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Introduction

Inflammatory breast cancer (IBC) is a particularly 
aggressive form of invasive breast cancer, being responsible 
for up to 10% of breast cancer deaths, despite its relatively 
infrequency (approximately 1–5% of all breast carcinomas) 
(1,2). Given the absence of specific histological and 
molecular criteria, the diagnosis of IBC relies on the clinical 
presentation, characterized by the rapid onset of erythema, 
inflammation, edema and ridging of the skin of the breast 
(i.e., peau d’orange), with or without an underlying palpable 
mass (3,4). Indeed, a clinically dominant breast mass may 
be radiologically assessed in about 50% of patients, whereas 
patients frequently present with multicentric disease (5). 
A skin punch biopsy is recommended in cases of suspected 

IBC and may show dermal lymphatic involvement with 
tumor emboli in the papillary and reticular dermis of 
the breast, a typical—although not pathognomonic—
histopathologic finding (6).

Due to the lack of definitive diagnostic criteria, the 
possible differential diagnoses (mastitis, bacterial infection, 
breast abscess, post radiation dermatitis) and the relatively 
rarity of this clinicopathologic entity, the diagnosis of IBC 
is frequently delayed. The vast majority of patients with 
IBC have locally advanced disease at presentation and about 
33% of them are diagnosed with metastatic spread (7).  
Consequently, patients with IBC have a poor prognosis 
with a median overall survival (OS) of 4.2 years and a 
5-year OS of less than 55% (8-10). Moreover, some data 
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suggest a worse prognosis for patients with metastatic IBC 
at presentation as compared to patients with stage IV non-
IBC (nIBC) (11). However, different molecular subtypes 
of IBC, similarly to other forms of breast cancer, have 
both therapeutic and prognostic implications (10,12,13). 
Although each subtype of breast cancer may present as IBC, 
some studies showed a higher rate of human epidermal 
growth factor receptor-2 (HER2) overexpression and faster 
growth kinetics (14,15). As for the nIBC counterpart, 
triple negative breast cancer showed poorer outcome than 
other subgroups, whereas luminal A breast cancers had 
a trend towards better OS (16). Despite some advances 
in the therapeutic approach to locally advanced IBC 
have been made and combined-modality treatment with 
chemotherapy, surgery, and radiation therapy is currently 
the recommended standard of care, the OS of patients with 
IBC remains poor and has not significantly improved over 
the last 30 years (8,17,18), partly due to the underuse of 
the trimodal therapy as largely documented (18). Thus, 
identification of the molecular signature of IBC and of 
possible targets for novel therapies is eagerly awaited. 

The present review aims to provide an update on recent 
findings on the biology of IBC and on possible therapeutic 
targets as well as to summarize most relevant ongoing 
clinical trials in this setting. 

Biology of IBC 

Up to date, several efforts have been made to identify 
significant biologic differences, including molecular and 
genetic alterations, between IBC and nIBC. Different 
molecular subtypes, similarly to nIBC counterpart, have 
shown to have therapeutic and prognostic implications 
(10,12,13). A deeper understanding of the biologic and 
molecular features of IBC may lead to identify possible 
pathways promoting IBC growth and progression, thus 
fostering new drug development.

Breast cancer subtypes in IBC

Assessment of hormone receptor (HR) status and HER2 
expression is part of the standard evaluations that drive 
therapeutic choices in breast cancer patients (19,20). In 
IBCs, several studies have been conducted in order to 
identify any significant difference compared to nIBC. 
The incidence of HR-positive subtype is lower in IBC 
than in nIBC, while HER2-positive and triple-negative 
tumors are higher represented in IBC, being associated 
with worse outcome (21,22). On the other hand, another 
study reported a comparable incidence of triple negative 

subtype between IBC and nIBC tumors (23). Moreover, 
according to a retrospective analysis on 593 IBC patients,  
HR+/HER2−, HR+/HER2+, HR−/HER2+, and triple-
negative tumors were 231 (39.0%), 98 (16.5%), 112 
(18.9%), and 152 (25.6%), respectively (24). When assessed 
by gene expression profiling, molecular subtypes showed 
similar distributions in IBCs as compared to nIBCs. Indeed, 
Van Laere et al. reported that all subtypes are represented 
in IBC (25). Notably, a lower incidence of luminal A tumors 
(19% in IBC versus 42% in nIBC) and a higher of HER2+ 
tumors (9% in nIBC versus 22% in IBC) were observed.

