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Introduction

Acute myeloid leukemia (AML) is the most malignant 
type of leukemia, with new cases increasing every year 
worldwide and as well as with age (1), which is a class of 
hematopoietic stem cells, malignant clonal diseases derived 
from progenitor cells. Abnormal primitive cells and partial 
primitive immature cells (leukemia cells) in bone marrow 
(BM) proliferate in large quantities and inhibit normal 

hematopoiesis, resulting in BM failure and rapid progress (2).
The prognosis of current AML patients is not optimistic, 

and only 40% of patients under the age of 60 survive more 
than 5 years. Although most patients can achieve remission 
after initial chemotherapy, patients who relapse after 
complete response rarely survive more than 5 years (3,4). 
Chemotherapy and hematopoietic stem cell transplantation 
(HSCT) have been the most important treatment for AML 
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in recent decades (5,6). Nevertheless, the drug resistance 
is increasingly hindering the therapeutic effect of AML 
patients, so that the quality of life of these patients is 
relatively poor. At the same time, recurrence remains the 
most common cause of HSCT failure in patients with 
AML, as a result, the prognosis for these patients remains 
poor (5). Moreover, there is increasing evidence that 
abnormal gene expression and mutated genes are involved 
in the carcinogenesis, progression and prognosis of AML. 
Therefore, there is an urgent need to find AML biomarkers 
and develop sensitive therapeutic drugs.

Over the past several decades, with the rapid rising of 
precision medicine, chip technology and bioinformatics 
analysis have been widely used to screen genetic changes at 
the genome level, which help us identify the differentially 
expressed genes (DEGs) associated with the carcinogenesis 
and progression of AML, and then find the precise sensitive 
chemotherapy drugs and improve patient outcomes. 
Consequently, in this study, in order to obtain reliable 
results, we downloaded two mRNA chip datasets (GSE9476 
and GSE30029) from Gene Expression Omnibus (GEO) 
for analysis, and obtained the DEGs between AML patients 
and normal BM tissues. After a series of screening and 
validation, 456 DEGs were identified and six hub genes 
(FLT3, PF4, CD163, MRC1, CSF2RB, PPBP) were obtained. 
And then, the relationship between drug sensitivity and 
gene expression of the six hub genes was analyzed in AML 
cell lines. The study provides preliminary evidences for 
search the potential sensitive therapeutic drugs for AML.

We present the following article in accordance with the 
MDAR checklist (available at http://dx.doi.org/10.21037/
tcr-20-2712).

Methods 

Data processing for microarray data and DEGs

Two separate gene expression profiles [GSE9476 (7) and 
GSE30029 (8,9)] were chosen from GEO database (http://
www.ncbi.nlm.nih.gov/geo/), and GSE9476 was based on 
the GPL96 platform, and GSE30029 was based on the 
GPL6947 platform. Then, the DEGs through GEO2R 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) online analysis 
tool in NCBI were screened (10), and identified with fold 
change|FC| ≥1, and defined P value and false discovery rate 
(FDR) cutoffs of <0.05. Then, the Venn diagram was made 
through the web tool Bioinformatics & Systems Biology 
(http://bioinformatics. psb.ugent.be/ webtools/ Venn/).

Protein-protein interaction (PPI) network construction 
and hub gene identification

The PPI map was obtained by the Retrieval of Interacting 
Genes (STRING) database (https://string-db.org/), an 
online tool allowing users uploading the data of DEGs. 
It can be used to analyze the PPI information and to 
evaluate the interactive relationships among DEGs (11). 
The PPI pairs were set the combined score >0.4. These 
pairs were extracted and visualized for the PPI network 
using Cytoscape (3.7.2) software (www.cytoscape.org/). 
In Cytoscape, module screening was performed using the 
Molecular Complex Detection (MCODE) (scores >3 and 
nodes >4), and the degree of connection was computed 
using the Centralities for Cytoscape (Centiscape2.2) (12).  
Nodes with higher degree of connection were more 
essential for maintaining the stability of the entire network, 
usually, nodes with degree of connection ≥10 were 
considered to be core candidate genes.

