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The spread of the COVID-19 pandemic caused a tremendous impact on our societies, including changes in
household energy consumption. Using measured electricity use data from 500 homes in Ottawa, Canada,
this study applies changepoint analysis, descriptive statistics, k-means clustering, and the corresponding
change of electricity utility bills before and after COVID-19. Our analysis indicates that the average
household daily electricity consumption increased by about 12% in 2020 relative to 2019, about one-
third was due to warmer temperatures, with much of the rest due to the temperature-independent loads
(e.g., lighting and appliances). Additionally, the highest five peak loads corresponding to post-COVID are
significantly higher (15–20%) than peaks that occurred pre-COVID. The lockdown’s impact on household
electricity use is not consistent, and there are noticeable differences among different months, seasons,
and day types. Two clusters of household electricity use patterns emerged, with about one-third showing
significant increases during the pandemic and the remainder showing only minor changes. On the other
hand, in the summer, all customers’ electricity use profile patterns after the pandemic resemble the pat-
tern before the pandemic. Yet, there is a significant increase (from 16.3 to 29.1%) in daily demand after
COVID-19. Finally, the average increase in the utility bill post-COVID would be 9.71% if TOU rates were
used instead of the flat rate that was implemented as a subsidy to consumers.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

In March 2020, the World Health Organization declared COVID-
19, a disease caused by SARS-CoV-2 coronavirus, to be a global
pandemic [1]. Since the pandemic onset, researchers have increas-
ingly begun to investigate the impact of the COVID-19 outbreak on
health [2–4], economy [5,6], social well-being [7]. To contain the
pandemic, world governments mandated stringent measures
regarding building occupancy. The measures were ramped up from
social distancing to the ban of mass gatherings, mandatory closure
of non-essential business and even full curfew. Such measures
have led the global economy into one of its most severe recessions
since 1900 [8–10] as major financial and industrial markets wit-
ness a significant decline, international supply chains drop, borders
have closed, and tourism has paused. For example, the gross
domestic product (GDP) of the United States and the European
Union dropped by 34.3% and 12.1%, respectively, in the second
quarter of 2020 [11], while China’s GDP decreased 6.8% in the first
quarter of 2020, compared with the same period in the previous
year [12].
Notably, the imposed measures affect production activities and
people’s lifestyles and lead to substantial energy consumption
changes; over 80% of all global workplaces partly or fully closed
[13]. Global energy demand fell by 3.8% in the first quarter of
2020, compared with the previous year [14], even though there
was an increase in residential electricity demand [15]. Although
overall energy demand declined, countries across the world varied
in the degree to which they imposed policies to contain the virus.
Some imposed a full lockdown, while others set either a partial
curfew or requested their citizens to stay at home. This variance
in measures is reflected in the electricity systems, particularly in
electricity consumption profiles [16]. For example, France, India,
Spain, and the UK saw their consumption fall by nearly 15% during
lockdown periods. In China, energy usage dropped 6.5% in the first
quarter. At the height of its outbreak, Italy saw electricity demand
drop as much as 37% at times [17]. Unlike many other countries,
Sweden imposed far fewer restrictions on people with the recom-
mendation (but not enforcement) for people to physically distance
themselves [18]. In this regard, its energy consumption during the
pandemic was very similar to the pre-pandemic period.

Since the pandemic onset, several studies have investigated the
impact of imposed lockdown measures on overall electricity con-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2021.111280&domain=pdf
https://doi.org/10.1016/j.enbuild.2021.111280
https://doi.org/10.1016/j.enbuild.2021.111280
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enb


A. Abdeen, F. Kharvari, W. O’Brien et al. Energy & Buildings 250 (2021) 111280
sumption loads in different nations [19–22]. Zhong et al., [23]
reviewed the implications and challenges of COVID-19 for the elec-
tricity sector. They stated that increased uncertainty of electricity
demand posed more significant pressure on system operators.
Most recently, Ruan et al., [24] assessed the early impact of
COVID-19 on electricity consumption in the United States. While
the aggregate impact on electricity use has been quantified from
different views, the impact of the lockdowns on the household
level electricity consumption has yet to be studied extensively.
Segregating residential electricity profiles from overall electricity
demand is necessary to improve hourly load forecasts at scales rel-
evant to the operation and planning of energy utilities and
governments.

Mandatory stay-at-home lockdowns have caused residential
building residents to use more energy for their daily routine activ-
ities [22]. Many homes have been transformed into an office set-
ting for workers and into a classroom environment for students.
In other words, people use computers, laptops, lighting, and other
appliances at home that would typically have been used in their
offices and schools. Additionally, the limited availability and clo-
sure of outdoor entertainment activities have caused people to
look for alternatives within their households’ boundaries – often
leading to a significant increase in energy consumption.

Few studies have discussed the impact of lockdown measures
on the increase of household electricity consumption. For example,
UK statistics showed that midday residential energy consumption
increased by about 30% [25]. Previously, such spikes were present
in the mornings when people were usually preparing for work. In
the US, household electricity use increased by up to 8% during lock-
downs [26]. Austin Energy reported a 12% increase in residential
energy consumption in the second week after lockdown began
[27]. Aruga et al., [28] investigated how COVID-19 cases affected
Indian energy consumption in different regions. Edomah and Ndu-
lue [29] showed how a forced lockdown in Lagos, Nigeria lead to a
momentary transition in energy use and changes in electricity
demand patterns. Qarnain et al., [30] explored the most influential
energy consumption factors amid the COVID-19 pandemic in
Indian households. Using a survey-based analysis of 352 homes
in China, Cheshmehzangi [31] evaluated the impact of the
COVID-19 pandemic on household energy use. In Australia, com-
paring the energy consumption of 350,000 homes using two
weeks’ data (one before and one week after the lockdown) in
north-western Melbourne, the electricity consumption was 14%
higher during the lockdown’s first week [32]. Moreover, using
high-frequency electricity monitoring from 491 houses and inter-
views with 17 households in Queensland, Snow et al., [33] com-
pared changes in energy use before and during COVID-19
lockdown, quantifying the key drivers of changes in energy use
experienced by households during the lockdown. They found that
overall energy use among the majority of households monitored
decreased during lockdown versus prior, driven primarily by a
reduction in air conditioner use during lockdown due to the cold
weather. In Ireland, electricity used by households was found to
be 11%–20% higher during the lockdown [34]. A recent review
study by Krarti and Aldubyan [35] highlighted that the imposed
lockdown to address the COVID-19 pandemic during March-May
2020 period in three countries (Australia, UK, and USA) resulted
in a 11%–32% increase in the residential electricity demand. More
recently, in Canada, Rouleau and Gosselin [36] compared the elec-
tricity consumption data pre-and post- COVID-19 in a 40-dwelling
social housing building located in Quebec City. Their findings
reveal that electricity use in the middle of the day (9:00 to
17:00) increased by 46%, relative to the same month pre-COVID.
They observed that such an increase only occurred in the first
month of lockdown, which was not observed for the following
months (May, June, and July). Regarding space heating use,
2

they reported that no major change was observed during the
lockdown.

