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Introduction

Lung cancer (LC) is the most prevalent cancer and the main 
cause of cancer-specific death around the world, with a poor 
prognosis and a high mortality, there are about 228,150 
new cases and 142,670 deaths of LC around the USA in 
2019 (1). Non-small cell lung cancer (NSCLC) comprises 
85% of all lung cancer, while small cell lung cancer (SCLC) 
accounts for 15–17% (2). The underlying mechanisms of 

LC remain unclear, however, a serious of studies indicated 
that tobacco smoking has been a high-risk factor (3-5). At 
the first years of this century, most evidence supported the 
notion that exposure to environmental carcinogens (6-9), 
including cigarette and electronic cigarette (10,11), result 
in alterations to the structural integrity of DNA and DNA 
lesions that may lead to mutations in oncogenes and tumor 
suppressor genes, thus initiating tumorigenesis (12-17).
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The correlation between at-risk polymorphisms in genes 
of DNA repair pathways and LC risk was newly considered, 
reported from environmentally exposed workers or smokers 
(18-21). DNA repair pathway is a complex molecular 
network, which could continuously monitor and correct 
incorrect nucleotides after exposure to carcinogens, such 
as ultraviolet ray and benzene-based pollutants (22-24). 
There are several DNA repair pathways, which could 
minimize the mutant and toxic DNA sequence, including 
nucleotide excision repair (NER) pathway, base excision 
repair (BER) pathway, homologous recombination (HR) 
pathway, mismatch repair (MMR) pathway, as well as non-
homologous end-joining (NHEJ) pathway. Among them, 
the BER is an essential pathway involved in genome stability 
maintaining and thus in human diseases’ prevention, ensuring 
to correct the abnormal DNA base modifications and base 
loss [such as apurinic/apyrimidinic (AP) sites] (25-27). 

Recently, increasing studies indicated that DNA repair 
capacity could be influenced by genetic polymorphism in 
the BER pathway genes, which might also alter protein 
function that subsequently contributes to the unstable of 
gene sequence and cancer risk (28,29). Till now, numerous 
studies have focused on the potential relationship between 
genetic variants in BER pathway gene and LC risk, 
however, the results are discordant. In addition, many 
studies only focused on a few polymorphisms or neglected 
non-coding region genes, while other studies performed on 
a small number of cases. After all, we exhaustively extracted 
all eligible studies reported on genetic variations of BER 
pathway gene related to LC risk, and performing the 
current systematic review and meta-analysis to illustrated 
the overall relationship.

Methods 

Obtain BER pathway gene set from KEGG

In order to obtain the whole gene set of BER pathway, we 
searched it on Kyoto Encyclopedia of Genes and Genomes 
(KEGG) website. Thirty-five genes in BER pathway 
were provided from online KEGG signaling database 
(http://software.broadinstitute.org/gsea/msigdb/geneset_
page.jsp?geneSet Name=KEGG_BASE_EXCISION_
REPAIR&keywords=BASE%20EXCISION%20REPAIR).

Study description

The resent study was conducted to reveal the correlation 

between genetic variants in BER pathway and LC risk. In 
current work, PubMed, Google Scholar, Medicine, EMbase 
and Web of Science databases were used to comprehensively 
enrolled and recorded all eligible publications. The retrieve 
formula was: (‘gene name’ OR ‘abbreviation of gene name’) 
AND (‘cancer’ OR ‘tumor’ OR ‘carcinoma’ OR ‘neoplasms’) 
AND (‘polymorphism’ OR ‘mutation’ OR ‘variant’ OR 
‘SNP’ OR ‘genotype’). We also reviewed each reference 
of eligible articles, avoiding to missing any additional 
conform-to-criteria study. The entire retrieval was finished 
on October 5th, 2019. All enrolled studies were published in 
primary literature without any replication one. In addition, 
for these polymorphisms, whose eligible case-control 
studies are less than three will be excluded.

Enrolled criteria and exclusion criteria

There are several criteria which should be conformed are: 
(I) assessing whether the gene polymorphisms of BER 
pathway affect LC risk; (II) studies with specific case group 
and control group; and (III) genotype frequencies could 
be obtained directly or after calculating. Meanwhile, some 
other criteria should not be touched: (I) lacking control 
group, such as case-only study or review and (II) lacking 
sufficient genotype data. 

Extraction of basic data

The ground on the enrollment standard mentioned 
above, all the basic data was extracted by two independent 
reviewers, accompany with an argument, discussion and 
reach an agreement. In each publication, several items were 
recorded, including the name of the first author, year of 
publication, ethnicity, source of control, number of each 
genotype group, and so on. Finally, we also estimated the 
quality of each enrolled study with the help of Newcastle-
Ottawa Scale (NOS).