GO and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis

To evaluate the functional annotation and enrichment 
analys is  of  DEGs,  the Database  for  Annotat ion, 
Visualization and Integrated Discovery (DAVID) tools 
(https://david.ncifcrf.gov/) were used (13,14). From the 
DAVID v6.8 online server, the functional annotation and 
enrichment analysis was performed by the Gene Ontology 
(GO). The biological process, molecular function, and 
cellular component are the three major components 
of gene function. KEGG collects large number of data 
about molecular-level information, biological pathways, 
chemical substances through high-throughput experimental 
technologies. The KEGG pathway was analyzed from the 
DAVID. P<0.05 and gene counts ≥10 were considered 
statistically significant.

Validation and screening of key genes using GEPIA2

The Gene Expression Profiling Interactive Analysis 
(GEPIA) is an online database of gene expression analysis, 
which based on tumor and normal samples from The 
Cancer Genome Atlas (TCGA; http://portal.gdc.cancer.
gov/) and the Genotype-Tissue Expression (GTEx) (https://
www.gtexportal.org/) projects. GEPIA2 is an updated 
and enhanced version, which extends gene expression 
quantification from the gene level to the transcript level 
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and supports analysis of a specific cancer subtype and 
comparison between subtypes (15). The expression of hub 
genes between AML and normal BM tissues was verified 
by the database. Expression DIY (box plot) and survival 
analysis were performed. The parameters of the expression 
DIY (box plot) were set as follows: |log2FC| cutoff =1, P 
value cutoff =0.01, log scale = yes, jitter size =0.4, match 
TCGA normal and GTEx data. The parameters of the 
survival analysis were set as follows: overall survival (OS), 
group cutoff median, cutoff-high (%) =50, cutoff-low (%) 
=50, hazards ratio (HR) = yes, 95% confidence interval 
= yes, axis units months. According to the following 
screening criteria: the expression DIY (box plot) indicated 
that the gene was higher expressed in the AML sample 
than normal BM and peripheral monocytes, the survival 
analysis (OS) of the gene indicated a lower prognosis and 
must be statistically significant (P<0.05). The BloodSpot  
database (16) (http://servers.binf.ku.dk/bloodspot/) is a 
public microarray database for mRNA expression of BM 
and gene-centric blood cells. The correlation between the 
expression of key genes and the genetic characteristics of 
AML patients was analyzed using the BloodSpot database. 

The relationship between genes expression and drug 
sensitivity in GSCA Lite

GSCA Lite  (http://bioinfo. l i fe .hust .edu.cn/web/
GSCALite/) is a web-based platform for Gene Set Cancer 
Analysis, which is dynamic analysis and visualization of 
gene set in expression of malignant tumor genes and drug 
sensitivity correlation. The Drug Sensitivity Analysis of 
GSCA Lite has collected 481 small molecules from Cancer 
Therapeutics Response Portal (CTRP) (https://portals.
broadinstitute.org/ctrp/) and 265 small molecules from 
Genomics of Drug Sensitivity in Cancer (GDSC) (https://
www.cancerrxgene.org/) (17,18). Drug sensitivity and gene 
expression profiling data of cancer cell lines in GDSC and 
CTRP are integrated for investigation (19). The expression 
of each gene in the gene set is performed by Spearman 
correlation analysis with the small molecule/drug sensitivity 
(IC50). The Spearman correlation represents the gene 
expression correlates with the drug. The positive correlation 
means that the gene high expression is resistant to the drug, 
vise versa.

Statistical analysis

The results of this study were downloaded from the 

database according to the optimal statistical method selected 
by the database itself. Original chip data were downloaded 
from GEO databases for statistical analysis using unpaired 
sample t-test. The results were expressed as mean ± labeled 
standard deviation, and P<0.05 indicated that the results 
were statistically significant.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Identification of DEGs based on clinical samples of GEO in 
AML

In our study, we selected two datasets: GSE9476 and 
GSE30029. GSE9476 contained 26 samples of AML 
patients and 20 samples of healthy volunteers, while 
GSE30029 contained 90 samples of AML patients and 31 
samples of healthy volunteers. According to the criteria 
of P<0.05 and |log FC| ≥1, 2,058 DEGs were screened 
out in GSE9476 and 3653 DEGs were screened out in 
GSE30029 through comparing AML patient samples with 
healthy volunteers. We made a Venn diagram to show the 
association between the DEGs of GSE9476 and GSE30029. 
The 456 DEGs were the overlaps of the two datasets, as 
shown in Figure 1A.