Triple-negative and HR+/HER2− IBCs presented 
significantly worse survival compared with HR+/HER2+ or 
HR−/HER2+ subtypes (10,23,24,26).

Since a high incidence of IBC was observed in young 
subjects, the impact of BRCA1/2 mutations in this subgroup 
has been evaluated. No significant association between BRCA 
pathogenic variants and incidence of IBC was found (27), 
however IBC patients carrying pathogenic BRCA mutations 
were diagnosed at younger age as compared to BRCA-
carriers nIBC patients. 

Molecular profiling of IBC 

A cornerstone work in IBC molecular profiling was 
performed by Van Laere et al., who evaluated gene expression 
and molecular profile of samples from 137 IBC and 252 
nIBC patients classified according to the molecular subtypes 
using the PAM50-algorithm. The authors showed that a 
79-gene signature, characterized by the downregulation 
of the transforming growth factor-β (TGF-β), was specific 
for IBC, regardless of tumor subtype (25). In addition, this  
79-gene signature had a prognostic value in a cohort of 871 
patients with nIBC. However, a subsequent analysis of more 
than 400 nIBCs samples available in The Cancer Genome 
Atlas (TCGA) database showed that—according to this 
signature—25% of the tumors appeared to be IBC-like (25,28). 

Subsequently, Bertucci et al. showed that IFNα and 
IFNγ pathways were upregulated in patients with IBC 
who achieved a pathological complete response (pCR) 
after neoadjuvant chemotherapy (29). In the same study, 
the hypoactivation of other molecules, such as epidermal 
growth factor receptor (EGFR), p53 and TGF-β, also 
correlated with higher rate of pCR. However, this set of 
genes was able to predict outcome also in nIBC patients 
treated with neoadjuvant chemotherapy, suggesting that it 
is not exclusive for IBC. Furthermore, Ross et al. evaluated 
genetic alterations in a cohort of 53 IBC patients using the 
hybrid capture-based FoundationOne™ assay. The most 
frequently mutated genes were TP53 (62%), MYC (32%), 
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PIK3CA (28%), ERBB2 (26%), FGFR1 (17%), BRCA2 
(15%), and PTEN (15%) (30). More recently, Hamm et al. 
reported a comprehensive genomic profiling analysis of 
20 IBCs, revealing that missense mutations were the most 
common variant (73%), followed by frameshifts (8%), 
splice-site alterations (6%), nonsense mutations (5.5%), 
amplifications (5.5%), and in-frame insertions-deletions 
(3%) (31). In this study, next-generation sequencing 
was able to identify 391 genetic variants. The five most 
commonly altered genes were TP53 (58%), HER2 (amplified 
in 53%), ATM (53%), APC (37%), and HER3 (26%).

Genetic alterations in IBC were also explored by 
evaluating cell free DNA (cfDNA) from plasma. In a 
preliminary analysis of 13 IBC patients, somatic mutations 
in cfDNA samples were detected in TP53 (53%), RB1 (15%), 
GEN1 (15%), EP300 (15%), PIK3CA (7%), ERBB2 (7%), 
PALB2 (7%), and MUC16 (7%) (32). In this setting, studies 
on larger cohorts of patients are currently ongoing. 

Targetable molecular pathways involved in IBC

Despite few activated pathways have been described in 
IBC, agents targeting some of these pathways have been 
tested in preclinical and clinical trials providing only small 
benefit. Several clinical trials are currently ongoing testing 
combinations of standard chemotherapeutics, new targeted 
treatments and immunotherapy, as summarized in Table 1.