Statistical analysis

Hardy-Weinberg equilibrium (HWE) in the control group 
was tested, and P>0.05 means that the study does not 
deviate from HWE (30). Strength of the links between 
polymorphisms in BER pathway gene and LC risk was 
evaluated through calculating ORs and 95% CIs in five 
genetic models (W present for wild type allele; M present 
for mutant allele): allele contrast model (M vs. W), 
dominant contrast model (MM + MW vs. WW), recessive 

http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSet Name=KEGG_BASE_EXCISION_REPAIR&keywords=BASE EXCISION REPAIR
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contrast model (MM vs. MW + WW), homozygous contrast 
model (MM vs. WW), and heterozygous contrast model 
(MW vs. WW). After that, subgroup analysis stratified by 
different items were also conducted. I2 statistics were used 
to evaluate the heterogeneity assumption between studies 
in each calculating group, aim to obtain the quantified 
inconsistency caused by heterogeneity (31). Among these 
studies, I2 value was regarded as a significant heterogeneity 
if it is higher than 50% (32), and random-effect model was 
performed the calculated the pooled OR and 95% CI; on 
the contrast, fixed-effect model will be hireling (33). To 
confirm the veracity of result, we use sensitivity analysis 
to assess the stability of results, use Begg’s funnel plot and 
Egger’s test to appraise any publication bias (34). We use 
STATA (version 12.0; STATA Corp.) to calculate all the 
results, and P<0.05 was regarded as statistically significant.

Results 

The studies and meta-analysis data pool 

After searching in diverse databases, we retrieved 116 
publications comprising 202 case-control studies that met 
inclusion and exclusion criteria (at least three eligible case-
control studies should be enrolled for each polymorphism). 
These publications concerned about five BER pathway gene, 
including X-Ray Repair Cross Complementing 1 (XRCC1), 
Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1), 
DNA Ligase 1 (LIG1), 8-Oxoguanine DNA Glycosylase 
(OGG1) and MutY DNA Glycosylase (MUTYH) gene. In 
Table 1, characteristics and genotype frequency distributions 
of all enrolled studies for BER pathway gene were showed, 
including XRCC1-rs1799782/rs25487 (35-60), rs25489/
rs3213245 (61-85), rs3547/rs915927 (86-90), PARP1-rs1136410 
(87,91-94), APEX1-rs1130409/rs1760944/rs2307486 
(42,43,47,74,76,79,80,89,92,95-101), LIG1-rs156641/rs20579/
rs20581/rs3730931/rs439132 (64,71,102,103), OGG1-
rs1052133 (43,47,49,70,72,74,84,85,89,92,104-126) and 
MUTYH-rs3219489 (104,115,118,127) polymorphisms, and 
the selection process of current work was described in Figure 1.  
For this study, we performed each process along with PRISMA 
2009 checklist (Table 2), and with the aid of NOS, we also 
assessed each enrolled study, most of the enrolled study is 
higher than 7 star, which represented the good quality (129).

Meta-analysis

XRCC1 polymorphisms and LC risk
We investigated six polymorphisms in XRCC1 gene and LC 

risk, including rs1799782, rs25487, rs25489, rs3213245, 
rs3547 and rs915927 polymorphisms (Table 3). Overall, 
rs3213245 polymorphism was observed associated with 
a significantly raised susceptibility of LC in homozygote 
contrast model and recessive contrast model (MM vs. WW: 
OR 2.023, 95% CI: 1.452–2.819, P=3.124×10−5, Figure 2A;  
MM vs. MW + WW: OR 1.926, 95% CI: 1.396–2.656, 
P=6 .468×10−5,  Figure 2B) ,  while for other genetic 
polymorphisms, overall analyses uncovered no remarkable 
association. In addition, for rs3213245 polymorphism, in 
the ethnicity subgroup analysis, a meaningful upward risk of 
LC for Asian population was also uncovered in homozygote 
and recessive models. While for the subgroup analysis by 
source of control subgroup, we uncovered a remarkable 
upgrade risk of LC for H-B groups in allelic contrast, 
heterogeneous and dominant models. Furthermore, for 
rs915927 polymorphism, we also performed the subgroup 
analysis in different ethnicity and source of control, and 
identified the raised risk for Asian, H-B group in allelic 
contrast model, heterozygous model, as well as dominant 
model. For rs25487 polymorphism, overall analysis 
suggested a null association. We identified that HWE (N) 
group was associated with LC risk in allelic, homozygote, 
and recessive models, suggesting potential bias existed. After 
removing the HWE (N) studies from the pooled analyses, 
and the final results also suggested a negative result for 
XRCC1-rs25487 polymorphism.

APEX1 polymorphism and LC risk
For rs1760944 polymorphism, overall analysis suggested 
a sharp reduced risk of LC in allelic, homozygote and 
recessive models (M vs. W: OR 0.851, 95% CI: 0.786–0.922, 
P=7.243×10−5, Figure 2C; MM vs. WW: OR 0.705, 95% CI: 
0.598–0.832, P=3.409×10−5; and MM vs. MW + WW: OR 
0.780, 95% CI: 0.684–0.889, P=1.927×10−4, Table 3).

OGG1 polymorphism and LC risk
For OGG1-rs1052133 polymorphism, the recessive model 
showed an increased risk overall group (MM vs. MW + WW: 
OR 1.157, 95% CI: 1.071–1.249, P=2.119×10−4, Figure 2D).  
In addition, when the stratification analysis of Asian 
subgroup, we illustrated a significantly increased risk of LC 
in allelic contrast model and homozygote model (Table 3). 