Although previous studies have provided several contributions
to the impact of lockdown measures on the increase of household
electricity consumption, most of those studies took top-down
approaches for entire regions or focused on single buildings.
Higher resolution data is needed to understand the behaviour
change of households. Such high-resolution data allows us better
to isolate the effect of COVID-19 on energy use relative to changes
caused by seasonal variation. Identifying and forecasting daily
electricity demands are vital for planning efficient electricity grid
operations, designing rates, and evaluating policies. Grid operators
rely on load forecasts that are highly dependent on the day of the
week and time of year, and weather forecasts. While most of the
load forecast uncertainty at these time scales is typically driven
by uncertainty in weather forecasting, behavioural changes result-
ing from the COVID-19 and their potential to continue beyond the
current pandemic are introducing new uncertainties.

In the future, several waves of SARS-CoV-2 outbreaks are pre-
dicted potentially to last until 2024 [37], and thus prolonged or
intermittent remote working is likely to be continued. Even with
the end of the COVID-19 outbreak, some COVID-19-induced elec-
tricity changes might continue their current energy consumption
patterns (or close to their current) as several companies have
announced plans to allow for widespread permanent teleworking
even as they begin to allow employees back into the office (e.g.,
Twitter and Square employees will have the option to permanently
work from home [38]).

Additionally, results from the Global Work-from-Home Experi-
ence Survey reports that 77% of the workforce say they want to
continue to work from home, at least weekly, when the pandemic
is over [39]. However, a recent literature review by O’Brien and Ali-
abadi 2020 [40] stated that quantifying household energy impact
of teleworking using detailed power metering has not been stud-
ied. In short, the impact of telework on household energy use still
appears uncertain. Taking this lens, the impact of the COVID-19
pandemic on electricity transitions presents a unique opportunity
to analyze in real-time the potential impact of teleworking on
household electricity consumption.

The remainder of this paper is structured as follows. In the next
section, a brief overview of the major events since the outbreak
started in Ontario is presented, providing earlier insight into the
impacts of COVID-19 on electricity demand and system operations.
It then goes on to the proposed research questions. The following
section describes in more detail the data used in our study and
our applied methodology to demonstrate the pre- and post-
COVID-19 differences of households’ electricity consumption. Sec-
tion 4 presents the results that answer the proposed research ques-
tions. A comparison with the current literature along with the
study’s limitations are discussed in section 5, and finally the paper
is concluded.
2. The positioning of the study

In this research, we aim to quantify the impacts of the COVID-
19 lockdown on the household’s electricity consumption taking
an Ontario perspective as a case study. Studying changes in energy
consumption patterns under lockdown lays the groundwork to
forecast how energy could be consumed in buildings if telework
becomes popular in the future. Like several nations worldwide,
the COVID-19 pandemic has had widespread economic and soci-
etal impacts across Ontario, Canada. Fig. 1 shows a timeline of
major events since the outbreak started in Ontario.

The Independent Electricity System Operator (IESO), which
operates the electricity market in all of Ontario (including Ottawa),



Fig. 1. Timeline of major events since the outbreak started in Ontario.
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provided earlier insight into the impacts of COVID-19 on electricity
demand and system operations. As shown in Fig. 2, there were
notable declines in consumption patterns relative to previous years
(6% to 18% decline of typical demand across all hours). On the other
hand, residential electricity use has increased as people spend
much more time at home since the virus-induced restrictions that
have shut down schools and non-essential businesses, and work-
from-home measures began (Fig. 3).

It is worth mentioning that the Government of Ontario has pro-
vided immediate electricity rate relief in terms of the time-of-use
(TOU) rates to support families and relieve the financial burdens
of homeowners. Starting from 24 March, utilities suspended TOU
electricity rates till the end of October, holding electricity prices
to the off-peak rate of 10.1 ₵/kWh [41] (compared to 14.4 ₵/
kWh for mid-day peak; 11:00 to 17:00, and 20.8 ₵/kWh for on-
peak; 7:00 to 11:00 on weekdays and 17:00 to 19:00 on weekends
[42]). With such subsidies, customers may lose the economic
incentive to shift the energy use timing associated with cooking,
laundry, heating, etc.

Rather than only reporting the changes to energy use that have
occurred, as per existing published data from the energy sector, our
research aims to additionally quantify the impacts of the COVID-19
Fig. 2. Impacts of COVID-19 on Ontario’s
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outbreak on the household’s electricity consumption profiles at
different temporal scales. The paper provides insight into how cus-
tomers have responded to and managed life under lockdown by
answering the following research questions:

Q1: How sensitive are the daily electricity consumption values
after COVID-19 to outdoor temperature?

Q2: How did peak electrical loads change after COVID-19?
Q3: How did the households’ electricity profiles change after

COVID-19?
Q3 seeks to determine how households’ electricity demand

patterns changed during COVID-19 compared to before. It is
important to determine such a change during different time
periods. Thus, this question has been broken down into four
sub-questions:

Q3-a: How did the monthly electricity profiles change after the
pandemic?

Q3-b: How did the seasonal electricity profiles change after the
pandemic?

Q3-c: How did the weekday and weekend electricity profiles
change in each season?

Q3-d: What are the intra-daily (i.e., day of the week) variations
in electricity demand pre-and post-COVID-19?
electricity demand, reported by IESO.



Fig. 3. Impact of COVID-19 on Ontario’s electricity demand from the residential sector, reported by IESO.
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Q4: Do all households/customers have a similar profile, or are
there discrete groups? And how did these customers’ profile pat-
terns change post-COVID-19?

Q5: How would household energy bills be affected by the TOU
vs. flat rate?

Q5 seeks to quantify the impact of applying the flat rates on
electricity usage instead of TOU rates. Accordingly, this question
has been broken down into three sub-questions:

Q5-a: What would the average electricity bill have been if the
Government of Ontario kept the time of use pricing versus flat
rate?

Q5-b: What fraction of homes’ bills would increase vs. decrease
if TOU pricing was kept?

Q5-c: What fraction of energy use occurs during each period
(low, medium, high) before and after the COVID-19 pandemic?

To address our research questions, we captured the impact of
seasonal variability and outdoor air temperature by calculating
the heating and cooling degree days. Heating and cooling degree
days provide a powerful yet simple way of analyzing weather-
related energy consumption [43]. Thus, many researchers com-
monly use these to estimate the impact of outdoor conditions on
building energy use [44–46]. In order to isolate the effect of out-
door air temperature effects between periods (pre-and post-
COVID-19), we applied changepoint model. While changepoint
analysis is a common building energy modelling approach in prac-
tice [47], it neglects solar radiation and latent loads, both of which
affect cooling loads for air conditioners. We then calculated the
total hourly electrical during the pre-COVID and the same period
in post-COVID time to capture how peak electrical loads changed
after COVID-19.