Angiogenesis and vasculogenesis

Angiogenesis—the mechanism that leads to the formation 
of new vessels from pre-existing vessels—plays a relevant 
role in the development and progression of malignant 
neoplasms. In particular, IBCs present an upregulation of 
angiogenic processes as compared to nIBCs, including high 
expression of several molecules involved in these processes 
such as vascular endothelial growth factor A (VEGF-A), 
VEGF receptor 2 (VEGFR-2), angiopoietin 1 and 2,  
Tie-1, and Tie-2 (33-35). Moreover, IBCs seem to display 
an increased expression of angiogenesis-related genes (36). 
The extensive vascular involvement observed in IBC led to 
the conduct of a number of clinical trials testing the use of 
antiangiogenic treatment. 

In this setting, several randomized clinical trials 
investigated the role of bevacizumab, a monoclonal 
antibody targeting the VEGF, a key factor that regulates 
blood vessels formation and permeability. Data from clinical 
trials investigating the use of bevacizumab in addition to 
standard neo-adjuvant chemotherapy showed an overall 
response rate ranging from 61% to 91% (37,38). In a phase 

II trial with dose-dense doxorubicin and cyclophosphamide 
followed by weekly carboplatin and paclitaxel with 
bevacizumab in patients with HER2 negative IBC, 3 out 
of 10 patients had a pCR (39). Two trials investigating 
bevacizumab in association with anthracycline and taxane-
based neoadjuvant regimens in HER2 negative IBC 
patients reported pCR rate of 19–21% (40,41). Moreover, 
in the SWOG S0800 trial, HER2 negative IBC patients 
receiving bevacizumab and nab-paclitaxel with dose-dense 
doxorubicin and cyclophosphamide had higher pCR rate 
(30% vs. 14%), although the difference was not statistically 
significant (P=0.61), given the small number of patients (42). 

Based on these results, the addition of bevacizumab to 
chemotherapy does not seem to improve significantly pCR 
rates in HER2 negative population. The greater expression 
of other angiogenic, lymphangiogenic, and vasculogenic 
factors in IBC is likely to make VEGF blockade by 
bevacizumab insufficient and targeting multiple vasculo-
lymphatic pathways concurrently seems to be the most 
promising strategy.

Slightly better results were obtained with bevacizumab 
in the HER2+ population. A recent phase II study showed 
the efficacy and safety of the combination of bevacizumab 
with weekly carboplatin and paclitaxel plus oral metronomic 
cyclophosphamide, with or without trastuzumab according 
to HER2 status. The overall response rate was 88%, and 
the pCR rate was 29%; patients with HER2 positive IBC 
had higher pCR rates and prolonged survival (43). The 
BEVERLY-2 trial reported a 63.5% pCR rate among 
52 patients with HER2+ IBC treated with neoadjuvant 
anthracycline and taxane-based chemotherapy associated 
with bevacizumab and trastuzumab (44). Similarly, pCR 
rate around 50% was reported with the combination of 
bevacizumab, trastuzumab and neoadjuvant chemotherapy 
in patients with HER2+ IBC (45-47). On the other 
hand, the combination of HER2 blockade with lapatinib 
and the angiogenesis-targeting agent pazopanib showed 
no improvement in progression free survival (PFS) 
compared with lapatinib alone, and toxicity was significantly  
higher (48). Overall, these controversial results have not led to 
incorporate bevacizumab as neoadjuvant treatment for IBC.

EGFR pathway

The  EGFR fami ly  compr i se s  four  s ing le -cha in 
transmembrane glycoproteins, namely EGFR (ErbB1, 
HER1), ErbB2 (HER2, neu in rodents), ErbB3 (HER3) and 
ErbB4 (HER4) (49). With the exception of HER2—which 
has no recognized ligand—the other ErbB receptors bind 
to their ligands and are activated by homo-dimerization/
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hetero-dimerization. The subsequent tyrosine auto-
phosphorylation prompts the activation of downstream 
signaling pathway components, including mitogen-activated 
protein kinase (MAPK), phosphoinositide phospholipase C/
protein kinase C (PLC/PKC), phosphoinositide 3-kinase/
AKT (PI3K/AKT), and Janus kinase/signal transducer of 
activation (JAK/STAT) pathways (50,51). 