Other gene polymorphism and LC risk
While for other polymorphisms in genes the BER pathway, 
such as LIG1-rs156641, MUTYH-rs3219489, we failed to 
identify any significant association.
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Table 1 Details of enrolled studies for current meta-analysis and systematic review

Gene-polymorphism First author Year Ethnicity
Source of 

control

Case Control

WW MW MM WW MW MM Y (HWE)

XRCC1-rs1799782 David-Beabes et al. 2001 African P-B 142 10 2 205 36 2 Y

David-Beabes et al. 2001 Caucasian P-B 158 22 0 407 54 0 Y

Chen et al. 2002 Asian P-B 48 44 11 57 40 5 Y

Ratnasinghe et al. 2003 Asian P-B 52 47 9 85 104 21 Y

Shen et al. 2005 Asian P-B 65 41 12 64 40 8 Y

Chan et al. 2005 Asian H-B 50 22 3 79 67 16 Y

Schneider et al. 2005 Caucasian H-B 389 53 4 544 75 3 Y

Hung et al. 2005 Caucasian H-B 1878 259 10 1828 292 12 Y

Hu et al. 2005 Asian H-B 335 311 64 339 308 63 Y

Zienolddiny et al. 2006 Caucasian P-B 309 26 1 368 35 2 Y

Landi et al. 2006 Caucasian H-B 263 32 1 262 53 1 Y

Matullo et al. 2006 Caucasian Mixed 98 16 2 951 141 2 Y

Hao et al. 2006 Asian P-B 524 409 91 572 459 87 Y

De Ruyck et al. 2007 Caucasian H-B 101 8 1 93 17 0 Y

Pachouri et al. 2007 Caucasian P-B 40 39 24 52 47 23 N

Improta et al. 2008 Caucasian P-B 78 9 7 104 17 0 Y

Yin et al. 2008 Asian H-B 120 98 23 119 109 21 Y

Li et al. 2008 Asian H-B 184 136 30 196 133 21 Y

Chang et al. 2009 African P-B 221 34 0 248 31 1 Y

Yin et al. 2009 Asian H-B 29 21 1 28 38 8 Y

Chang et al. 2009 Caucasian P-B 89 23 1 223 66 10 Y

Tanaka et al. 2010 Asian H-B 28 15 7 25 23 2 Y

Buch et al. 2011 Caucasian H-B 682 36 2 839 83 6 N

Mei et al. 2013 Asian P-B 138 90 23 155 119 27 Y

Du et al. 2014 Asian P-B 68 33 19 88 21 11 N

Yoo et al. 2014 Asian P-B 281 249 67 268 255 54 Y

Cătană et al. 2015 Caucasian P-B 89 3 10 197 22 3 N

Han et al. 2015 Asian P-B 99 90 21 106 87 17 Y

Zhu et al. 2015 Asian P-B 180 137 3 111 206 29 N

Singh et al. 2016 Caucasian P-B 256 72 2 267 55 3 Y

XRCC1-rs25487 Divine et al. 2001 Caucasian H-B 82 61 29 65 64 14 Y

David-Beabes et al. 2001 African P-B 105 46 3 164 70 9 Y

Ratnasinghe et al. 2001 Asian P-B 59 40 8 117 80 11 Y

David-Beabes et al. 2001 Caucasian P-B 87 76 17 186 217 58 Y

Chen et al. 2002 Asian P-B 55 43 5 52 40 7 Y

Park et al. 2002 Asian P-B 100 75 17 81 48 6 Y

Misra et al. 2003 Caucasian P-B 151 140 24 154 130 29 Y

Zhou et al. 2003 Caucasian P-B 467 468 156 551 545 143 Y

Harms et al. 2004 Caucasian H-B 59 42 9 56 55 8 Y

Vogel et al. 2004 Caucasian H-B 117 104 35 108 121 40 Y

Ito et al. 2004 Asian H-B 98 66 14 253 169 26 Y

Table 1 (continued)
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Table 1 (continued)

Gene-polymorphism First author Year Ethnicity
Source of 

control

Case Control

WW MW MM WW MW MM Y (HWE)