Throughout the literature, most of the scientific knowledge on
reporting what changes to energy use have occurred owing to
the pandemic is based on aggregated data for entire regions [48]
or focused on single buildings [24,33,36] through short periods
after the pandemic has started when many people were not ready
enough for large-scale remote work implementation. Accurately
tracking the energy consumption at building levels demands con-
sidering temporal factors; in short, analyzing energy use at differ-
ent periods is essential. In this regard, a comparison between
4

average electricity daily profile pre-and post-COVID-19 was con-
ducted for different temporal level (e.g., season, month, day type)
to identify how did the households’ electricity profiles change after
COVID-19. In this paper, we supplement understandings of COVID-
19 related changes to electricity demand with detailed high-
frequency household level contributes to filling the research gap
and isolate the effect of COVID-19 on energy use relative to
changes caused by seasonal and day type variations.

One of the key contributions of this study, compared to the lit-
erature, is detecting customers’ energy-related behavioral changes
due to the COVID-19 measures. There is no research literature
available that discusses the individual customers’ energy-related
behavior due to the COVID-19 measures. In our paper, we applied
the k-means clustering to segment household’s load profiles into
clusters/groups by pattern and consequently detecting customers’
energy-related behavioral changes. The k-means algorithm is one
of the most popular partitional clustering methods for its efficiency
and simplicity [49]. Throughout the literature, there are numerous
different clustering methods for handling time series data; how-
ever, usually, they can be grouped under the hierarchical and par-
titional methods [50]. A hierarchical clustering method works by
grouping data objects into a tree of clusters. However, such a
method is more susceptible to outliers within the data and has dif-
ficulty dealing with clusters of different sizes [51]. In contrast, par-
titional clustering (e.g., as the k-means, k-medoid and self-
organizing maps) divides the data into a predefined number of
non-overlapping clusters [52]. Finally, to quantify how would
household energy bills be changed due to the COVID-19 measures
under different electricity rates (time-of-use rates vs. flat rate), the
average electricity usage was calculated for each home using those
rates during the COVID-19 pandemic. More details about each
method to answer the aforementioned research questions are dis-
cussed in the following sections.
3. Material and methods

Data used for this study was obtained from Hydro Ottawa Hold-
ing Inc., a regulated electricity local distribution company operat-
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ing in Ottawa [53]. The original data included two years of hourly
measured electricity use data (1 August 2018 to 30 August 2020)
for 500 residential customers located in Ottawa, Ontario. In this
regard, each customer was represented within the dataset with
25 months of hourly electrical energy use values, i.e., 17,520 dis-
tinct time points. Note that a limitation of the data is the hourly
resolution, which means peak loads may be slightly different than
these results due to sub-hourly fluctuations. Moreover, being lim-
ited to Ottawa, makes these findings less generalizable to other
Canadian regions. In particular, Ottawa’s economy significantly
centers on two major sectors - high technology and the federal
government [54]. Thus, the population tends to be knowledge-
based workers (e.g., government bureaucrats, engineers, educators,
researchers, software developers) whose work can be performed
from home. Additionally, while the homes were anonymized, they
are all paying customers. Thus, the dataset will tend to be biassed
towards wealthier and larger households (e.g., it does not include
those for which electricity is subsidized due to social housing or
for which the metering is at the building level, rather than home
level). However, the limited geography of the sample provides
some control over weather and climate and is dominated by a par-
ticular building typology (i.e., mostly wood-framed low-rise
detached or townhomes with natural gas heating and a possibility
of air-conditioning).

Before starting our analysis, the data were preprocessed (e.g.,
cleaning, transformation, normalization). First, data cleaning was
performed by detecting and removing homes if: the data have con-
secutive missing hourly values, missing value, or the stagnant/fro-
zen values (the repetition of the same value for consecutive
observations). The time-series data did not indicate any missing
and frozen values, after passing through a data quality check. How-
ever, two meters had more than 200 consecutive missing hourly
values. As such, the dataset was reduced from the initial 500
sub-meters to 498 m. Given that the electricity meter data used
in our study are used for billing, they required by law to meet strin-
gent requirements to ensure they measure accurately [55]. Prior to
the clustering step (section 3.4), the data is normalized to improve
the data integrity and emphasize the load shape patterns rather
than the absolute amplitude value.

For the sake of comparison, the procedures followed to start
from separating the whole data into two groups (pre-and post-
COVID). Thus, we have defined 25 March 2020 as the beginning
of the ‘‘COVID-19 period” for this study, meaning that we have
compared electricity use before and after that date. Using these
two sets of data, we gradually applied more conducive analysis,
described in the following section, to answer the aforementioned
research question. Fig. 4 provides a flowchart of the analysis
progression.

3.1. Seasonal variability and the influence of temperature

To answer Q1, an essential factor that needs to be considered
while analyzing household electricity consumption is the impact
of seasonal variability and the influence of outdoor air tempera-
ture. In this regard, the heating and cooling degree days (base tem-
perature 18 �C) were calculated for Ottawa from a local weather
station (see Fig. 5). They indicate that summer 2020 was somewhat
warmer than 2019, though note that the absolute differences are
not very significant. These results should be interpreted in the con-
text that Ottawa’s annual number of cooling degree days has
spanned 165 to 394 in the past 25 years [56].

Changepoint analysis was applied to each home’s electricity
data to better understand the impact of outdoor temperature on
electricity. The electricity dataset does not include metadata about
the HVAC equipment, though this can be somewhat inferred from
the data. Most homes in Ottawa are heated using natural gas, thus
5

the changepoint analysis is primarily relevant to the cooling season
(since air conditioners use electricity). However, given that the
dataset only includes spring and summer post-COVID, this is not
a major shortcoming. The changepoint analysis allowed the effect
of outdoor air temperature effects between years to be isolated.

3.2. Peak load analysis

To answer Q2, we investigated the sum of the electrical loads
for the 498 houses. Given that Ottawa and Ontario peak electrical
loads on the grid occur in the summer as a result of high cool-
ing loads [57], the impact of COVID-19 related behaviors on electri-
cal loads is of particular interest. Thus, initially, the total hourly
electrical loads for the period April 1 to August 31 in 2019 (pre-
COVID) and the same period in 2020 (post-COVID) were calculated.
Additionally, five peak loads for each year and the corresponding
temperature and time were identified.

3.3. Electricity load profiles change

To answer Q3, we created the average daily profile for each
household/customer. Then, all households were averaged over
each hour to create hourly profiles at two different periods (pre-
and post-COVID-19) and gradually moving towards a more
detailed data analysis by segmenting each data group for different
detail levels: i) monthly and seasonal profiles, ii) differentiate the
weekdays and weekends load profile, and iii) intra-daily variations
in electricity demand (i.e., day of the week). A comparison between
average electricity daily profile pre-and post-COVID-19 was con-
ducted for each generated level (e.g., season, month, day type).

