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An increasing number of recent studies have suggested that doubly robust estimators with cross-fitting should
be used when estimating causal effects with machine learning methods. However, not all existing programs that
implement doubly robust estimators support machine learning methods and cross-fitting, or provide estimates on
multiplicative scales. To address these needs, we developed AIPW, a software package implementing augmented
inverse probability weighting (AIPW) estimation of average causal effects in R (R Foundation for Statistical
Computing, Vienna, Austria). Key features of the AIPW package include cross-fitting and f lexible covariate
adjustment for observational studies and randomized controlled trials (RCTs). In this paper, we use a simulated
RCT to illustrate implementation of the AIPW estimator. We also perform a simulation study to evaluate the
performance of the AIPW package compared with other doubly robust implementations, including CausalGAM,
npcausal, tmle, and tmle3. Our simulation showed that the AIPW package yields performance comparable to that
of other programs. Furthermore, we also found that cross-fitting substantively decreases the bias and improves
the confidence interval coverage for doubly robust estimators fitted with machine learning algorithms. Our findings
suggest that the AIPW package can be a useful tool for estimating average causal effects with machine learning
methods in RCTs and observational studies.

average causal effects; causal inference; doubly robust estimation; epidemiologic methods; machine learning;
nonparametric statistics

Abbreviations: AIPW, augmented inverse probability weighting; ATE, average treatment effect; CI, confidence interval; EAGeR,
Effects of Aspirin in Gestation and Reproduction; GAM, generalized additive model; GLM, generalized linear model; MSE, mean
squared error; OR, odds ratio; RCT, randomized controlled trial; RD, risk difference; RR, risk ratio; SE, standard error; TMLE,
targeted maximum likelihood estimation.

Machine learning methods are increasingly being used
to estimate cause-effect relationships. Numerous examples
exist, including use of random forests, gradient boosting,
or a combination of learners (e.g., stacking) for propen-
sity score weighting, stratification, or matching, or use of
marginal standardization with a regression-based estimator
(1–6). However, there is a growing body of theoretical and
simulation evidence suggesting that without some form of
statistical bias correction, using machine learning methods
to estimate causal effects can result in high bias, high mean
squared error (MSE), and less-than-nominal 95% confi-
dence interval (CI) coverage (7–11).

In contrast, doubly robust estimators possess a statistical
bias correction property (12) and are thus less susceptible to
problems with bias, MSE, and CI coverage when machine
learning methods are used. Hence, when estimating causal
effects with machine learning methods, doubly robust
estimators, such as targeted maximum likelihood estimation
(TMLE) or augmented inverse probability weighting
(AIPW), should be used (9–11, 13, 14). Several software
programs that implement doubly robust estimators are
currently available in a number of different programming
languages, including SAS (SAS Institute, Inc., Cary, North
Carolina) (15), Stata (StataCorp LLC, College Station,
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Texas) (16), R (R Foundation for Statistical Computing,
Vienna, Austria) (17–21), Python (22), and MATLAB (23).
However, only a handful of them enable use of machine
learning methods (17, 18, 20). Additionally, most share
important limitations known to either affect the performance
of doubly robust estimation or lower their relevance to
epidemiologists. Most importantly, these limitations include
1) the inability to implement sample-splitting or cross-fitting
for effect estimation and 2) the estimation of effects on
a single scale of measurement (e.g., additive effects). To
address these limitations, we developed the AIPW package,
which implements AIPW (24) for a binary exposure in the
R programming environment (25). Compared with other
packages for implementing doubly robust estimators via
machine learning methods, the AIPW package

1. allows different covariate sets to be specified for the
exposure and outcome models, which may be impor-
tant when analyzing data from randomized controlled
trials (RCTs);

2. obtains appropriate standard errors (SEs) for estimates
of the average treatment effect (ATE) by implementing
k-fold cross-fitting;

3. relies on a user-friendly parallel processing framework
for computationally heavy tasks; and

4. enables estimation directly from the fitted objects from
existing doubly robust implementations (e.g., tmle
(17) or tmle3 (18)) in the R programming language.