Popanda et al. 2004 Caucasian H-B 186 214 63 171 222 67 Y

Liu et al. 2004 Caucasian H-B 400 397 138 551 539 143 Y

Li et al. 2005 Asian H-B 22 20 8 27 21 2 Y

Shen et al. 2005 Asian P-B 72 40 4 54 51 4 Y

Chan et al. 2005 Asian H-B 40 31 4 90 61 11 Y

Schneider et al. 2005 Caucasian H-B 199 198 49 264 280 78 Y

Hu et al. 2005 Asian H-B 378 284 48 370 282 58 Y

Zhang et al. 2005 Asian H-B 535 363 102 531 380 89 Y

Hung et al. 2005 Caucasian H-B 844 951 254 874 881 260 Y

Zienolddiny et al. 2006 Caucasian P-B 129 171 31 151 186 54 Y

Hao et al. 2006 Asian H-B 566 376 82 585 432 101 Y

Matullo et al. 2006 Caucasian Mixed 51 58 7 484 482 128 Y

De Ruyck et al. 2007 Caucasian H-B 38 53 18 46 50 13 Y

Yin et al. 2007 Asian H-B 138 65 2 132 52 9 Y

Pachouri et al. 2007 Caucasian P-B 53 38 12 35 70 17 Y

López-Cima et al. 2007 Caucasian H-B 222 219 75 217 234 82 Y

Improta et al. 2008 Caucasian P-B 42 41 11 53 61 7 N

Sreeja et al. 2008 Caucasian P-B 78 86 47 102 80 29 N

Li et al. 2008 Asian H-B 168 139 43 201 123 26 Y

Yin et al. 2009 Asian H-B 31 13 1 36 15 1 Y

Cote et al. 2009 African P-B 86 23 6 88 28 5 Y

Chang et al. 2009 African P-B 182 69 4 209 65 5 Y

Chang et al. 2009 Caucasian P-B 54 47 12 155 127 16 Y

Cote et al. 2009 Caucasian P-B 172 159 56 160 200 46 Y

Li et al. 2011 Asian H-B 236 193 26 220 196 27 Y

Kiyohara et al. 2012 Asian H-B 243 171 48 242 121 16 Y

Natukula et al. 2013 Caucasian P-B 40 19 41 55 10 36 N

Ouyang et al. 2013 Asian P-B 52 22 8 105 86 10 Y

Mei et al. 2013 Asian P-B 142 95 14 145 126 30 Y

Letkova et al. 2013 Caucasian P-B 138 202 42 157 185 37 Y

Du et al. 2014 Asian P-B 81 16 23 95 15 10 N

Sarlinova et al. 2014 Caucasian P-B 17 24 9 23 41 5 N

Uppal et al. 2014 Caucasian P-B 18 32 50 12 65 23 N

Saikia et al. 2014 Caucasian P-B 146 103 23 322 188 34 Y

Yoo et al. 2014 Asian P-B 344 207 47 313 245 33 Y

Han et al. 2015 Asian P-B 156 34 20 164 30 16 N

Wang et al. 2015 Asian P-B 259 24 217 273 43 184 N

Zhu et al. 2015 Asian P-B 221 80 19 269 72 5 Y

Cătană et al. 2015 Caucasian P-B 43 43 16 112 86 24 Y

Liu et al. 2016 Asian P-B 162 114 32 162 81 10 Y

Table 1 (continued)
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Table 1 (continued)

Gene-polymorphism First author Year Ethnicity
Source of 

control

Case Control

WW MW MM WW MW MM Y (HWE)