3.4. Cluster analysis

Herein, the goal of clustering is to identify and categorize the
customers with similar consumption patterns and to compare
how the electricity profile pattern of each group/cluster changed
post-COVID-19 relative to pre-COVID time (to answer Q4). To that
end, we applied the k-means clustering, an unsupervised machine
learning algorithm [34], to segment each seasonal household’s load
profiles (spring and summer seasons post-COVID-19) into clus-
ters/groups by pattern (profile shape). In this analysis, we used
the silhouette coefficient to determine the optimal number of clus-
ters. The main advantage of silhouette is that its calculation starts
from each data point, and average it out for all the data implicated
to get the silhouette score [49]. This metric is one of the most effi-
cient and popular measures to determine the optimal number of
clusters in several problems [58–61]. After obtaining the cluster
profiles for each season, we compared the same customers/clus-
ter’s average load profile against their usual load pattern pre-
COVID-19 to detect customers’ behaviour change.

3.5. Analysis of time-of-use (TOU) and flat rates

Prior to the pandemic, Hydro Ottawa charged its electricity con-
sumers based on the time-of-use (TOU) rates which varied based
on off-, mid-, and on-peak hour of usage [42]. However, a flat rate
of 10.1 cents per kWh was applied after March 25, 2020, for all
consumers during all hours of the day [41]. The purpose of TOU
analysis is to quantify the impact of applying the flat rates on elec-
tricity usage instead of TOU rates.

Fig. 6 shows the TOU prices for off-, mid-, and on-peak hours of
usage and weekends in the summer and winter seasons. It should
be noted that Hydro Ottawa charges the off-peak rate on entire
weekend. To answer Q5-a, the average electricity usage was calcu-
lated from the hourly electricity usage of 498 households and it
was multiplied by the corresponding TOU time using the data from



Fig. 4. Flowchart of the method to analyze the behaviour and the impact of COVID-19 restrictions on household electricity data.

Fig. 5. The heating (left) and cooling (right) degree days between 2018, 2019, and 2020.

Fig. 6. Time-of-use (TOU) structure for weekdays and weekends.
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April 1 to August 31, 2020. Note that the analysis excludes fixed
fees for delivery and other minor charges. For Q5-b, the electricity
usage was calculated for each home based on TOU and flat rates
6

during the COVID-19 pandemic using the same dataset. Then, the
numbers of homes that would have higher bills with TOU rates
were counted by comparing TOU and flat rates for their bills. For
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Q5-c, the fraction of electricity usage for TOU periods was calcu-
lated for pre- and post-COVID-19 pandemic based on the average
electricity usage of 498 households using data from April 1 to
August 31 for 2019 and 2020.

4. Results

4.1. Change-point model results

Given this research’s main aim (quantifying the impacts of the
COVID-19 lockdown on the household’s electricity consumption),
hourly electricity demand data was analyzed at two different peri-
ods (pre-and post-COVID-19). Initially, we provide an overview of
the average daily energy use changes, divided between pre-and
post-lockdown periods. Fig. 7 compares the distribution of average
daily consumption for the dataset after the lockdown to that pre-
ceded the lockdown, giving an initial sense of the extent of
change/increase in the electricity demand at the household level.
Before the lockdown, the average household daily electricity con-
sumption is 19.70 kWh, relative to 22.1 kWh after the lockdown
(12.1% increase). Table 1 summarizes the results of the previous
studies that quantified the impact of COVID-19-related lockdowns
on electricity demand for the residential building. The trends pre-
sented in the cited papers are qualitatively consistent with the
observations obtained from the research presented in this article.
The quantitative differences attribute to local conditions (e.g., cli-
matic conditions and average living standards, degree of lockdown
measures, household size, etc.), which impact the way energy is
used by occupants.

The data were fit to a piecewise linear equation as shown in
Fig. 8. Two main parameters of interest were extracted: the magni-
tude of the horizontal segment and the slope as the outdoor tem-
perature rises. The former is indicative of the electricity used by
the homes when there is little heating or cooling demand. The lat-
ter indicates the sensitivity of the electricity use to warmer tem-
peratures. In general, a steeper slope suggests that the home uses
more electricity for air conditioning as outdoor temperatures
increase. The slope may also be affected by other behaviours, such
as avoiding using the oven when conditions are warm. Moreover,
Fig. 7. Distribution of average daily consumption for the dat
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we were interested to see how these parameters change between
before and after COVID. We hypothesized that both values would
increase in value for a given home since base loads and sensitivity
to warm temperatures would likely increase due to increased
occupancy and electricity-consuming activities.

Given that Ottawa is temperate enough that air-conditioning in
homes is not necessarily the norm, we hypothesized that two dis-
tinct groups would emerge: homes with air-conditioning and
homes without. Those without would be expected to have a
near-zero slope. Based on the 2015 Survey of Household Energy
Use (SHEU) [63], over 85% of households in Ontario had an air-
conditioning system.

First, we checked if there are two distinct groups of houses:
those with central air-conditioners and those without. Fig. 9 shows
the distribution of S2 values (the slope of the fit above temperature
T2). The figure shows a continuous distribution for the variable,
thus suggesting that it is difficult to distinguish homes with air-
conditioning from those without. This may be due to sporadic
use of central or window air-conditioners and the use of fans.
There are other pieces of equipment that are seasonally affected,
such as swimming pool pumps and refrigerators. Moreover, the
summer break for students coincides with the warmest months.
Thus, the presence of more occupants can increase overall electric-
ity for plug-in equipment and large appliances. About 5% of S2 val-
ues in both years are negative, which could be a result of occupants
taking vacation in the summer or avoiding high-power electric
equipment for the sake of reducing internal heat gains that could
lead to discomfort.

Though Fig. 9 suggests a similar distribution for S2 values for the
sample of 498 homes between years, we performed a paired sam-
ple T-test which similarly indicates no significant difference
(p greater than 0.1). This suggests that few, if any homes installed
and used air-conditioners for the first time in 2020 (whether or not
because of COVID-related factors). In an analysis of occupant-
related behaviour in Canadian households, Abdeen et al., [64]
found that the cooling setpoints are typically varied by less than
1.5 �C during a day, thus suggesting that most occupants do not
actively engage with their thermostat regularly. Thus, it is entirely
aset after the lockdown to that preceded the lockdown.



Table 1
Summary of the previous studies that quantified the impact of COVID-19-related lockdowns on electricity demand for the residential building.

Study Location Study sample Impact on residential electricity demand Period of analysis

Austin Energy [27] Austin,
USA

NA 12% increase in residential electricity demand in the second week of
lockdown

One week before and after
lockdown

Bulb Energy Ltd. [25] UK more than 2000
customer smart
meters

Households are using 17% more electricity since the UK went into
lockdown.

NA

Burleyson et al., [62] Texas,
USA

113 homes The average daily residential demand during lockdown was � 20%
higher than in pre-lockdown.