In this paper, we illustrate the AIPW estimator and how
to use it in our package. Additionally, we highlight the
differences between various software implementations of
these estimators in R, including AIPW, CausalGAM (19),
npcausal (20), tmle (17), and tmle3 (18).

METHODS

Motivation and data-generating mechanisms

Here we outline the data sets motivating our illustration
of AIPW and the use of the AIPW package. We rely on the
Effects of Aspirin in Gestation and Reproduction (EAGeR)
Trial, a multicenter RCT of the effect of daily low-dose
aspirin on pregnancy outcomes in women at high risk of mis-
carriage. The EAGeR investigators recruited 1,228 women
aged 18–40 years who were attempting to become pregnant.
Details on the EAGeR Trial and its data are provided else-
where (26–29).

We simulate 2 different data sets from EAGeR to illustrate
the use of the AIPW package. We use a simulation approach
because 1) the actual data are not publicly available and
2) true exposure effects are known in simulation settings.
Data are generated on the basis of the causal relationships
depicted in Figure 1.

Figure 1A illustrates a data-generating mechanism for an
RCT in which the treatment A is assigned conditionally on
the basis of a measured covariate Wg. For example, in a study
designed to explore the impact of aspirin on pregnancy out-
comes in women with previous pregnancy losses, one may
decide to randomize to aspirin versus placebo 1:1 for women
with only 1 prior pregnancy loss but elect to randomize 3:1

Wg A Y

WQ
U

W
U

YA

A) B)

Figure 1. Causal diagrams for a randomized controlled trial (A) and
an observational study (B). A, binary treatment assignment/exposure;
U, unmeasured confounders; W, confounders; Wg, confounder(s)
that affect(s) the treatment assignment; WQ, baseline prognostic
covariates; Y, outcome.

for women with more than 1 prior pregnancy loss. Similarly,
Figure 1B illustrates a simple causal diagram for an obser-
vational study of the relationship between an exposure A
(e.g., whether a given woman took aspirin during the study’s
follow-up), an outcome of interest Y (e.g., an indicator of
whether live birth occurred during follow-up), and a set of
confounders of the exposure-outcome relationship W.

To construct data sets governed by the data-generating
mechanisms in Figure 1, we sampled (with replacement)
baseline covariates from the EAGeR data. For the simulated
AIPW (n = 1,228; Figure 1A), A denotes the binary treat-
ment assignment, Y is the binary outcome, and Wg represents
the covariate that affects the treatment assignment, which in
our case was deemed to be the eligibility stratum indicator,
sampled with replacement from the EAGeR Trial. Similarly,
WQ is a set of baseline prognostic covariates, which were
also sampled with replacement from the EAGeR Trial, and
includes the number of prior pregnancy losses, age, number
of months of trying to conceive prior to randomization, body
mass index (weight (kg)/height (m)2), and mean arterial
blood pressure (denoted W1...5, respectively). Our simulated
treatment A was generated such that P(A = 1|Wg = 1) =
0.75 and P(A = 1|Wg = 0) = 0.25. The outcome Y was
simulated from a logistic regression model defined as

logit[P(Y = 1|A, WQ)] = 2.20 + 0.56A + 0.05W1

− 0.01W2 − 0.08W3 − 0.03W4 − 0.01W5.

The above model defines the treatment effect via a con-
ditional odds ratio (OR) of 1.75. In our simulated setting,
this yielded true marginal effects of 0.13, 1.29, and 1.71
on the risk difference (RD), risk ratio (RR), and OR scales,
respectively (Table 1, row 1). We used the correctly specified
parametric regression model in a sample of 1 million obser-
vations to obtain the estimate of the true effects to serve as
our parameters of the true causal effect parameter values.

