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In recent years, machine learning and deep learning-based 
approaches, two sub-fields of artificial intelligence, have 
emerged as key components in biomedical data analyses (1-5).  
They can be applied to image segmentation, identifying 
insertion/deletion mutations, protein alignments, and so 
on. Several studies have integrated pathological image data 
with genomics data. Yuan et al. have quantitatively analyzed 
image data to better de    scribe and validate the independent 
prognostic factors in estrogen receptor-negative breast  
cancer (6). Another study by Copper et al. also used 
histopathology images and genomics data to identify 
prognostic factors in breast cancer (7). Other types of cancers 
such as prostate cancer (8), renal cell carcinoma (9), low 
grade glioma (10), and non-small cell lung cancer (11), just to 
name a few, have also been studied by approaches integrating 
(multi-) omics data with pathology images.

The literature on deep learning methods used to assist 
cancer diagnosis and predict patient outcomes enables us to 
observe the exploding trend in this field (12-15). Massive 
amounts of published research and large numbers of clinical 
trials have illustrated the reliability and practicality of 
machine learning approaches, particularly deep learning. 
Various studies have employed deep learning methods to 
auto-detect and classify benign nuclei from cancer cells 
(1,16,17), to identify and quantify the rate and amount of 
mitosis (18). Deep learning has also been used for tissue 
origin classification, nuclear grading, precision medicine 
matching trials (1,19,20), classification of ancient and 
modern DNA (21), and drug repurposing (22). 

For tissue quantification, there are two primary 
methods, namely handicraft features and the unsupervised  
approach (23). The former method consists of domain-
agnostic and domain-inspired features (24,25) whereas the 
latter uses an automatic approach to identify distinguishing 
features (26). Domain-agnostic features focus on nuclear 
appearance, gland shape, object size, tissue texture, and 
architecture, while the domain-inspired features focus 
on certain particular domains, such as disease and organ 
origin (27). There have been studies that have applied 
these methods in prostate cancer and triple negative breast 
cancer (TNBC) samples (27). Gland architecture has been 
correlated by the domain-inspired approach (25) with 
aggressiveness of intermediate-risk prostate cancer. Another 
study calculated the number of intra-tumor lymphocytes, 
adjacent lymphocytes, and distant site tumor lymphocytes 
from TNBC (26). These studies found that these cell 
types and numbers can be used as independent prognostic 
predictors of disease-specific survival in TNBC (26). Tissue 
microarrays have also been used to predict colorectal cancer 
patient outcomes by deep learning approaches (28). The 
advantage of deep learning is that it is quick and seamless, 
although feature interpretability is missing (23). 

In recent years, various tools related to pattern 
recognition have also been developed, and huge numbers 
of datasets are now readily available for public use. Many 
archives and databases for radiological and pathological 
images have been established as well, such as The Cancer 
Imaging Archive (TCIA) and the Cancer Digital Slide 
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Archive (CDSA), both of which facilitate image data 
analyses. Taking advantage of these databases and archives, 
many studies have been published with MRI and/or CT 
imaging incorporated with biological pathways and cellular 
morphology to further characterize a disease (29-34). These 
radiological data could potentially aid in determining the 
molecular subtypes of cancer. 

Furthermore, radiological data could be linked to gene 
expression and/or mutation profiles to identify distinct 
cellular subtypes within the same cancer. Radiological 
data comprising hundreds of thousands of cells within 
a patient, once coupled with gene expression, could 
decipher the multiple dimensional features of the tumor, 
which is not achievable with genomic data alone (35). 
Consequently, the integration of radiological features 
with genomic data undoubtedly has a crucial role to 
play in improving diagnostic, prognostic, and predictive 
power in comparison to conventional approaches such 
as immunohistochemical assays. There are a couple of 
research papers that have applied radiological and genomic 
data to discriminate prostate cancer tissues from benign 
tissues, thereby enhancing information related to prostate 
cancer aggressiveness (36). Another study conducted with 
lung adenocarcinoma integrated CT images to predict the 
metastatic potency driving cells to distant organs (37). 

Radiomics has been shown to be powerful in parallel 
with genetic markers with extracted semantic and 
agnostic features. Integrating multiple platforms to 
bridge radiomics with genomics could lead to better 
characterization of disease. This is of particular value 
for better treatment decisions and correct explanation 
of biological and treatment heterogeneity. Especially for 
cancer therapy, image-aided decision-making is crucial. 
For instance, the integrated radiomics and pathological 
features corresponding to a specific breast cancer molecular 
signature can provide prognosis markers and surrogates 
to predict patient outcomes, drug responsiveness, and 
eventually enhance treatment efficacy. Prospective studies 
using artificial intelligence as the predominant tool for 
classification and/or prediction tasks, along with omics 
and imaging data, could certainly facilitate and accelerate 
research output and accuracy. However, machine learning 
requires informed human supervision, as results without 
proper interpretation are not of much value. 
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