Traditionally, HER2 overexpression in breast cancer has 
been associated with increased aggressiveness, recurrence 
rates, and mortality. However, in the last years anti-
HER2 agents have significantly improved outcomes in 
this population (52,53). As previously described, a higher 
proportion of HER2-positive subtype was observed among 
IBC patients, compared to nIBC counterpart (14,15). A 
large body of evidence supported the use of trastuzumab 
in patients with IBC (54). The NOAH trial assessed the 

benefit of the addition of neoadjuvant trastuzumab to 
chemotherapy in 77 patients with IBC (55). The small 
number of IBC patients included in studies investigating 
the dual HER2 blockade with pertuzumab and trastuzumab 
in the neoadjuvant setting, as NeoSphere, BERENICE 
and TRYPHAENA trials, precluded definitive indication 
in this setting (56-59), although there is no reason to think 
that these drugs should not improve outcome as they do 
in nIBC. The use of lapatinib, also, has been studied in 
patients with locally advanced HER2+ IBC (60,61). The 
neoadjuvant administration of lapatinib in combination with 
paclitaxel had a combined clinical response rate of 78% in 
IBC patients (62). 

EGFR overexpression was detected in roughly 30% 
of IBC patients. EGFR-positive IBC was associated both 
with a worse 5-year OS rate and an increased risk of 

Table 1 Ongoing clinical trials in IBC

Setting Subtype NCT number Phase Treatment Patients Status

Neoadjuvant All NCT03742986 II Nivolumab + AC/paclitaxel +/− trastuzumab 52 NYR

HER2− NCT03515798 (PELICAN) II Pembrolizumab + (F)EC-paclitaxel 81 NYR

NCT02623972 II Eribulin → AC 25 R

NCT01036087 II Panitumumab, nab-paclitaxel and carboplatin 40 ANR

NCT00820547 (BEVERLY-1) II Bevacizumab + FEC/docetaxel 100 ANR

TNBC NCT02876107 II Panitumumab, carboplatin, paclitaxel → AC 72 R

NCT02041429 II Ruxolitinib (INCB018242) 24 ANR

NCT01525966 II Abraxane + carboplatin 69 ANR

NCT02876302 II Ruxolitinib + AC/paclitaxel 64 R

Adjuvant HR+/HER2− NCT02971748 II Pembrolizumab + hormonal treatment 37 R

All NCT01477489 I Veliparib + RT 33 C

NCT03598257 II RT + olaparib vs. RT alone 300 R

Metastatic All NCT03202316 II Atezolizumab + cobimetinib + eribulin (ACE) 33 R

NCT02658812 II Talimogene laherparepvec 35 ANR

NCT02227082 I RT + olaparib 36 R

TNBC NCT03184558 II Bemcentinib (BGB324) + Pembrolizumab 56 R

HER2− NCT01262027 II Dovitinib 22 ANR

NCT02411656 II Pembrolizumab 36 R

NCT02892734 (WIN) II Ipilimumab + nivolumab 29 R

HER2+ NCT01325428 II Afatinib +/− vinorelbine 26 C

IBC, inflammatory breast cancer; AC, doxorubicin and cyclophosphamide; ANR, active, not recruiting; C, completed; (F)EC, (fluorouracil) 
epirubicin and cyclophosphamide; HER2−/+, HER2 negative/positive; HR+, hormone receptor positive; NYR, not yet recruiting, R, 
recruiting; RT, radiotherapy; TNBC, triple negative breast cancer.