For the simulated observational study governed by the
data-generating mechanism in Figure 1B, A, Y , and W
denote a binary exposure, a binary outcome, and a set of
binary, categorical, and continuous confounders (i.e., the
aforementioned Wg and W1...5), respectively. The propensity
score model used to generate A was defined as

logit[P(A = 1|W)] = −0.29 + 0.56Wg − 0.23W1

+ 0.01W2 + 0.02W3 − 0.02W4 + 0.01W5.
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Table 1. Estimated Average Treatment Effects in a Simulated Randomized Controlled Trial Based on the EAGeR Trial

Software Package

Effect Estimate

Risk Difference
(SEa)

95% CI
Risk Ratio

(SE)
95% CI

Odds Ratio
(SE)

95% CI

True estimateb 0.132 (N/A) N/A 1.285 (N/A) N/A 1.708 (N/A) N/A

AIPWc,d 0.136 (0.033) 0.070, 0.201 1.305 (0.068) 1.143, 1.490 1.727 (0.136) 1.323, 2.253

CausalGAM 0.134 (0.033) 0.070, 0.198 N/A N/A N/A N/A

npcausalc,d 0.133 (0.035) 0.065, 0.201 N/A N/A N/A N/A

tmlec,d 0.135 (0.026) 0.083, 0.186 1.306 (0.054) 1.176, 1.451 1.719 (0.107) 1.394, 2.121

tmle3c,d,e 0.138 (0.034) 0.071, 0.205 1.310 (0.070) 1.141, 1.503 1.764 (0.140) 1.339, 2.323

Abbreviations: AIPW, augmented inverse probability weighting; CI, confidence interval; EAGeR, Effects of Aspirin in Gestation and
Reproduction; GAM, generalized additive model; N/A, not applicable; SE, standard error.

a All SEs in the table were calculated via asymptotic estimation (using the delta method).
b The estimates of true causal effect parameter values were generated by the correctly specified parametric regression model with a sample

size of 1 million (Figure 1A).
c SuperLearner was used for AIPW, npcausal, and tmle, and sl3 was used for tmle3. Algorithms included gam, earth, ranger, and XGBoost.
d We used 10-fold cross-fitting for AIPW, npcausal, tmle, and tmle3. (The tmle package only supports cross-fitting in the outcome model.)
e Three different estimations were done for tmle3, since it can only output 1 type of estimand per estimation.

Similarly, the outcome Y was simulated from an outcome
model defined as

logit[P(Y = 1|A, W)] = 2.03 + 0.56A − 0.37Wg + 0.30W1

− 0.01W2 − 0.08W3 − 0.05W4 − 0.01W5,

such that the true conditional OR for the exposure-outcome
relationship was 1.75. This yielded true marginal effects
of 0.13, 1.36, and 1.70 on the RD, RR, and OR scales,
respectively, which were again obtained using the approach
described above.

Realizations of both of these data sets are included
in the AIPW package and can be obtained using the
data(eager_sim_rct)anddata(eager_sim_obs)
functions.

Basic implementation of AIPW

The AIPW package was developed to estimate treatment
effects of a binary exposure. Such effects include ATEs
commonly targeted in observational studies, which include
intention-to-treat effects when a randomization indicator is
available. These effects can be defined on the RD, RR, and
OR scales (30) as

RD = E(Y1 = 1) − E(Y0 = 1);

RR = E(Y1 = 1)

E(Y0 = 1)
;

OR = E(Y1 = 1)

1 − E(Y1 = 1)
/

E(Y0 = 1)

1 − E(Y0 = 1)
,

where Y1 and Y0 denote the potential outcomes that would
be observed if the exposure were set to 1 and 0, respectively.

Under consistency, exchangeability, positivity, and no
interference, the average of potential outcomes that would
be observed under A = a is identified as the average of
estimated outcomes, that is, E(Ya) = E[E(Y|A = a, W)],
which for simplicity we denote ψ(a). Several estimators
can be constructed by combining predictions from the
propensity score model with predictions from the outcome
model. These predictions can be obtained from parametric
regression, such as logistic regression. However, machine
learning methods can also be used when these predictions
are combined via a doubly robust estimator such as AIPW.
This is because double robustness can yield estimators with
low bias and valid SEs, even when the propensity score and
outcome model estimators have high bias and no generally
valid method for obtaining SEs (7–11).