Three weeks after staying
home order vs same periods of
2017–2019

Jemena, a distribution
network service provider
in Melbourne [32]

Australia NA the electricity consumption was 14% higher during the lockdown’s
week

One week before (1–7 March
2020) and after (22–28 March)
lockdown

Savills-Pinergy Energy
Monitor [34]

Ireland NA Overall consumption in family homes is up approximately 11%, with
some up by over 20%

two weeks before (1–14 March
2020) and after (25–29 March)
lockdown

Snow et al., [33] Australia 491 houses Overall energy use among most households decreased during
lockdown versus prior, driven primarily by a reduction in air
conditioner use during the lockdown as the weather cooled.

The dataset includes data from
February to May 2020.

Fig. 8. General change point model, showing five parameters (a, T1, T2, S1, and S2)
and hypothesized profile for homes without air-conditioning.

Fig. 9. Distribution of change point analysis parameter S2 pre- and post-COVID.

Fig. 10. Distribution of change point analysis parameter a pre- and post-COVID.
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possible that many households maintained similar setpoints and
setpoint schedules between the years.

The other parameter of interest for this analysis is the base load,
parameter a, which is designed to be independent of temperature
(i.e., the average electricity use of the home when the outdoor tem-
perature is high enough to not require heating and cold enough not
to require air conditioning). Thus, this parameter can be used to
8

isolate plug-in equipment, water heating (for electric water hea-
ters), lighting, and major appliances.

We hypothesized that the values of a would increase post-
COVID because people are more likely to be present, use work
and entertainment-related equipment, and cook more. Similar to
above, we plotted the distribution of the a values. Fig. 10 shows
a small but perceptible increase in the values post-COVID. In this
case, the mean value of a increased from 0.77 kW to 0.85 kW.
71% of homes had an increase in value post COVID, with the
remainder having a decrease. Moreover, the paired sample T-test
indicates a significant difference between years (p less than 0.001).

During the April 1 to August 31 analysis period, total electricity
for the homes increased from 1,637 MWh in 2019 to 1,888 MWh in
2020. According to the changepoint model, approximately 153
MWh of the 251 MWh increase in electricity use post COVID is a
result of this increase in base load. Thus, we conclude that the most
significant cause for the increase in electricity use from COVID is
from increased use of plug-in equipment, lighting, and major appli-
ances. Application of the post-COVID outdoor air temperature data
to the change-point model from the pre-COVID year indicates that
the warmer weather can account for 84 MWh. Thus, we conclude
that the two main causes for an increase in household electricity
post COVID are an increase in base load (parameter a) and warmer
weather in the cooling season.

We note that the value of the two studied parameters cannot
entirely explain the increase in electricity use (14 of 251 MWh)



Table 2
The five peak loads that occurred in pre-and post-COVID period.

Pre-COVID (2019)

Load (kW) Date Time Outdoor temperature (�C)

1046 Monday, July 20 15:00 28.3
1045 Monday, July 20 16:00 28.9
1019 Monday, July 20 14:00 24.2
1001 Sunday, July 4 18:00 30.7
997 Monday, July 20 18:00 30.6
Post-COVID (2020)
Load (kW) Date Time Outdoor temperature (�C)
1183 Friday, July 10 16:00 31.0
1181 Friday, July 10 17:00 31.6
1174 Friday, July 10 18:00 33.7
1169 Sunday, July 26 17:00 29.3
1158 Thursday, July 9 17:00 29.9
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between years. Changepoint analysis has numerous limitations,
such as neglecting solar radiation and relative humidity – both of
which can affect conditioning loads. Moreover, time of day, length
of day (which may affect lighting), and seasonable occupant behav-
iors are largely neglected. Finally, water supply temperature into
the homes changes seasonally and some homes likely have electric
water heaters. However, the analysis yields new insights that
would not be apparent from the other analysis and it accounts
for year-to-year climate differences.

4.2. Peak load results

Fig. 11 shows the ranked total hourly electrical loads from April
1 to August 31 in 2019 (pre-COVID) and the same period in 2020
(post-COVID). As shown in the figure, the difference between
post-COVID loads at the higher end is approximately 15 to 20%
higher than pre-COVID.

Table 2 shows the five peak loads each year (2019 for pre-
COVID and 2020 for post-COVID) and the corresponding tempera-
ture and time. As expected, the peak load across the homes occurs
late afternoon on very warm days. While the post-COVID peaks
occur during slightly warmer temperatures, the peaks are signifi-
cantly (15–20%) higher.

4.3. Electricity load profiles visualization

Each month of the post-COVID electricity use profiles is com-
pared with its corresponding month before the lockdown (e.g.,
April 2020 with the average of April 2019 and 2018). Fig. 12 dis-
plays the average daily electricity consumption profile of 498 cus-
tomers for five months (from April to August), without
distinguishing between weekdays and weekends, for the pre-
and-post COVID-19 periods.

In terms of temporal patterns and magnitude, varying con-
sumption levels can be seen among different months of a year.
These variations highlight the difference in residential seasonal
electricity use caused by weather-driven space conditioning loads,
Fig. 11. Total hourly electrical loads for the period April 1 to August 31 in 2019 (pre-CO
difference between the curves is provided for reference.
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daylight hours influenced by sunrise and sunset times, and cus-
tomer behaviour change.

The average daily electrical consumption reached a value of
20.4 kWh in the first month of the lockdown (April) compared to
19.1 kWh of the same month before the lockdown, with a 6.8%
increase. It appears that the first month of the lockdown led to a
slight increase in the average daily electrical consumption as many
organizations were not ready enough for large-scale remote work
implementation (e.g., lack of technology infrastructure). In May,
the second month of lockdown, the average daily electrical con-
sumption was 21.4 kWh, compared to 17.2 kWh before the lock-
down (22.6% increase). In June and July, the average daily
electrical consumption reached 25.0 kWh (26.3% increase) and
32.2 kWh (13.7% increase). However, in August, when the adults
and kids started their summer break, the average daily electrical
consumption reached 25.1 kWh, compared to 24.2 kWh before
the lockdown, with a 3.7% increase.

The daily electricity demand had an overall increasing trend
across different months after the statewide stay-at-home order.
However, there is temporal and spatial variability in the consump-
tion patterns. Generally, the daily profiles’ flattening is noticeable
during the lockdown, with an evening peak around 18:00 which
VID) and the same period in 2020 (post-COVID), ranked from lowest to highest. The



Fig. 12. Monthly average load profiles curves, (red) for pre-COVID time and (blue) for post-COVID. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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contrasts with April and May’s average daily pattern before the
lockdown, where two sharp peaks occur. One is in the morning
as household occupants awaken and start to use electrical appli-
ances, and a second is in the evening when occupants return home,
reflecting domestic routines and mealtimes. On the other hand, the
lockdown did not significantly change the household profile shape
throughout July and August. This might be due to the air-
conditioning loads during the warmer summer season and the
presence of more occupants when the adults and kids started their
summer break.