S473Translational Cancer Research, Vol 8, Suppl 5 October 2019

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(Suppl 5):S469-S478 | http://dx.doi.org/10.21037/tcr.2019.05.04

disease recurrence as compared to EGFR-negative IBC 
(22,31,63,64). Interestingly, the anti-EGFR tyrosine kinase 
inhibitor erlotinib was able to inhibit IBC tumor growth and 
spontaneous lung metastases in an IBC orthotopic xenograft 
model (63). Moreover, the small molecule EGFR inhibitor 
AZD8931 showed antitumor activity in IBC cell lines 
(65,66). A large number of monoclonal antibodies, including 
cetuximab, panitumumab, nimotuzumab, necitumumab, 
GA201, and TKI targeting EGFR as varlitinib, gefitinib, 
erlotinib, aderbasib, AE37, are currently under evaluation 
in breast cancer (67). Although these agents have been 
especially tested in triple negative breast cancer, preclinical 
evidence showed the efficacy of gefitinib in slowing tumor 
growth also in IBC models (68). In a recent phase II 
trial (69), panitumumab was tested in combination with 
neoadjuvant chemotherapy (nab-paclitaxel and carboplatin 
weekly and then 4 cycles of fluorouracil epirubicin and 
cyclophosphamide) in 40 patients with primary IBC. A 28% 
pCR rate was observed overall, with greater benefit obtained 
in a cohort of 19 patients with triple negative IBC (pCR 
42%). Some biomarkers predictive of pCR were identified, 
including pEGFR and COX-2 expression. Also, afatinib with 
or without vinorelbine, showed activity in a small cohort 
of trastuzumab-naïve HER2-positive IBC patients (70). 
However, the small number of patients precluded further 
conclusion, as the trial was terminated early following the 
results of LUX-Breast 1 trial, showing shorter OS and higher 
toxicity of afatinib-vinorelbine combination compared to 
trastuzumab plus vinorelbine (71). Due to its toxicity profile 
and modest activity, no further development of afatinib for 
HER2-positive breast cancer is planned (72). 

PI3K/AKT/mTOR pathway

The PIK3/AKT/mTOR pathway was shown to be frequently 
altered in breast cancer across all tumor subtypes (73). As 
previously highlighted, Hamm et al. reported that genomic 
alterations in PI3K/mTOR pathway are frequent in IBC, 
including 21% of mutation in PIK3CA (31). Similarly, 
Liang et al. reported PIK3CA mutations in 29% of IBC, 
which correlated with worse metastasis-free survival (74). 
In metastatic HR-positive breast cancer, the mTOR 
inhibitor everolimus provided significant clinical benefit in 
combination with the aromatase inhibitor exemestane (75). 
Given the scant specificity of everolimus as well as the high 
incidence of toxicities, new agents targeting PIK3/AKT/
mTOR pathway have been tested in breast cancer patients; 
the alpha-selective PI3K inhibitor alpelisib, which has 
shown to improve PFS when added to endocrine therapy 
in HR+/HER2− metastatic breast cancer (76). Although 

mTOR signaling was shown to be overexpressed in HER2-
amplified IBC (77), the combination of everolimus and 
trastuzumab produced only a modest improvement in 
PFS compared to placebo in the metastatic setting (78). 
No specific data for these agents in IBC patients are 
available so far, but some PI3K inhibitors are under clinical 
investigation for IBC. 

JAK/STAT pathway 

The JAK/STAT pathway is involved in IBC survival and 
proliferation; in IBC cells with stem-like characteristics 
(CD44+/CD24−), higher levels of phosphorylated JAK2 
have been described as compared to nIBC cells (79). 
Inhibition of JAK pathway reduced IBC cells proliferation 
in vitro and inhibited tumor growth in IBC xenograft 
models (80). Based on this result, the JAK1/JAK2 tyrosine 
kinase inhibitor ruxolitinib was tested as monotherapy in 
pSTAT3-positive triple negative breast cancer in a phase 
II clinical trial; however the study was early stopped due 
to ineffectiveness (81). Currently, a phase I/II trial is being 
testing the combination of ruxolitinib and paclitaxel in triple 
negative breast cancer and IBC patients (NCT02041429). 