Under the data-generating mechanism depicted in
Figure 1A, the propensity score predictions should be ob-
tained conditional on Wg (i.e., P̂i(A = 1|Wg)), which could
be used for constructing an inverse probability weighting
(IPW) estimator (31, 32), such as

ψ̂IPW(a) = 1

n

n∑
i=1

I (Ai = a)

P̂
(
A = a|Wg,i

) × Yi, (1)

where a ∈ {0, 1} and i represents the ith observation. For im-
proved performance, the estimated propensity scores can be
truncated, which the AIPW package implements by default
at the 2.5th percentile (33).

Alternatively, outcome model predictions P̂(Y =1|A, WQ)
can be used to construct a g-computation estimator (31, 34),
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defined as

ψ̂g−comp(a) = 1

n

n∑
i=1

P̂
(
Y = 1|A := a, WQ,i

)
, (2)

where the := symbol denotes that we set each individual’s
value for A in the sample to the argument’s value a. This
equation represents the average of predictions from the out-
come model by setting A = a over each confounder level.

When the propensity score model or the outcome model
is used alone to estimate ATEs, they must in general be built
from correct parametric models. In contrast, one can use
both the propensity score and the outcome models together
in an AIPW estimator (12, 19, 24, 34, 35) as follows:

ψ̂(a)AIPW = 1

n

n∑
i=1

{
I (Ai = a)

P̂
(
A=a|Wg,i

)[Yi−P̂
(
Y =1|Ai, WQ,i

) ]
+ P̂

(
Y = 1|A := a, WQ,i

)}
. (3)

A TMLE estimator of the same quantities can also be con-
structed using alternative techniques (14, 17).

As with the TMLE estimator, missing outcome data can
be accounted for with the AIPW package if the covariate
set W (i.e., both WQ and Wg) enables one to assume that
outcomes are missing at random conditional on W (see
Web Appendix 1, available at https://doi.org/10.1093/aje/
kwab207) (17, 36).

As long as either the outcome model or the exposure
model is correctly specified, consistent estimates of the
mean potential outcome can be obtained, that is, the dou-
bly robust property of AIPW (37). Additionally, because
of certain statistical properties of doubly robust estimators
(10), one can use machine learning methods to quantify the
exposure and outcome models while minimizing the slow
convergence rates (i.e., large MSE) and overfitting problems
that typically characterize use of machine learning methods
with sample-splitting or cross-fitting (10, 11). Web Figure 1
shows the implementation of cross-fitting used in the AIPW
package, as well as a general illustration of the relationship
between sample-splitting and cross-fitting.

SEs for the AIPW on the RD scale can be constructed
by taking the standard deviation of the estimated efficient
influence function evaluated at each observation (38). Simi-
larly, SE estimates for the estimated RR and OR can be con-
structed using the delta method. All derivations are provided
in Web Appendix 2.

Package implementation

The AIPW package can easily be used to obtain ATE
estimates on the RD, RR, and OR scales in several differ-
ent ways. Using the simulated RCT data provided in the
package, Web Appendix 3 provides some example code that
could be used to obtain the results presented in Table 1,
row 2.

The AIPW package was developed with the object-
oriented programming design via the R6 class (39, 40).
Similar to TMLE, the AIPW function can employ the
SuperLearner stacking algorithm (41, 42). In the example
code in Web Appendix 3, we combine 4 learners via
stacking, including generalized additive model (GAM)
(gam package) (43), multivariate adaptive regression
splines (earth) (44), random forests (ranger) (45), and
extreme gradient boosting (XGBoost) (46) to fit the
propensity score and outcome models. Additionally, the
AIPW function enables k-fold cross-fitting, which can
provide more accurate SE estimates when machine learn-
ing methods are used (10, 47). Users must specify the
k_split ≥ 2 argument to enable cross-fitting for the AIPW.
This AIPW_SL object is then fitted with the stored arguments
using fit(), as depicted on line 20 of Web Appendix 3,
and the results are summarized using the summary() func-
tion (line 22). The propensity score can be truncated using
the g.bound argument in summary(): Propensity scores
lower than g.bound or higher than 1 − g.bound are set
to g.bound or 1 − g.bound, respectively. For comparison,
results from corresponding software implementations are
also provided in Table 1.