After creating average profiles for each five months, we devel-
oped average load profiles split by seasons (spring: 21st March
to 20th June, summer: 21st June to 20th August), where the week-
days and weekends load profiles per each month are separated to
detect behaviour changes between summer and spring seasons
(see Fig. 13). Overall, the seasonal impact on the electricity load
profile indicates more electricity being consumed over the late
morning and early afternoon periods during the summer. Such
an increase is most likely related to increased occupancy over
the daytime period during the summer months and the increased
cycling of cold appliances.

For the daily profiles before the lockdown, the weekday profile
of spring season has a pronounced morning peak around 7:00 with
a relative decrease in mid-day demand followed by a high evening
peak around 20:00 before falling back down during late evening
hours. Contrary to the weekend profile, which lacks the morning
peak (as occupants get up at different times due to lower work
or schooling commitment) and a relative decrease in mid-day
demand until a prolonged peak of consumption is reached in the
evening. Given the summer season, a change in profile pattern dur-
ing early morning and mid-day is apparent, which could corre-
spond to occupancy changes (e.g., children being at home during
school holidays). The main difference between weekday and week-
end profiles in the summer season is the small morning peak’s
absence with a steeper increase in the latter’s mid-day demand.
10
Overall, after the lockdown, it can be seen that the weekday
demand was not dissimilar from the weekend profile, with a much
smaller peak at lunchtime in the spring season.

After creating the average daily profile on a monthly and sea-
sonal basis, a more detailed look at the data is done by disaggregat-
ing the load patterns per day of the week for different seasons (see
Fig. 14). On a daily basis, the profile pattern can change signifi-
cantly from one day to the next in terms of magnitudes of electric-
ity demand and the time at which it is used. By separating the
demand profile by days of the week, the following observations
can be made:

� Before the lockdown, a clear distinction can be shown between
weekend and weekday profiles during the spring season. From
Monday to Friday, occupants tend to use electricity earlier in
the morning (from 5:00 to 7:00), most likely due to employ-
ment and schooling commitments. A pronounced increase is
also observed during the evening after occupants return home
or school. Friday profile observed a relatively smaller peak in
the evening than the other weekdays, suggesting that most
occupants are out of the home during the Friday night. There
is an absence of morning peak in the weekend profiles with a
relative increase in mid-day demand until a prolonged peak of
consumption is reached in the evening. Monday and Sunday
show the highest demand throughout the weekdays and week-
ends, respectively.

� During the spring season after the lockdown, overall, weekday
profile patterns were not dissimilar from the weekend profiles.
All weekdays lack the morning peak where occupants tend to
start their remote work at 8:00 with a gradual increase in
mid-day demand followed by a typical prolonged evening peak
around evening as usual. Monday observed lower electricity
demand than the rest of the weekdays. However, before the
lockdown, the same day shows the highest demand throughout
the weekdays.



Fig. 13. Seasonal average load profiles pre-COVID time (left) and post-COVID (right).

Fig. 14. Averaged hourly electricity profiles of seven days within the summer season (left) and spring season (right).
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� During the summer season before the lockdown, the weekday
(Mon-Fri) profile patterns were similar to the weekend. The
main difference is that the weekend (Sat-Sun) profiles show
more electricity demand during the mid-day. Like the spring
season before the lockdown, Monday and Sunday had the high-
est demand throughout the weekdays and weekends,
respectively.

� During the summer season after the lockdown, the observed
mid-day demand of the weekend profiles is no longer character-
istic. Additionally, since occupants began working from home
and schools shut, the typical morning electricity peak flattened
out during the weekdays. In this regard, it can be seen that the
weekday profile patterns were not dissimilar from the week-
ends, with the lowest demand observed on Wednesdays and
Thursdays.
11
4.4. Determining distinctive clusters within seasons

We applied the silhouette method to determine the optimal
number of clusters k in each post-COVID season. Each season has
two clusters that represent seasonal household electricity demand.
That is, every home in each season falls in one of two groups. As an
example, Fig. 15 shows the relationship between the silhouette
with and number of clusters representing the households’ electric-
ity profile during the spring season post-COVID-19.

This section’s central focus is temporal variation in electricity
use (i.e., profile pattern) rather than magnitude. Therefore, we nor-
malized the average daily profile shape by rescaling the data from
its original range to the maximum and minimum for the time
range (24 hourly values) for each meter/customer data set so that
all home profiles would be on a fractional 0 to 1 scale. In this
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regard, the k-means clustering algorithm was applied to the nor-
malized seasonal profiles to extract each group’s consumption
behaviours. Note that we applied the clustering algorithm to each
season (spring and summer) post-COVID-19 independently. Coin-
cidentally, the percentage of customers belongs to each cluster is
similar between seasons. Fig. 16 shows the normalized profiles
clustered into groups as well as the cluster mean.

Spring cluster 1 represents 36.3% of the total examined cus-
tomers that have an overall increasing trend followed by a pro-
nounced evening peak at 21:00, somewhat later than pre-COVID
time. Cluster 2 (63.7% of the households), on the other hand, tends
to start their daily routine earlier than cluster 1 with an absence of
morning peak. However, cluster 2 exhibits two peaks, one in the
afternoon followed by a relative decrease in demand until the sec-
ond peak in the evening at 17:00.

Summer cluster 1 (63.7% of the households) has a sharp increas-
ing trend starting from 5:00 till afternoon followed by a slight
increase during the mid-day demand. This cluster starts its evening
peak at 17:00. Given to cluster 2 (36.4% of the households), cus-
tomers of this cluster tend on average to start their day later than
cluster 1 with an absence of morning peak. Then, there is an overall
increasing trend within the day till reaching the evening peak at
21:00.

To detect customers’ behaviour change due to the pandemic, we
compared the average daily profiles of each cluster (using the same
customers) after the lockdown against the ones before the lock-
down. For example, a possible finding is that two clusters emerge
post-COVID: a group who continues working out of their homes
(e.g., front-line workers) and uses a similar amount of electricity,
and a second group start working from home and use more elec-
tricity – particularly during the day. In our analysis, we used the
same customers of each group and compared their average daily
profiles after the lockdown against the ones before the lockdown.
Figs. 17-18 compare the daily profile of the two clusters between
pre-and post-COVID �19 within different seasons.

In the spring season, cluster 1 (36.3%) profile changed signifi-
cantly from pre- to post-COVID-19. Before the lockdown, this clus-
ter has an apparent morning peak at 7:00 due to employment and
schooling commitments. After the morning peak, the homes main-
tained a relatively fixed level of power draw till 14:00, suggesting
that there is little or no activity within the household at these
times than other times of the day. Starting from 14:00, the demand
Fig. 15. Determining the optimum number of c
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starts to increase sharply till the evening peak at 20:00 when occu-
pants return home, reflecting domestic routines and mealtimes.
After the lockdown, the observed morning peak no longer exists
as occupants working from home and schools shut. In this sense,
there is a gradual increase in mid-day demand followed by a typ-
ical prolonged evening peak around evening as usual.