Singh et al. 2016 Caucasian P-B 93 186 51 79 176 70 Y

XRCC1-rs25489 Ratnasinghe et al. 2001 Asian P-B 83 20 3 177 32 0 Y

Misra et al. 2003 Caucasian P-B 260 47 2 260 42 0 Y

Vogel et al. 2004 Caucasian H-B 229 26 1 241 28 0 Y

Shen et al. 2005 Asian P-B 76 30 5 81 28 1 Y

Schneider et al. 2005 Caucasian H-B 404 40 2 562 60 0 Y

Hung et al. 2005 Caucasian H-B 1901 181 6 1896 190 6 Y

Zienolddiny et al. 2006 Caucasian P-B 296 31 2 350 24 3 N

Hao et al. 2006 Asian H-B 848 169 7 904 204 10 Y

De Ruyck et al. 2007 Caucasian H-B 105 4 0 96 14 0 Y

Yin et al. 2008 Asian H-B 190 46 2 179 59 4 Y

Li et al. 2008 Asian H-B 266 79 5 74 72 4 N

Yin et al. 2009 Asian H-B 41 7 1 52 18 2 Y

Chang et al. 2009 Caucasian P-B 86 25 1 242 51 5 Y

Yoo et al. 2014 Asian P-B 506 88 5 448 127 5 Y

Han et al. 2015 Asian P-B 100 87 23 109 82 19 Y

Singh et al. 2016 Caucasian P-B 32 250 48 26 268 31 N

XRCC1-rs3213245 Hu et al. 2005 Asian H-B 500 198 12 558 148 4 Y

Hao et al. 2006 Asian H-B 783 223 18 924 182 12 Y

De Ruyck et al. 2007 Caucasian H-B 37 53 19 40 52 18 Y

Li et al. 2008 Asian H-B 264 75 11 291 55 4 Y

Hsieh et al. 2009 Asian P-B 251 40 3 250 37 1 Y

Tang et al. 2014 Asian P-B 212 163 45 225 181 19 N

Yoo et al. 2015 Asian P-B 494 104 4 462 111 4 Y

XRCC1-rs3547 Yin et al. 2008 Asian H-B 183 43 1 191 49 2 Y

Yin et al. 2009 Asian H-B 35 12 0 61 9 1 Y

Chang et al. 2009 Caucasian P-B 62 45 6 177 99 23 Y

Chang et al. 2009 African P-B 114 104 37 126 122 32 Y

Singh et al. 2016 Caucasian P-B 61 142 127 124 127 74 N

XRCC1-rs915927 Matullo et al. 2006 Caucasian Mixed 36 58 22 342 508 243 N

Yin et al. 2008 Asian H-B 169 68 2 203 43 0 Y

Yin et al. 2009 Asian H-B 36 14 1 66 7 0 Y

Singh et al. 2016 Caucasian P-B 134 164 32 147 139 39 Y

APEX1-rs1130409 Misra et al. 2003 Caucasian P-B 64 167 79 65 160 77 Y

Ito et al. 2004 Asian H-B 62 84 32 159 226 64 Y

Popanda et al. 2004 Caucasian H-B 135 235 89 118 233 106 Y

Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y

Zienolddiny et al. 2006 Caucasian P-B 117 67 80 138 60 122 N

Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y

De Ruyck et al. 2007 Caucasian H-B 21 60 29 41 41 28 N

Table 1 (continued)
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Table 1 (continued)

Gene-polymorphism First author Year Ethnicity
Source of 

control

Case Control

WW MW MM WW MW MM Y (HWE)

Agachan et al. 2009 Caucasian P-B 38 40 20 45 17 5 Y

Lu et al. 2009 Asian H-B 182 228 90 176 265 76 Y

Lo et al. 2009 Asian H-B 261 349 119 272 332 118 Y

Deng et al. 2010 Asian P-B 123 143 49 97 159 58 Y

Li et al. 2011 Asian H-B 179 199 77 172 213 58 Y

Xue et al. 2013 Asian H-B 116 183 111 130 190 90 Y

Pan et al. 2013 Asian H-B 48 273 498 25 247 531 Y

Li et al. 2014 Asian H-B 2 11 3 50 46 14 Y

Sevilya et al. 2015 Caucasian H-B 34 50 15 42 46 11 Y

APEX1-rs1760944 Lu et al. 2009 Asian H-B 184 241 75 170 238 109 Y

Lo et al. 2009 Asian H-B 271 332 122 234 341 153 Y

Li et al. 2011 Asian H-B 162 227 66 143 206 94 Y

Pan et al. 2013 Asian H-B 114 384 321 98 369 336 Y

Li et al. 2014 Asian H-B 3 10 3 36 56 18 Y

APEX1-rs2307486 Zienolddiny et al. 2006 Caucasian P-B 263 76 1 276 124 10 Y

Lo et al. 2009 Asian H-B 669 59 0 659 64 2 Y

Li et al. 2014 Asian H-B 11 2 0 103 7 0 Y

OGG1-rs1052133 Kohno et al. 1998 Asian Mixed 16 19 10 15 20 7 Y

Sugimura et al. 1999 Mixed H-B 85 115 41 63 107 27 Y

Wikman et al. 2000 Caucasian P-B 68 32 5 60 43 2 Y

Marchand et al. 2002 Mixed P-B 15 31 29 29 48 19 Y

Marchand et al. 2002 Caucasian P-B 78 39 9 98 53 8 Y

Sunaga et al. 2002 Asian H-B 54 106 38 50 66 36 Y

Marchand et al. 2002 Asian P-B 30 40 27 50 74 26 Y

Ito et al. 2002 Asian H-B 40 71 27 68 118 54 Y

Lan et al. 2004 Asian P-B 37 61 20 51 43 15 Y

Park et al. 2004 Caucasian P-B 88 60 12 255 87 8 Y

Vogel et al. 2004 Caucasian P-B 149 93 14 159 91 19 Y

Liang et al. 2005 Asian H-B 27 132 68 28 123 76 N

Hung et al. 2005 Caucasian H-B 1401 661 93 1368 716 79 Y

Loft et al. 2006 Caucasian P-B 144 93 14 154 88 19 Y

Zienolddiny et al. 2006 Caucasian P-B 182 100 44 194 117 75 N

Kohno et al. 2006 Asian H-B 285 544 268 123 190 81 Y

Sorensen et al. 2006 Caucasian P-B 254 155 22 479 284 33 Y

Matullo et al. 2006 Caucasian P-B 66 46 4 673 371 50 Y

De Ruyck et al. 2007 Caucasian H-B 74 33 3 60 46 4 Y

Hatt et al. 2008 Caucasian P-B 92 58 8 93 59 12 Y

Karahalil et al. 2008 Caucasian H-B 86 65 14 115 106 29 Y

Miyaishi et al. 2009 Asian H-B 27 55 26 39 54 28 Y

Chang et al. 2009 African P-B 170 78 6 202 70 8 Y

Table 1 (continued)
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Table 1 (continued)

Gene-polymorphism First author Year Ethnicity
Source of 

control

Case Control

WW MW MM WW MW MM Y (HWE)