Full details on using AIPW are available from the Com-
prehensive R Archive Network (48) and in our GitHub
repository (49). This includes details on a range of scenarios
that may be encountered with data in RCTs or observational
studies, as well as options in the AIPW package that can be
used to tailor analyses. In addition, methods for obtaining
ATEs among the treated and among controls, along with
their SEs, are described online and in the package help
documentation (50).

Performance evaluation via a simulation study

To evaluate the performance of our AIPW package and
compare it with existing implementations of doubly robust
estimators, we conducted a simulation study in observational
study data. A sample of n = 200 from the observational
data-generating mechanism (Figure 1B) is provided with the
AIPW package. We used this data-generating mechanism to
evaluate and compare AIPW and other doubly robust imple-
mentations in the R programming language (i.e., Causal-
GAM, npcausal, tmle, and tmle3) (17–20). Two thousand
Monte Carlo simulations, each with a sample size of 200
observations, were conducted. Because CausalGAM does
not support estimation of effects on the multiplicative scale,
we only evaluated the performance for the RD scale. Perfor-
mance was evaluated via estimated bias (E(R̂D) − RDtrue)
and MSE (E[(R̂D − RDtrue)

2
]) for the point estimates, as

well as mean 95% CI width (E(R̂Dupper − R̂Dlower)) and
95% CI coverage (P(R̂Dlower < RDtrue < R̂Dupper)) for
the asymptotic SEs (51). We also provide information on
mean run time (in seconds; sequentially, without parallel
processing) per Monte Carlo run.

To explore the performance of different estimators, we
conducted 5 sets of analyses. First, the true outcome and
propensity score models (generalized linear models (GLMs))
were used to estimate the RD in all 5 packages along with
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g-computation (via the true outcome model) and stabilized
inverse probability weighting (via the true propensity
score model). Second, only GAMs (gam) were used
to estimate the RD without cross-fitting in each of the
5 packages implementing doubly robust estimators. Third,
GAMs were used with 10-fold cross-fitting for the AIPW,
npcausal, tmle, and tmle3 packages, the only 4 packages
that enable implementation of cross-fitting. Fourth, we used
SuperLearner to stack gam, earth, ranger, and XGBoost
into 1 meta-algorithm (41, 42, 52, 53) for RD estimation
in AIPW, npcausal, tmle, and tmle3 without cross-fitting.
Because CausalGAM only supports GAMs, we could not
evaluate this package with the stacked metalearner. Lastly,
we repeated the latter AIPW and TMLE analyses but this
time with 10-fold cross-fitting, using the AIPW, npcausal,
tmle, and tmle3 packages. Simulations were conducted in
R (version 3.6.2), and details about the models used for
estimation (e.g., tuning parameters) are provided in the
GitHub repository (54).

RESULTS

Table 1 presents the ATE estimates from the 4 doubly
robust packages in the example RCT data provided with
the package. When estimated via the AIPW package, we
obtained RDAIPW = 0.136 (95% CI: 0.070, 0.201) for the
ATE if all subjects were treated versus untreated. Similarly,
the corresponding RR and OR obtained from the AIPW
package were RRAIPW = 1.305 (95% CI: 1.143, 1.490)
and ORAIPW = 1.727 (95% CI: 1.323, 2.253). Additionally,
despite the differences in implementation and estimation, the
other packages yielded estimates that were consistent with
those obtained from AIPW. Estimates from all packages
were close to the true estimates.