On the other hand, the profile pattern of cluster 2 (63.7%) exhib-
ited a slight change from pre- to post-COVID-19. The usual morn-
ing electricity peak has flattened out during the day till a weak
peak afternoon. The main difference between the pre- and post-
COVID-19 patterns is that the former has a prolonged evening peak
from 17:00 to 20:00 before falling back down during late evening
hours.

Given to the summer season, the profile pattern of cluster 1
(36.3%) before the pandemic closely matches the pattern after
the pandemic. Nevertheless, there is a 16.3% increase of daily
demand relative to the pre-COVID-19 time in terms of consump-
tion magnitude. There are several causes behind such an increase.
For example, several households had to adapt additional comput-
ers and other office equipment such as printers and monitors for
teleworking or home-schooling. Also, additional time spent
indoors because of imposed restrictions leads to changing comfort
requirements (e.g., decreasing cooling setpoint temperature).

On the other hand, there is a slight difference in the profile pat-
tern of customers belongs to cluster 2. Before the lockdown, this
cluster has a small morning peak at 7:00 followed by a gradual
increase till reaching a pronounced evening peak at 20:00. Like
cluster 1, there is a 29.1% increase in daily demand relative to
pre-COVID-19 time. Table 3 summarizes the characteristics of each
cluster pre-and post- COVID-19.

4.5. TOU and flat rates results

As shown in Fig. 19, if TOU rates were applied to the post-COVID
period for the 498 studied homes, the minimum increase in the
average bill would be in August (8.23%) while the maximumwould
be in July (11.53%). Meanwhile, the average increase would be
9.71% by implementing the TOU rates instead of the flat rate.
According to Fig. 19, the maximum increase in bills for an individ-
ual if TOU pricing was used is slightly less than 20%. All but two of
the 498 homes’ electricity bills would increase TOU pricing had
been in place. Note that monthly bills include some fixed charges
lusters for spring season post-COVID time.



Fig. 16. Normalized load profile curve of each of the 2 clusters, (left) spring season and (right) summer season.

Fig. 17. Load profile comparison for the 2 clusters between pre-and-post COVID-19 within spring season.

Fig. 18. Load profile comparison for the 2 clusters between pre-and-post COVID-19 within summer season.
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that are independent of usage. These are not included in the
analysis.

Fig. 20 demonstrates only a slight change is observed in the
average fraction of electricity usage during TOU hours, with the
13
fraction of hours for the on-peak electricity usage increasing
slightly after the pandemic. While daily habits clearly changed pro-
foundly for many people, this result may give some indication of
the extent to which the relaxation of TOU pricing would affect peo-



Table 3
Clustering analysis results showing the behaviour changes within different times.

cluster peak
type

spring season summer season

pre-COVID post-COVID pre-COVID post-COVID

cluster
1

morning apparent morning peak at 7:00 flatten morning peak flatten morning peak flatten morning peak
mid-day maintained a relatively fixed level of

power draw
gradual increase in mid-day demand gradual increase in mid-day

demand
gradual increase in mid-day
demand

evening evening peak at 20:00 evening peak at 20:00 evening peak at 17:00 evening peak at 17:00
cluster

2
morning lacks morning peak flatten morning peak small morning peak at 7:00 flatten morning peak
mid-day small afternoon peak small afternoon peak gradual increase in mid-day

demand
gradual increase in mid-day
demand

evening evening peak at 17:00 prolonged evening peak from 17:00
to 20:00

evening peak at 20:00 evening peak at 20:00

Fig. 19. Monthly electricity bills during the pandemic with the flat and TOU rates based on the average of 498 homes (left) and the distribution of each house based on the
difference in their electricity bills with the TOU and flat rates during the pandemic (right).

Fig. 20. Comparison of the average fraction of electricity usage in off-, mid-, and on-
peak hours before and after the pandemic.
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ples’ behaviours. This is in accordance with previous studies and
reports that showed compelling evidence that TOU rates would
shift the electricity consumption to off-peak hours [65–67]. More-
14
over, Rowlands and Furst [68] showed that the average impact of
changing electricity rates from a flat two-tier system to TOU was
less than 0.25%. The present study suggests shifting from TOU to
flat rates favoured the consumers substantially.
5. Discussion

Generally, the imposed measures in response to the COVID-19
pandemic led to household electricity use changes as stated by sev-
eral researchers. However, most of the scientific knowledge on this
topic so far is based on aggregated data, without measured data at
the household level. For example, using the aggregated data of
about 7000 dwellings/flats in Warsaw, Bielecki et al., [48] demon-
strated how the average daily energy demand profiles changed
during early morning and mid-day amid the COVID-19 pandemic
compared to the analogous period of the year before the pandemic.
Other studies reported the impact of the imposed lockdown mea-
sures on overall electricity consumption loads in different nations
[19–21]. Rather than only reporting what changes to energy use
have occurred, as per existing in the literature, our study sought
to quantify the impacts of the COVID-19 lockdown on the house-
hold’s electricity consumption (at the household level), using the
actual electricity meter data (hourly resolution) of 500 households
located in Ottawa, Canada. Using high-resolution electricity use
data in our study contributes to filling the research gap and allows
us to isolate the effect of COVID-19 on energy use relative to
changes caused by seasonal variation.
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Our detailed analysis indicates that the pandemic’s effect on
household electricity use is not consistent, and there are noticeable
differences among different months, seasons, and day types caused
by weather-driven space conditioning loads, daylight hours, and
customer behaviour change. For example, in the first month of
lockdown (April), there was a significant temporal variation in
the daily profile pattern relative to the same month pre-COVID,
but with a small magnitude difference. In May, on the other hand,
there were significant temporal and magnitude differences com-
pared to the same month pre-COVID. In short, different temporal
and magnitude variations were observed among different months
post-COVID-19 relative to pre-COVID-19. Understanding such
household demand changes is essential to system operators and
utilities that are in charge of maintaining the power grid’s reliable
operation. In this regard, our results could serve as a starting point
for utilities to design new policies that target load shifting, time-of-
use structure, and demand-side management. Additionally, knowl-
edge of such changes in energy consumption patterns under lock-
down lays the groundwork to forecast how energy could be
consumed in buildings if telework becomes popular in the future.

One of the key outcomes of this study, compared to the litera-
ture, was detecting customers’ energy-related behaviour due to
the COVID-19 measures. In the spring season, we observed that
the profile pattern of 36.3% of customers changed significantly
from pre- to post-COVID-19. On the contrary, the profile pattern
of 63.7% of customers exhibited a slight change after the pandemic.
On the other hand, in the summer season, all customers’ profile
pattern after the pandemic approximately matches the usual pat-
tern before the pandemic. Yet, there is a significant increase (from
16.3 to 29.1%) in daily demand after the COVID-19.