Targeting tumor microenvironment (TME) in IBC

The interaction between tumor cells and non-malignant 
cells ,  which compose the TME, has being deeply 
investigated in order to recognize how this cooperation 
may influence tumor development and progression. 
TME consists of non-malignant cells, including cancer 
associated fibroblasts (CAFs), endothelial cells and pericytes 
composing tumor vasculature, immune and inflammatory 
cells, bone marrow derived cells, and the extracellular matrix 
(ECM), establishing a complex cross-talk with tumor (82). 
Accumulating evidence suggests a unique cell composition 
within the TME in IBC. Resident non-malignant cells, 
including tumor-associated macrophages, dendritic cells, 
lymphocytes, mesenchymal stem cells, fibroblasts, and 
endothelial cells, create a fine-tuned interaction with 
IBC cells, also affecting immune response (83). A single-
institution experience investigating associations between 
tumor immune microenvironment and early response to 
neoadjuvant dual HER2 blockade was recently presented at 
2018 San Antonio Breast Cancer Symposium (84). Matched 
tumor biopsies from 23 patients with HER2 positive IBC 
were collected before and after one week of dual blockade. 
Immune activation as determined by gene expression 
signatures both at baseline and after one week of treatment 
predicted pathologic complete response. Upregulation 
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of immune activation was evident only one week after 
treatment with dual blockade.

Immune system in IBC

Despite its name, which derives from the clinical signs 
of inflammation present at onset, immune infiltration is 
not a distinguishing feature of IBCs. Overall, the rate of 
tumor infiltrating lymphocytes (TILs) in IBC samples was 
superimposable to that observed in nIBCs (85). Consistently, 
gene expression analyses did not show higher expression 
of inflammatory component in IBC compared with non-
IBC group (14). On the other hand, IBC presented with 
higher PD-L1 expression compared to nIBC (38% vs. 
10–30%), when evaluated by means both RNA expression 
and immunohistochemistry (86,87). In addition, PD-L1 was 
more frequently overexpressed in HR-negative status, basal 
and HER2-enriched subtypes (86), being also significantly 
associated with pCR after neoadjuvant chemotherapy (87). 

Immunologic analysis revealed a subset of IBC tumors 
associated with high CD8(+)/PD-L1(+) lymphocyte 
infiltration. Immune infiltration positively correlated with 
an NGS-based estimate of neoantigen exposure derived 
from the somatic mutation rate and mutant allele frequency, 
iScore (31). Additionally, DNA mismatch repair alterations, 
which may contribute to higher iScores, occurred at greater 
frequency in tumors with higher immune infiltration (31). 

Immunotherapy is currently under evaluation in breast 
cancer, after having shown efficacy and durable responses 
in different hematologic and solid malignancies (88,89). 
Recently, the combination of an immune-checkpoint 
blockade (i.e., atezolizumab) and a chemotherapeutic agent 
(nab-paclitaxel) demonstrated to be effective as first-line 
treatment in metastatic triple-negative breast cancer with 
PD-L1 expression (90). Based on these data, FDA has 
recently approved this combination in this setting. This 
BC subtype is characterized by a greater genetic instability, 
higher tumor mutational load and tumor immune infiltrate. 
So far, no data are available on the use of immunotherapy 
in IBC. However, many trials with immune-checkpoint 
inhibitors are currently ongoing as summarized in Table 1.

Conclusions

This overview of available biologic and molecular data 
shows that IBC is a different clinic-pathological entity with 
particular features that determine its aggressive behavior. 
Advances in loco-regional therapies and the increasing 
use of a multimodal therapeutic approach provided some 
benefit. However, the prognosis of IBC patients still 

remains poor and has not significantly improved over 
time. High-dose chemotherapy with hematopoietic stem 
cell support and hyper-fractionated accelerated radiation 
therapy have been evaluated for the treatment of IBC with 
controversial results and additional data from prospective 
randomized clinical trials are awaited (91). New strategies 
and development of targeted agents are strongly needed to 
improve outcomes. However, mainly due to the relatively 
rarity of the disease, there is paucity of data from large-
scale, prospective, multicenter, randomized trials. A deeper 
understanding of the molecular and biologic features of IBC 
may enable the identification of new therapeutic targets 
and/or pathways, thus promoting new drug development, 
at the same time it may help identifying patients who are 
more likely to respond to such therapies, thus improving 
the selection of patients to be enrolled in clinical trials.
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