Performance results from our simulations are shown in
Table 2. In general, among 2,000 simulated observational
data sets, each with a sample size of 200, there was
no substantive difference in the bias and MSE between
any of the packages used. As expected, the biases from
the estimators using GLMs and GAMs were similar but
were generally lower than the bias from estimators using
SuperLearner. Among packages using GAMs, we observed
that CausalGAM yielded a bias about twice that of AIPW,
npcausal, tmle, and tmle3. Among the packages enabling
SuperLearner without cross-fitting, the bias of AIPW and
tmle was about twice that of npcausal and tmle3. In
terms of 95% CIs, the coverage was less than nominal (i.e.,
P(R̂Dlower < RDtrue < R̂Dupper) < 95%) without cross-
fitting except when correct parametric models were used,
while the coverage improved to nominal when cross-fitting
was enabled. Notably, cross-fitting in our setting largely
improved the performance of the AIPW package, especially
when using SuperLearner—its bias decreased from −0.009
to −0.002 and 95% CI coverage increased from 93.0% to
95.6%—which are comparable to its performance using the
true GLMs (bias = −0.002 and 95% CI coverage = 94.8%).

Web Figure 2 shows the pairwise comparisons of the ATE
estimates from the simulation results using GLMs in Table 2.
Panels on the diagonal are the distributions of estimates, and

the lower triangular area includes pairwise scatterplots of all
estimates. In the scatterplot panels, vertical and horizontal
lines both depict RDtrue = 0.13. Estimates near the intersec-
tion of the true RD lines are less biased from both methods
compared in the scatterplot. Interestingly, the estimates are
highly correlated between the singly robust estimators (Pear-
son’s correlation between g-computation and inverse proba-
bility weighting = 0.99) and among doubly robust estimators
(Pearson’s correlations ≥ 0.97), respectively; however, the
correlations between singly and doubly robust estimators
are only moderate (Pearson’s correlation = 0.44). Similarly,
Web Figure 3 shows the pairwise comparisons of the ATE
estimates derived using GAMs and SuperLearner in Table 2;
all packages also yielded highly correlated estimates despite
the different estimation methods. Simulation results for RR
and OR estimates are presented in Web Table 1 and Web
Figures 4 and 5.

DISCUSSION

In this paper, we have presented a new R implementation
of the AIPW estimator, by means of the AIPW package.
This package provides flexible implementation of the AIPW
estimator via stacking (e.g., SuperLearner with parametric
and machine learning algorithms). Designed for RCTs and
observational studies, the AIPW package can provide aver-
age causal effect estimates for a binary exposure on the RD,
RR, and OR scales, as well as support various features such
as cross-fitting, parallel processing, and allowing different
covariate sets for the exposure and outcome models.

For convenience, we summarized the key functionality of
the AIPW package and its comparisons with CausalGAM,
npcausal, tmle, and tmle3 in Table 3. Comparing the 2
packages implementing AIPW, the AIPW package is more
flexible than CausalGAM because it supports estimations on
multiplicative scales, models using stacking machine learn-
ing algorithms via SuperLearner (52) or sl3 (53), and cross-
fitting. Compared with tmle and tmle3, the AIPW package
holds similar features; additionally, it supports using the
fitted tmle and tmle3 objects as input for AIPW estimation.

Indeed, while they are often used in observational data,
doubly robust estimators can be important when analyz-
ing data from RCTs; in fact, they can be asymptotically
efficient under essentially no assumptions. In such a set-
ting, researchers may often wish to adjust for covariates to
increase the efficiency of the unconditional intention-to-treat
effect (55–58). However, when adjusting for covariates, one
may inadvertently introduce misspecification biases, thus
detracting from one of the major benefits of randomization
(56, 57). Notably, use of doubly robust estimators can help
one avoid such biases for RCTs, because the data-generating
mechanism for treatment allocations (i.e., randomization
stratum) is known by investigators.