Comparing our findings with Rouleau and Gosselin’s [36], which
has a similar climate, confirms the impact of lockdown that has led
building residents to use more energy for their daily routine activ-
ities. However, the changes observed in their investigation differ
from those observed in our study. For example, Rouleau and Gos-
selin observed that the average daily electricity consumption sig-
nificantly increased by 17.5% in the first month of lockdown
(April) compared to the pre-COVID, which was not observed for
the following months. This differs from our findings presented
here, as we found that at the first month of the lockdown, there
was a slight increase (6.8%) in the average daily electrical con-
sumption as many organizations were not ready enough for
large-scale remote work implementation. Such an increase reached
22.6 % in May and 26.3% in June and July, which contrasts with the
slight change reported by Rouleau and Gosselin for the same
months.

Given to the peak load, Rouleau and Gosselin reported that peak
values during the lockdown were approximately the same as those
observed pre-COVID; they just occurred at different times of the
day. However, our findings observed a 15–20% increase in peak
load post-COVID-19. Several factors could explain this difference/
inconsistency. For example, our study sample is a mix of private
dwellings, whereas Rouleau and Gosselin focused on social housing
dwellings; thus, our dataset will tend to be biased towards wealth-
ier customers who may prioritize comfort over energy costs and
their home lifestyle and occupants’ number might differ. Other
reasons explaining such change are weather conditions and the
different utility costs between the two cities (10.1 ₵/kWh in
Ontario compared to 7.3 ₵/kWh in Quebec). In this regard, there
is clearly a need to disseminate more energy data analysis related
to the COVID impact from different regions of the world and differ-
ent contexts. In Snow et al.,’s study [33], the peak demand for all
analyzed households (491 homes) during the lockdown approxi-
mately reached the same values as during the pre-lockdown. In
Bielecki et al.,’s study [48], the peak demand in the 7000 apart-
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ments on average increased by about 9% during the lockdown com-
pared to the same period of the year before the lockdown.

The generalisability of our results is subject to certain
limitations:

� Our findings are focused on a specific geographic and climatic
area (Ottawa). The sample is primarily from urban areas, so
regional and rural areas are not represented). Different geo-
graphical, climatic, socio-political, and cultural norms might
affect residents’ routines and, hence, their energy-related
behaviour.

� These findings cannot be extrapolated to all Canadian house-
holds due to the small sample size investigated (500 house-
holds). Additionally, household size, demographics, and
heating system characteristics are not available for this dataset.

� Our investigated dataset lacks post-COVID data in the winter
and autumn seasons, though this is not necessarily a major lim-
itation since most homes in Ottawa do not use electricity for
heating.

5.1. Conclusions

The recent technology of smart meter and smart grid develop-
ments vastly increases the amount of energy use information being
created and analyzed. In particular, such data open up the possibil-
ity for temporal assessment of electricity use, with the potential to
reveal non-obvious insights about electricity consumption and the
behavioural drivers of that consumptions. Unlike previous investi-
gations conducted after the pandemic started, our analysis benefits
from examining smart meter data at the customer level over a long
period. Moreover, the main contribution of this study, compared to
the literature, lies in studying individual customers’ energy-related
behaviour due to the COVID-19 measures. In this paper, we com-
pared the energy consumption patterns observed in 500 Canadian
households after the pandemic with the ones that were measured
before the pandemic. The key conclusions from this study which lie
in answering the raised research questions are listed below:

� How sensitive are the daily electricity consumption values to
outdoor temperature?

Contrary to the authors’ hypothesis, the electricity use of the
homes for cooling (and other warm temperature effects) does not
appear to be significantly affected by the COVID-induced beha-
viours. However, the homes’ electricity use is generally sensitive
to outdoor air temperatures, with an average increase of
0.08 kW/�C above an average of 18 �C. The changepoint analysis
showed that of the 15% increase in electricity for April to August
between 2019 and 2020, about one-third was due to warmer tem-
peratures, with much of the rest due to the temperature-
independent loads (e.g., lighting and appliances).

� How did peak electrical loads change after COVID-19?

By calculating the total hourly electrical loads for April 1 to
August 31 in 2019 (pre-COVID) and the same period in 2020
(post-COVID), our analysis indicated the difference between post-
COVID loads at the higher end are approximately 15 to 20% higher
than pre-COVID. Additionally, identifying the highest five peak
loads in each year (2019 for pre-COVID and 2020 for post-
COVID) showed that the peaks corresponding to post-COVID are
significantly higher (15–20%) than peaks that occurred pre-
COVID. These results agree with those obtained by Bielecki et al.,
[6] that found a 9% increase in peak load during the lockdown com-
pared to the same period of the year before the lockdown. How-
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ever, this does not appear to be the case in previous observations
(Snow et al., [33] and Rouleau and Gosselin [36]) that reported
no change within peak load values during the after the pandemic
compared to the pre-pandemic.

� How did household electricity profiles change after COVID-19?

Before the lockdown, the average household daily electricity con-
sumption is 19.70 kWh, relative to 22.1 kWh after the lockdown
(12.1% increase). This finding accords with earlier observations by
several studies [25,27,32,34,62], which showed that the imposed
lockdown resulted in increasing the residential energy demand by
11%–20%. Additionally, our detailed comparison between average
electricity daily profile pre-and post- COVID-19 revealed that the
lockdown’s impact on household electricity use is not consistent,
and there are noticeable differences among different months, sea-
sons, and day types. For example, at the monthly level, temporal
and magnitude differences in May post-COVID were significant rela-
tive to May pre-COVID. In April post-COVID, a similar temporal dif-
ference was observed, but with a small magnitude difference
relative to the same month pre-COVID. On the other hand, June, July,
and August exhibit similar profile patterns relative to the pre-COVID
time, with an increasing demand on average over the day. Differen-
tiation between weekday and weekend profiles showed that week-
day demand post-COVID was not dissimilar from the pre-COVID
weekend profile. Interestingly, a similar trend was observed before
the pandemic within the summer season – there is only a slight
change in profile pattern during the early morning.

� Do all households/customers have a similar profile, or are there
discrete groups? And how these customers’ profile pattern
changes post-COVID-19?

Our analysis indicated that each season post-COVID (spring and
summer) has two clusters representing seasonal household elec-
tricity demand. In the spring season, we observed that the profile
pattern of 36.3% of customers changed significantly from pre- to
post-COVID-19. On the contrary, the profile pattern of 63.7% of cus-
tomers exhibited a slight change after the pandemic. On the other
hand, in the summer season, the profile pattern of all customers
after the pandemic approximately matches the usual pattern
before the pandemic. Yet, there is a significant increase (from
16.3 to 29.1%) in daily demand after the COVID-19.

� How would household energy bills be affected by the TOU vs.
flat rate?

Our analysis indicates that the average increase in the utility
bill post-COVID would be 9.71% if TOU rates had been used instead
of the flat rate. We found that the usage pattern post-COVID-19
slightly shifted from off-peak hours to mid-, and on-peak hours,
relative to pre-COVID-19.
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