Chang et al. 2009 Caucasian P-B 53 47 12 135 132 29 Y

Chang et al. 2009 Asian P-B 142 518 436 154 482 361 Y

Okasaka et al. 2009 Asian H-B 117 257 141 250 544 236 Y

Liu et al. 2010 Asian H-B 68 158 132 110 294 312 N

Janik et al. 2011 Caucasian H-B 48 24 16 57 21 1 Y

Li et al. 2011 Asian H-B 83 208 164 60 219 164 Y

Qian et al. 2011 Asian H-B 100 288 193 125 291 185 Y

Cheng et al. 2012 Asian P-B 26 9 15 17 3 10 N

Ouyan et al. 2013 Asian P-B 14 42 26 40 94 67 Y

Letkova et al. 2013 Caucasian P-B 244 119 19 250 110 18 Y

Xue et al. 2013 Asian H-B 55 178 177 68 200 142 Y

Doherty et al. 2013 Caucasian P-B 440 265 39 873 519 85 Y

Wang et al. 2015 Asian P-B 77 182 241 80 165 25 N

Qin et al. 2016 Asian P-B 59 121 37 72 124 30 N

LIG1-rs20579 Landi et al. 2006 Caucasian Mixed 206 73 6 245 61 0 Y

Chang et al. 2008 Caucasian P-B 72 36 5 217 75 7 Y

Chang et al. 2008 African P-B 150 92 13 137 117 26 Y

Lee et al. 2008 Caucasian P-B 294 118 11 586 187 7 Y

Sakoda et al. 2012 Caucasian P-B 583 141 18 1126 312 36 N

LIG1-rs3730931 Landi et al. 2006 Caucasian Mixed 220 64 5 255 52 2 Y

Chang et al. 2008 Caucasian P-B 79 30 4 226 67 6 Y

Chang et al. 2008 African P-B 151 92 11 158 103 19 Y

Sakoda et al. 2012 Caucasian P-B 595 137 11 1137 313 26 Y

LIG1-rs156641 Chang et al. 2008 African P-B 189 62 4 215 60 5 Y

Chang et al. 2008 Caucasian P-B 59 43 11 143 126 30 Y

Sakoda et al. 2012 Caucasian P-B 271 352 121 596 709 164 N

LIG1-rs20581 Chang et al. 2008 African P-B 176 73 6 199 68 13 N

Chang et al. 2008 Caucasian P-B 38 48 27 89 151 59 Y

Lee et al. 2008 Caucasian P-B 78 148 86 142 346 155 Y

LIG1-rs439132 Chang et al. 2008 Caucasian P-B 108 5 0 269 29 1 Y

Lee et al. 2008 Caucasian P-B 326 39 6 585 54 2 Y

Chang et al. 2008 African P-B 129 112 14 117 91 12 Y

MUTYH-rs3219489 Al-tassan et al. 2003 Caucasian P-B 142 109 14 58 36 7 Y

Miyaishi et al. 2009 Asian P-B 22 57 29 37 69 15 N

Qian et al. 2011 Asian P-B 230 261 90 243 283 77 Y

Doherty et al. 2013 Caucasian P-B 417 279 42 825 562 79 Y

PARP1-rs1136410 Zhang et al. 2005 Asian H-B 307 509 184 359 504 137 Y

Yin et al. 2011 Mixed H-B 117 35 7 50 12 2 Y

Xue et al. 2013 Asian H-B 129 202 79 138 205 67 Y

Yu et al. 2014 Asian H-B 46 164 163 34 164 162 Y

Wang et al. 2015 Asian P-B 151 97 252 14 109 251 Y

M, mutant allele; W, wild type allele; P-B, population-based; H-B, hospital-based; Mixed, more than one ethnicity; N.A., not mentioned; Y, studies that 

conforms to HWE; N, study that deviates from HWE.
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Figure 1 Flow chart showing the study selection process.
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Table 2 PRISMA 2009 checklist

Section/topic # Checklist item Reported on page # 

Title 1 Identify the report as a systematic review, meta-analysis, or both. Page 1 

Abstract 

Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data 
sources; study eligibility criteria, participants, and interventions; study appraisal and 
synthesis methods; results; limitations; conclusions and implications of key findings; 
systematic review registration number. 

Page 2–3

Introduction 

Rationale 3 Describe the rationale for the review in the context of what is already known. Page 4–5

Objectives 4 Provide an explicit statement of questions being addressed with reference to 
participants, interventions, comparisons, outcomes, and study design (PICOS). 

Page 5

Methods

Protocol and 
registration 

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web 
address), and, if available, provide registration information including registration 
number. 

N/A

Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report 
characteristics (e.g., years considered, language, publication status) used as criteria 
for eligibility, giving rationale. 

Study selection:  
page 6–7

Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact 
with study authors to identify additional studies) in the search and date last searched. 

Search strategy:  
page 5–6,

Search 8 Present full electronic search strategy for at least one database, including any limits 
used, such that it could be repeated. 

Search strategy:  
page 5

Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in 
systematic review, and, if applicable, included in the meta-analysis). 

Figure 1

Data collection 
process 

10 Describe method of data extraction from reports (e.g., piloted forms, independently, 
in duplicate) and any processes for obtaining and confirming data from investigators. 

Data extraction and 
quality assessment: 
page 7

Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding 
sources) and any assumptions and simplifications made. 

Data extraction and 
quality assessment: 
page 7

Risk of bias in  
individual studies 

12 Describe methods used for assessing risk of bias of individual studies (including 
specification of whether this was done at the study or outcome level), and how this 
information is to be used in any data synthesis. 