Adjustment for covariates in an RCT via doubly robust
estimation requires considering different covariate sets for
the propensity score and outcome models. For instance,
covariates that were not used to assign treatment generally
need not be included in the exposure model, even though
they might be included in the outcome model. The AIPW
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Table 2. Performance of the AIPW Software Package in Estimating the Average Treatment Effect (Risk Difference) in a Simulated Observational
Study Based on the EAGeR Triala

Method and Software
Package

Bias (SE) MSE
Mean 95% CI

Width
95% CI

Coverage (SE), %b
Mean Run Time,

seconds

True model: GLM + no cross-fitting

G-computation −0.002 (0.002) 0.005 0.271 94.8 (0.5) 1.82

IPW −0.002 (0.002) 0.005 0.280 95.8 (0.4) 0.01

AIPW −0.002 (0.002) 0.005 0.268 94.8 (0.5) 0.36

CausalGAM −0.003 (0.002) 0.005 0.267 94.8 (0.5) 0.07

npcausal −0.002 (0.002) 0.005 0.267 94.6 (0.5) 0.24

tmle −0.002 (0.002) 0.005 0.261 94.4 (0.5) 0.29

tmle3 −0.002 (0.002) 0.005 0.268 94.8 (0.5) 0.31

GAMs + no cross-fitting

AIPW −0.002 (0.002) 0.005 0.261 93.8 (0.5) 1.16

CausalGAM −0.004 (0.002) 0.005 0.266 92.7 (0.6) 0.19

npcausal −0.002 (0.002) 0.005 0.260 93.9 (0.5) 0.98

tmle −0.002 (0.002) 0.005 0.257 94.0 (0.5) 0.86

tmle3 −0.002 (0.002) 0.005 0.261 93.9 (0.5) 4.54

GAMs + k = 10 cross-fitting

AIPW −0.002 (0.002) 0.005 0.310 96.6 (0.4) 7.92

npcausal −0.002 (0.002) 0.006 0.319 96.5 (0.4) 3.55

tmlec −0.002 (0.002) 0.005 0.272 95.6 (0.5) 5.15

tmle3 −0.002 (0.002) 0.005 0.308 96.5 (0.4) 7.51

SuperLearnerd + no cross-fitting

AIPW −0.009 (0.002) 0.005 0.246 93.0 (0.6) 14.65

npcausal −0.005 (0.002) 0.005 0.232 90.3 (0.7) 21.71

tmle −0.009 (0.002) 0.005 0.251 93.8 (0.5) 13.44

tmle3 −0.005 (0.002) 0.005 0.246 92.2 (0.6) 36.76

SuperLearnerd + k = 10 no cross-fitting

AIPW −0.002 (0.002) 0.005 0.281 95.6 (0.5) 128.48

npcausal −0.004 (0.002) 0.005 0.285 95.5 (0.5) 183.54

tmlec −0.006 (0.002) 0.005 0.266 94.5 (0.5) 43.38

tmle3 −0.004 (0.002) 0.005 0.272 95.2 (0.5) 48.52

Abbreviations: AIPW, augmented inverse probability weighting; CI, confidence interval; EAGeR, Effects of Aspirin in Gestation and
Reproduction; GAM, generalized additive model; GLM, generalized linear model; IPW, inverse probability weighting; MSE, mean squared error;
SE, standard error.

a Simulations were conducted with a sample size of 200 and 2,000 Monte Carlos simulations; the true risk difference was 0.128. Numbers
in parentheses show Monte Carlo SEs for the performance indicator estimates.

b Asymptotic SEs were used for CI calculation in AIPW, CausalGAM, tmle, and tmle3. The CIs for G-computation and IPW were obtained
via 200 bootstraps and sandwich estimators, respectively.

c Cross-fitting was conducted in the outcome model only because of its implementation.
d SuperLearner was used for tmle and AIPW, and sl3 was used for tmle3. Algorithms included gam, earth, ranger, and XGBoost.

package easily allows specification of different covariate
sets for the outcome and exposure models, and can thus
be used for doubly robust estimation in RCTs. In addi-
tion, the AIPW package enables model specification using
machine learning methods, which can help one avoid the
strict assumptions imposed by parametric models.