KEGG and GO enrichment analysis, PPI network and key 
gene identification of DEGs

Among 456 DEGs, the PPI action network was shown in 
Figure 1B. Commonly, only connectivity degree ≥10 can 
be identified as potential core gene, accordingly, among 
456 DEGs, 183 potential core genes which have been 
calculated by using Cytoscape (3.7.2) software met the 
condition of degree of connection ≥10 (Figure 1C). Then, 
the possible association among the183 DEGs was evaluated 
by STRING online tool. PPI network was shown in 
Figure 1C. Meanwhile, the top 100 genes of the degree of 
connection of these 183 genes were selected and shown in 
Figure 1D (Table S1). We found that the degree of tumor 
necrosis factor (TNF) was 106, which ranked first among 
these 100 genes. Then, the following genes were integrin 
subunit alpha M (ITGAM; degree =101), protein tyrosine 
phosphatase, receptor type C (PTPRC; degree =83), toll 
like receptor 2 (TLR2; degree =74), matrix metallopeptidase 
9 (MMP9; degree =74) and so on. These 100 genes could 
be the core genes screened out in AML. The enrichment 
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Figure 1 Venn diagram, PPI network of DEGs. (A) Venn diagram of the DEGs common to the two GEO datasets; (B) PPI network 
constructed with the 456 DEGs by the STRING; (C) 183 genes met the condition of degree ≥10, and visualization through the STRING 
and Cytoscape; (D)100 genes were visualized by the STRING and Cytoscape. PPI, protein-protein interaction; DEGs, differentially 
expressed genes; GEO, Gene Expression Omnibus. GDSC, Genomics of Drug Sensitivity in Cancer.
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Figure 2 The GO analysis and KEGG pathway analysis for the 183 DEGs. The blue bars were the enrichment terms, and the length of the 
bars was represented by the P value. At the same time, at the far right of each bar was the count of genes enriched in this particular process/
pathway. (A) Top 15 GO terms in biological processes; (B) top 15 GO terms in cell component; (C) top 15 GO terms in molecular function; 
(D) top 15 enriched pathway of the 183 DEGs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, 
differentially expressed genes.
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analysis of gene function and pathway of these 183 DEGs 

were carried out by DAVID v6.8 online server, and the 

GO analysis and KEGG pathway analysis results were 

shown in (Figure 2). The most significant enrichment for 

DEGs in biological processes was in immune response with 

the enrichment count of 27 genes, which was the highest 

number of gene DEGs. The second is in inflammatory 

response (Figure 2A). The most significant enrichment for 

DEGs in cell component was in integral component of 

plasma membrane with the enrichment count of 69. The 

second was in extracellular exosome with gene enrichment 

number of 75 (Figure 2B). The most significant differentially 

expressed enrichment in molecular function was cytokine 

receptor activity, and the count of gene enrichment was 

7. The second was protein binding, and the count of 

gene enrichment was 123, which was the count of gene 

enrichment, and so on (Figure 2C). KEGG pathway analysis 

revealed that the most significant enrichment for DEGs was 

related to hematopoietic cell lineage, in which there was the 

enrichment count of 21 (Figure 2D).  

The relationship between hub genes and prognosis of AML 
patients by GEPIA2

To further verify, screen and analyze the expression of the 

top 100 genes of DEGs in peripheral blood mononuclear 

and BM cells of AML patients and healthy volunteers, 

the expression DIY (box plot) and the survival analysis 

by GEPIA2 were performed. Accordingly, as shown in  

Figure 3, six higher expressed genes (FLT3, PF4, CD163, 
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MRC1, CSF2RB, PPBP) were found in the AML compared 
with healthy volunteers (P<0.05). At the same time, as in 
Figure 4, the survival analysis (OS) indicated there was 
reverse relationship between the expression level of the 
above six genes and OS (P<0.05). The result suggests the six 
highly expressed genes might predict a worse prognosis in 
AML patients (P<0.05).

