellular modules and cell-type-specific properties. c | Examples of cellular modules that 

shape neuronal connectivity, synaptic transmission, electrical signalling, intracellular signal 

transduction and gene transcription. d | Six categories of gene families shape a set of 

membrane-proximal molecular machines that customize the input–output connectivity and 

transformation properties of different GABAergic cardinal types. AC, adenylyl cyclase; AIS, 

axon initial segment; CaBP, calcium-binding protein; Cav, voltage-gated calcium channel; 

DCV, dense core vesicle; GluR, glutamate receptor; GPCR, G protein-coupled receptor; IN, 
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interneuron; Kv, voltage-gated potassium channel; PDE, phosphodiesterase; PTP, protein 

tyrosine phosphatase; PyN, pyramidal neuron; RGS, regulator of G protein signalling; RHO-

GEF, RHO guanine nucleotide exchange factor; RTK, receptor tyrosine kinase; SV, synaptic 

vesicle; Syt, synaptotagmin. Adapted with permission from ref.28, Elsevier.
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Fig. 3: A conceptual framework of neuronal identity.
A neuron type can be defined as a canonical neural communication element that mediates 

characteristic input–output transformations and that is encoded by key transcription 

signatures that customize a congruent set of cellular machines. This scheme integrates the 

anatomical, physiological, functional and developmental genetic features that together define 

neuronal cell types. It emphasizes cardinal neuron types that are reliably generated in each 

member of a species, build species-stereotyped circuit templates and are likely rooted in the 

genome. Not shown is the notion that these cardinal types are probably further diversified 

and customized (for example, by neuronal activity and experience) to shape circuit elements 

characteristic of individual organisms. Features in parentheses are commonly measured cell 

properties but are reflections of core features of cell types. See text for detailed description.
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