Statistical analysis: 
page 8

Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). Statistical analysis: 
page 8

Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, 
including measures of consistency (e.g., I2) for each meta-analysis. 

Statistical analysis: 
page 8

Section/topic 

Risk of bias across 
studies 

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., 
publication bias, selective reporting within studies). 

Statistical analysis: 
page 8

Additional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, 
meta-regression), if done, indicating which were pre-specified. 

Statistical analysis: 
page 8

Table 2 (continued)
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Table 2 (continued)

Section/topic # Checklist item Reported on page # 

Results 

Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, 
with reasons for exclusions at each stage, ideally with a flow diagram. 

Description of studies: 
page 8–9

Study characteristics 18 For each study, present characteristics for which data were extracted (e.g., study 
size, PICOS, follow-up period) and provide the citations. 

Table 1–3

Risk of bias within 
studies 

19 Present data on risk of bias of each study and, if available, any outcome level 
assessment (see item 12). 

Page 10–12

Results of individual 
studies 

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple 
summary data for each intervention group (b) effect estimates and confidence 
intervals, ideally with a forest plot. 

Page 10–12

Synthesis of results 21 Present results of each meta-analysis done, including confidence intervals and 
measures of consistency. 

Page 10–12

Risk of bias across 
studies 

22 Present results of any assessment of risk of bias across studies (see Item 15). Page 10–12

Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, 
meta-regression [see Item 16)]. 

page 10

Discussion 

Summary of evidence 24 Summarize the main findings including the strength of evidence for each main 
outcome; consider their relevance to key groups (e.g., healthcare providers, users, 
and policy makers). 

Page 13–15

Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level 
(e.g., incomplete retrieval of identified research, reporting bias). 

Page 15

Conclusions 26 Provide a general interpretation of the results in the context of other evidence, and 
implications for future research. 

Page 17

Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply 
of data); role of funders for the systematic review. 

Page 17

Adapted from ref. (128).

Evaluation of stability and publication bias
The test of the stability of results was assessed by sensitivity 
analysis, each time we separated one study form data pool, 
and reviewed whether it affects the ORs and 95% CIs. The 
results displayed that no substantial change for XRCC1-
rs1799782/rs25487/rs25489/rs3213245/rs3547/rs915927, 
LIG1-rs156641/rs20579/rs20581/rs3730931/rs439132, 
APEX1-rs1130409/rs1760944/rs2307486,  PARP1-
rs1136410, OGG1-rs1052133 and MUTYH-rs3219489 
polymorphisms.

For behalf of evaluating potential publication bias, 
we use Begg’s funnel plot and Egger’s test. Significant 
publication bias may reflect differences in control options, 
age distributions and other lifestyles. Finally, the shape of 
Begg’s funnel plot in each polymorphism is symmetrical, 

while the P value of Egger’s test in each polymorphism and 
subgroup is higher than 0.05, indicating no evidence of 
publication bias was found (Table 4).

Discussion 

The stability of the general genomic sequence is sustained 
by a pivotal gene family, BER signaling pathway. In human 
cells, the inability of remove endogenous DNA damage 
would link with single nucleotide polymorphisms (130-132).  
On the other hand, the abnormal process occurs on BER 
pathway or the enzymes mediate it would finally lead to 
the instable cell chromosomal (133). Recently, increasing 
evidence suggested that genetic variants in the BER pathway 
were associated with LC risk. However, these results were 
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inclusive or even controversial. Therefore, we presented 
the comprehensively updated meta-analysis, aiming to 
systematically screen out the LC risk or protective factors 
within genes of the BER pathway.

Firstly, we investigated the XRCC1, a crucial element 
of the BER system, it has multiple key roles in the repair 
process of DNA single nucleotide polymorphism (134,135). 
We analyzed six commonly studied polymorphisms in 
XRCC1, and overall analyses suggested that MM genotype 
of rs3213245 (−77T > C) polymorphism was linked to a 
sharply enhanced risk of LC compared with WW and 
MW/WW genotypes, and not the rs25487 and rs1799782 
polymorphisms, which were proved associated with LC 
risk in Chen et al.’s meta-analysis work (136). In addition, 

rs3213245-MM genotype was also combined with an 
increased hazard of LC for Asian population. For XRCC1 
rs3213245 polymorphism, the affinity of XRCC1 promoter 
region to nuclear protein Sp1 would be enhanced by T to 
C mutation, caused the inhibition of its transcription (40). 
In our study, seven studies were focused on the correlation 
of rs3213245 polymorphism and LC risk, and the overall 
results suggested that the risk in MM genotype group was 
2.023 and 1.926-fold raised than WW group and MW + 
WW group, respectively, almost consistent with Vineis  
et al.’s (137) findings. 