FLT3, PF4, CD163, MRC1, CSF2RB and PPBP may be 
the potential hub genes of AML

To further verify the differentially expression of the selected 
six candidate genes between AML patients and normal 
BM tissues, mRNA expression of FLT3, PF4, CD163, 
MRC1, CSF2RB and PPBP at mRNA levels comparing with 
AML samples and healthy volunteers of peripheral blood 
and/or BM mononuclear cells was performed through 
other microarray datasets in GEO database (Figure 5). 
We validated that they were higher expressed in AML 
samples obviously than control, which were statistically 
significant (P<0.05). In addition, as the recommended 
genetic classification of AML includes low-risk group, 
intermediate-risk group and high-risk group (20). In 
addition, the BloodSpot database was used to analyze the 
effect of hub genes expression and genetic abnormalities on 
risk stratification in AML patients (Figure 6). We found that 
high expression of these six hub genes in AML patients may 
indicate high-risk groups at the genetic stratification level.

The correlation of hub genes expression and drug 
sensitivity in AML cells by GSCA Lite

To analyze the correlation of six hub genes (FLT3, PF4, 
CD163, MRC1, CSF2RB, PPBP) expression in AML and 
the sensitivity of AML cells to the small-molecule drugs, 
we used the GDSC IC50 drug data from GSCA Lite 
database (Figure 7). We found that AML cell lines with 
FLT3-overexpression and CSF2RB-overexpression were 
sensitive to most small-molecule drugs which can also be 
used in malignancies including target drugs and non-target 
drugs, while AML cell lines with CD163-overexpression 
were only sensitive to CH5424802, Crizotinib, TAE684 
and MPS1-IN-1. And Erlotinib (Tarceva) was sensitive 
for AML cell lines with PF4-overexpression and PPBP-
overexpression. For example, looking up from the GDSC 
database, we discovery that Sorafenib (Nexavar), whose 
targets are PDGFR, KIT, VEGFR, RAF and FLT3. And in 
our study, we verified that its effect on AML cell lines with 

FLT3-overexpression was sensitive, and AML cell lines with 
high FLT3 expression were also sensitive to the other small 
molecule drugs such as all-trans retinoic acid (ATRA). In 
our analysis, AML cells with the overexpression PF4 and 
PPBP displayed sensitivity to Erlotinib (Tarceva), whose 
drug target is EGFR from GDSC database. The sensitivity 
to methotrexate, which is an antimetabolite drug, is 
correlated with the high expression of CSF2RB in AML cell 
lines. Details of common small-molecule drug were shown 
in Table S2.

Discussion

AML is one of the most common and aggressive type of 
leukemia, and the treatment of AML is given priority to 
combination chemotherapy. The treatment of AML also 
has made progress in last decade, however, recurrence 
rates remained still high (3,4,6). So, searching for accurate 
molecular biomarkers is urgently needed. Microarray 
technology has enabled us to explore genetic changes 
in diseases and has been shown to be an effective way to 
identify novel biomarkers for human tumor including AML.

In the present study, 2 mRNA microarray datasets 
were analyzed to obtain DEGs between AML and healthy 
subjects of peripheral blood and BM samples. A total of 
456 DEGs were identified among the 2 datasets. Then, 
we performed DAVID enrichment analysis on these 
456 DEGs, GO and KEGG enrichment analyses were 
performed to explore interactions among the 456 DEGs. 
GO enrichment analysis revealed that changes in the most 
significant modules were mainly enriched in regulation of 
transcription from RNA polymerase II promoter, DNA-
templated, cell proliferation and division. While, changes 
in KEGG were mainly enriched in viral carcinogenesis, 
transcriptional mis-regulation in cancer, cell cycle and p53 
signaling pathway. Previous studies have reported that 
the dysregulation of transcription from RNA polymerase 
II promoter, cell proliferation, cell division and immune 
response play important roles in the carcinogenesis or 
progression of tumors (21-23). Similarly, transcriptional 
mis-regulation in cancer, cell cycle and p53 signaling 
pathway have been shown in previous studies to play a 
very important role in the occurrence and development 
of tumors (22,24). Therefore, our results suggest that the 
DEGs played an important role in AML tumorigenesis and 
progression, which is consistent with the previous studies.