With the observational data, our simulation study showed
performance of the AIPW package comparable to that of

other packages. Indeed, excellent performance was observed
even with a relatively small sample size (n = 200). Perfor-
mance would be expected to improve as the sample size
increased (10).

Cross-fitting yielded major improvements in bias and
95% CI coverage of doubly robust methods in our simulation
study, in line with a growing body of literature (7–11).
Intuitively, sample-splitting or cross-fitting can be used to
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mitigate overfitting. If cross-fitting is not used, the same
data would be used twice for 2 different tasks—once for
estimating nuisance quantities (i.e., propensity scores and
outcome model predictions) and once for averaging over
them to form the estimator (8, 47). Mathematically, cross-
fitting (along with consistency of nuisance estimators, at
any rate) ensures that a so-called empirical process term
is asymptotically negligible—without sample-splitting, one
would need to rely on unverifiable assumptions about the
true model that may not hold with high-dimensional data
(59). Hence, complex machine learning methods should be
accompanied by sample-splitting or cross-fitting for effect
estimation.

Many machine learning methods, along with cross-
validation, sample-splitting, or cross-fitting procedures, often
rely on pseudo–random number generators to complete the
estimation procedure. With such procedures, reproducibility
can be attained by setting “seeds” that determine the exact
settings in which the pseudo–random number generators op-
erate. Unfortunately, this can make the results from a given
study highly dependent on the value of the selected seed,
particularly when cross-fitting is used. There are several
options available that reduce the extent to which results
depend upon a selected seed value. These include using a
higher number of folds for cross-fitting, repeating the cross-
fitting procedure iteratively in a given data set (8, 60), or,
if one is willing to make unverifiable assumptions (i.e., the
Donsker condition), avoiding cross-fitting entirely (59).

At present, the AIPW package relies on a single applica-
tion of cross-fitting, which may result in seed dependence.
Future versions of the package will include options for an
iterative cross-fitting procedure. However, users concerned
about seed dependence in the current package could select a
large number of cross-fitting folds to mitigate this potential
issue.

Theoretically, AIPW and TMLE estimators are asymp-
totically equivalent. Differences between the two arise only
because of finite sample differences. These relationships are
presented in Web Figures 2–5 with a sample size of 200
from 2,000 Monte Carlo samples. It also provides a degree
of validation for our AIPW package by comparing it with
existing, well-known, doubly robust R programs.

Our implementation of AIPW estimation is based on a
particularly well-studied estimator (12, 24, 50). However, it
is important to note that there are several different variations
of the AIPW estimator that are distinct from the one we
use. Some of these are known to perform better in certain
settings, such as when there are potential near-positivity
violations (36, 61). Our use of propensity score truncation
alleviates some of the concerns raised by such positivity
violations, yet researchers should be aware of the existence
of alternative AIPW estimation methods.

Future planned implementations for the AIPW package
include supporting categorical exposures by incorporating
missing-data mechanisms (17, 36) and an iterative cross-
fitting procedure (8, 60). The run time of the AIPW package
depends on the algorithms included in the stacked learner
and the implementation of stacking. Our preliminary (and
unvalidated) findings suggest that the sl3 package is faster
than SuperLearner (53). For convenience, we find that using

SuperLearner for small jobs and sl3 for more complex mod-
els tends to optimize run time (53). Furthermore, to optimize
run time, we have enabled use of parallel processing pack-
ages available in R. Given that the AIPW package is hosted
on GitHub (49), future maintenance (e.g., bug reporting) can
be requested on GitHub issues.

Altogether, doubly robust estimators are a powerful tool
for investigating cause-effect relationships with machine
learning methods. The novel AIPW package addresses
the limitations of existing programs implementing doubly
robust estimators and helps epidemiologists conduct causal
inference with flexible machine learning methods.
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