Through a series of screening, analysis and verification, 
we screened 6 DEGs (FLT3, PF4, CD163, MRC1, CSF2RB, 

https://cdn.amegroups.cn/static/public/TCR-20-2712-supplementary.pdf
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Figure 4 Kaplan-Meier survival curves of overall survival for the six candidate genes in AML. The survival curves are plotted using the 
GEPIA2 web server. Survival curves are represented as dotted lines, and the solid line represents the 95% confidence interval. The number 
of AML and normal bone marrow tissues (n) =53. The P values are calculated using log-rank statistics. FLT3, FMS-related tyrosine kinase 3; 
PF4, platelet factor 4; CD163, the macrophage scavenger receptor; MRC1, mannose receptor C-type 1; CSF2RB, colony stimulating factor 2 
receptor subunit beta; PPBP, pro-platelet basic protein; AML, acute myeloid leukemia; HR, hazard ratio.

PPBP) as the hub genes. In BM and peripheral blood 
samples from AML patients, the expression of the hub 
genes was higher than healthy volunteers. In terms of the 
relationship between the expression of individual hub genes 
and patient prognosis, the OS rate of AML patients with 
higher expression of the above six hub genes was lower. 
Therefore, not only FLT3, PF4, CD163, MRC1, CSF2RB 
and PPBP may be AML oncogenes but also AML patients 
with higher expression of these six hub genes might 
have poor prognosis, as well as they might be potential 
biomarkers of AML. In addition, high expression of these 
six hub genes in AML patients may indicate high-risk 
groups at the genetic stratification level, which will provide 
a theoretical basis for the treatment of frontline doctors.

We found that AML cells with high expression of FLT3 

and CSF2RB were sensitive to most small molecule drugs 
by bioinformatics analysis. While, AML patients with 
high expression of CD163 were only sensitive to a few 
small molecule drugs. Only was Erlotinib (Tarceva) related 
with sensitive in AML cell lines with high PF4 and PPBP 
expression. With traditional chemotherapy drugs, adaptive 
resistance existed in many AML patients, leading to poor 
prognosis for AML patients. There was a median survival 
of only 4 months for relapsed and/or refractory AML 
(25,26). So, it was urgent to find novel biomarkers and new 
therapeutic sensitive drugs for high-risk AML. In our study, 
the panel included FLT3, PF4, CD163, MRC1, CSF2RB 
and PPBP might be the novel biomarkers for target 
therapy in AML. 

FLT3, located in 13q12.2, which is an important cytokine 
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Figure 5 Differential expression of six candidate genes in AML samples and healthy volunteers was validated again in other data sets in 
GEO. The data was downloaded from GEO database, which was analyzed and visualized by GraphPad Prism 8.3.0. Non-paired sample 
t-test was used for statistical analysis. The relative mRNA expression of FLT3, PF4, CD163, MRC1, CSF2RB, PPBP in AML from GEO 
datasets: (A) FLT3; (B) PF4; (C) CD163; (D) MRC1; (E) CSF2RB; (F) PPBP. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. FLT3, FMS-
related tyrosine kinase 3; PF4, platelet factor 4; CD163, the macrophage scavenger receptor; MRC1, mannose receptor C-type 1; CSF2RB, 
colony stimulating factor 2 receptor subunit beta; PPBP, pro-platelet basic protein; AML, acute myeloid leukemia; GEO, Gene Expression 
Omnibus.

receptor, encodes a class III receptor tyrosine kinase and 
mainly expresses in the hematopoietic compartment and 
involved in the apoptosis, proliferation and differentiation 
of hematopoietic cells (26,27). FLT3 mutations which occur 
in 30% of AML patients, may lead to the occurrence and 
development of acute leukemia, especially AML (28). In 
our study, the analysis from microarray datasets showed 
FLT3 was upregulated in AML and the AML patients 
with the high expression of the FLT3 gene had a worse 
prognosis. The result is in agreement with previous reports 
that high transcript levels of FLT3 were associated with 
a worse prognosis in AML and pediatric AML patients 
(29,30). FLT3 inhibitors (tyrosine kinase inhibitors) have 
been considered to be a target for anti-cancer drugs, which 
have been used in preclinical and clinical studies, such as 
sorafenib, lestaurtinib and sunitinib, and so on (26). We 
analyzed the association between the drug sensitivity of 
AML cells and the gene expression of these six hub genes 
using the GSCA Lite database. Our current results showed 

that besides being sensitive to drugs targeting FLT3, AML 
patients with high FLT3 expression were also sensitive to 
the other small molecule drugs such as ATRA. The studies 
of Ma et al. revealed combining ATRA and FLT3 TKIs 
had highly synergistic drug activity to eliminate FLT3/
internal tandem duplication (ITD)+ leukemia stem cells 
in vitro and in vivo (31). PF4 (platelet factor 4, CXCL4, 
located in 4q13.3), encoding the protein of members of the 
CXC chemokine family. This protein is chemotactic for 
numerous other cell type and also functions as an inhibitor 
of hematopoiesis, angiogenesis and T-cell function. It is 
involved in regulating the differentiation of hematopoietic 
stem cells/progenitor cells, maintaining the survival and 
self-renewal of hematopoietic stem cells, and regulating 
the cardiac differentiation potential of induced pluripotent 
stem cells (32,33). Previous studies have shown that PF4 
is an endocrine factor, and its overexpression in tumors is 
associated with decreased OS of patients (34). The analysis 
of Chen et al. from the transcriptome database showed 



135Translational Cancer Research, Vol 10, No 1 January 2021

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(1):126-140 | http://dx.doi.org/10.21037/tcr-20-2712

B

E

C

F

A

D

Figure 6 Relationship between expression of six hub genes and genetic characteristics of AML patients through BloodSpot database. (A) 
FLT3; (B) PF4; (C) CD163; (D) MRC1; (E) CSF2RB; (F) PPBP. FLT3, FMS-related tyrosine kinase 3; PF4, platelet factor 4; CD163, the 
macrophage scavenger receptor; MRC1, mannose receptor C-type 1; CSF2RB, colony stimulating factor 2 receptor subunit beta; PPBP, pro-
platelet basic protein; AML, acute myeloid leukemia.

that the high expression of PF4 was a risk factor for poor 
prognosis of patients (35). However, the study of Bai et al. 
indicated that PF4 protein was significantly decreased in 
in newly diagnosed AML group, compared with healthy 
control group (36). By database analysis, our results 
showed that the PF4 transcription level of AML patients 
was higher than that of healthy controls and the OS rates 
of AML patients with high PF4 expression were shorter 
compared with low expression of PF4. But further study is 
required to characterize the function of the gene involved 
in AML (34,35,37). CD163 (the macrophage scavenger 
receptor, located in 13q12.2) encodes a protein that clears 
the scavenger receptor cysteine-rich (SRCR) superfamily. It 
functions as an acute phase-regulated receptor involved in 

the clearance and endocytosis of hemoglobin/haptoglobin 
complexes by macrophages. Its overexpression is associated 
with associated with a poor prognosis in AML and the 
immune/inflammatory response, which is potential 
biomarker of myeloid leukemia cutis (38,39). At the 
same time, CD163 is also involved in the development of 
multiple myeloma, meningioma, Hodgkin lymphoma and 
colorectal cancer (40-43). Additionally, CD163 is regarded 
as a potential therapeutic target for cell-directed therapy 
on macrophages in some cancers, such as glioma, gastric 
cancer (44-46). In our study, CD163 was identified to be 
significantly associated with AML prognosis by integrated 
bioinformatics analysis, which was consistent with the 
results of previous studies and would provide a preliminary 
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Figure 7 Correlation between drug sensitivity in AML and hub genes from GDSC database in GSCA Lite. AML, acute myeloid leukemia; 
GDSC, Genomics of Drug Sensitivity in Cancer.
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basis for further development of targeted drugs for AML 
with high expression of CD163. MRC1 (mannose receptor 
C-type 1, CD206, located in 10p12.33), a member of the 
C-type lectin receptor family, encodes the human mannose 
receptor (MR). It is involved in several biological processes, 
including cell-cell recognition, serum glycoprotein 
turnover, and neutralization of pathogens. MRC1 mutations 
can cause activation and replication defects at DNA damage 
checkpoints, which are associated with tumorigenesis (47). 
MRC1 can also regulate tumor microenvironment (48), the 
relationship between tumor recurrence and metastasis (49). In 
our study, we have preliminarily confirmed that MRC1 is 
higher expressed in AML compared to healthy volunteers 
and is a potential biomarker for AML, which laid a solid 
foundation for our further development of targeted drugs 
targeting MRC1 overexpression in AML. CSF2RB (colony-
stimulating factor 2 receptor subunit beta, CD131) is 
located in 22q12.3. The protein encoded by CSF2RB is the 
common beta chain of the high affinity receptor for IL-3, 
IL-5 and CSF. It is a myeloid cytokine receptor, which is 
highly expressed in myeloid leukemia of Down syndrome 
(ML-DS), and CSF2RB variant A455D is an oncogenic 
hotspot mutation in ML-DS (50). The high expression 
of CSF2RB predicts the arrest of hematopoietic stem cell 
differentiation and CSF2RB was expressed at high levels in 
both mouse and human leukemia cells (51). In our study, 
we found CSF2RB was over-expressed and predicted worse 
prognosis in AML. PPBP (pro-platelet basic protein, 
CXCL7, located in 10p12.33) is a platelet-derived growth 
factor that belongs to the CXC chemokine family. It has 
been shown to stimulate various cellular processes including 
DNA synthesis, mitosis, glycolysis, intracellular cAMP 
accumulation, prostaglandin E2 secretion, and synthesis 
of hyaluronic acid and sulfated glycosaminoglycan. 
Previous studies have implicated serum levels of CXCL7 as 
potential prognostic markers in myelodysplastic syndromes 
and the overexpression of the gene in the marrow 
microenvironment contributed to induction of decitabine 
resistance in chronic myelomonocytic leukemia cells (52,53). 
In addition, PPBP is a biomarker in gastric cancer (54) and a 
predictive marker of sunitinib efficacy in clear cell renal cell 
carcinomas (55). The results of our analysis indicated AML 
patients with the high expression of PPBP gene had worse 
prognosis and AML cells with the overexpression PPBP 
displayed sensitivity to Erlotinib (Tarceva). Therefore, in 
present study, we thought CSF2RB and PPBP might also be 
a potential biomarker in AML.

Most of the six hub genes and their correlation with the 

sensitive drug we have derived from the study have been 
confirmed by previous studies to be associated with AML 
or cancer. But there are still several hub genes and their 
correlation with the sensitive drug have not been explored 
to provide a basis for guiding clinical medication, which 
may be the innovation of future research. Our study may 
not only provide potentially likely regulators of AML 
invasion and metastasis can serve as biomarkers in AML, 
also can give future researchers a broader perspective and 
more inspiration. But it still has limitation: (I) the analysis of 
drug sensitivity was based on the analysis of AML cell lines, 
which needs to be further verified in animal experiments; 
(II) the analysis of DEGs used in this study is based on 
the comprehensive analysis of clinical case samples, which 
needs to be further verified in animal experiments and other 
preclinical trial. Next, we will further verify it through 
animal experiments and other preclinical trial, which will be 
a significant and constructive study. Also, we will conduct 
further in-depth research on the expression and mechanism 
of these six hub genes in AML.

Conclusions

Our study was designed to identify DEGs that might be 
involved in the carcinogenesis or progression of AML. A 
total of 456 DEGs and six hub genes (FLT3, PF4, CD163, 
MRC1, CSF2RB and PPBP) were identified and might be 
regarded as promising biomarkers and potential sensitive 
drugs were identified for overexpression of the biomarkers 
in AML, and high expression of these six hub genes in 
AML patients may indicate high-risk groups at the genetic 
stratification level, which will provide a theoretical basis for 
the treatment of frontline doctors.
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