In addition, the overall calculate illustrated a negative 
association between XRCC1-rs915927 and LC, but we also 
identified that M allele, MW and MW + MM genotypes 

Table 3 Significant results of the association between polymorphisms in BER pathway gene and LC risk

SNP Comparison Subgroup N PH PZ Random OR (95% CI) Fixed OR (95% CI)

XRCC1-rs3213245 MM vs. WW Overall 7 0.512 3.124*10−5 1.992 (1.422–2.791) 2.023 (1.452–2.819)

MM vs. MW + WW Overall 7 0.434 6.468*10−5 1.894 (1.365–2.627) 1.926 (1.396–2.656)

MM vs. WW Asian 6 0.720 1.169*10−5 2.260 (1.556–3.284) 2.285 (1.579–3.306)

MM vs. MW + WW Asian 6 0.730 1.660*10−5 2.208 (1.526–3.193) 2.231 (1.549–3.215)

M vs. W H-B 4 0.406 1.970*10−8 1.433 (1.263–1.625) 1.433 (1.264–1.625)

MW vs. WW H-B 4 0.820 6.322*10−7 1.446 (1.251–1.672) 1.446 (1.251–1.672)

MW + MM vs. WW H-B 4 0.723 4.140*10−8 1.485 (1.289–1.710) 1.485 (1.289–1.710)

XRCC1-rs915927 M vs. W Asian 2 0.180 9.975*10−5 2.292 (1.226–4.284) 2.071 (1.435–2.988)

MW vs. WW Asian 2 0.234 2.147*10−4 2.252 (1.280–3.962) 2.111 (1.421–3.136)

MW + MM vs. WW Asian 2 0.203 9.341*10−5 2.395 (1.287–4.455) 2.191 (1.478–3.247)

M vs. W H-B 2 0.180 9.975*10−5 2.292 (1.226–4.284) 2.071 (1.435–2.988)

MW vs. WW H-B 2 0.234 2.147*10−4 2.252 (1.280–3.962) 2.111 (1.421–3.136)

MW + MM vs. WW H-B 2 0.203 9.341*10−5 2.395 (1.287–4.455) 2.191 (1.478–3.247)

XRCC1-rs25487 M vs. W N 8 0.414 2.741*10−7 1.345 (1.199–1.508) 1.343 (1.200–1.502)

MM vs. WW N 8 0.471 4.463*10−5 1.481 (1.223–1.793) 1.486 (1.229–1.797)

MM vs. MW + WW N 8 0.102 3.663*10−7 1.758 (1.332–2.321) 1.592 (1.331–1.904)

APEX1-rs1760944 M vs. W Overall 5 0.530 7.243*10−5 0.851 (0.786–0.922) 0.851 (0.786–0.921)

MM vs. WW Overall 5 0.534 3.409*10−5 0.705 (0.598–0.832) 0.705 (0.598–0.832)

MM vs. MW + WW Overall 5 0.315 1.927*10−4 0.770 (0.663–0.895) 0.780 (0.684–0.889)

OGG1-rs1052133 MM vs. MW + WW Overall 31 0.106 2.119*10−4 1.143 (1.032–1.265) 1.157 (1.071–1.249)

M vs. W Asian 13 0.355 9.988*10−5 1.123 (1.054–1.196) 1.123 (1.059–1.191)

MM vs. WW Asian 13 0.353 3.585*10−4 1.242 (1.090–1.414) 1.244 (1.103–1.403)

M, mutant allele; W, wild type allele; P-B, population-based; H-B, hospital-based; Y, studies that conforms to HWE; N, study that deviates 
from HWE; PH, P value of heterogeneity test; Pz, adjusted P value of Z test [P<0.05/(17 polymorphisms * 5 genetic models)].
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led to an enhanced risk of LC for the Asian population. 
For the mechanism part, rs915927 leads to a synonymous 
mutation, which is a kind of mutation which may not 
influence the translation of amino acid product, however, 
this kind of mutation might change the translational 
efficiency of mRNA, therefore, non-synonymous mutations 
like XRCC1 rs1799782 (Arg194Trp) and XRCC1 rs25489 
(Arg280His) might regulate LC susceptibility, affecting 
complex assembly or repair efficiency (138). Furthermore, 
for another XRCC1-rs25487 polymorphism, we observed an 
enhanced risk of LC in allelic, homozygote, and recessive 

models for HWE (N) group, which tell us that there might 
be some potential bias caused by HWE status. Therefore, 
we decided to remove these HWE (N) studies from pooled 
analysis, and finally negative results were obtained. 

Secondly, APEX1 gene was also analyzed, which 
specifically activates DNA repair through the identification 
and cleavage of phosphodiester bonds on the 5' side of the 
basic site (139). APEX1 can also participate in oxidative 
stress, control of cell cycle, and apoptosis (140,141). 
Recent days, several researchers reported that APEX1 gene 
polymorphisms would influence the cancer risks (142-144), 

A B

C D

Figure 2 The forest plot of the meta-analysis for rs3213245 polymorphism. (A) Homozygous model and (B) recessive model, for rs1760944 
polymorphism. (C) Homozygous model, and for rs1052133 polymorphism (D) recessive model.
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as well as some meta-analyses (most of them only focus on a 
few variants) (145). In current work, we analyzed three most 
commonly polymorphisms reported in APEX1 (rs1130409, 
rs1760944 and rs2307486) and LC risk, and we found 
that M allele, MM genotype at rs1760944 were associated 
with a reduced risk of LC relative to W allele, WW and 
MW+WW genotypes, respectively. While for the other 
two polymorphisms, we failed to identify any significant 
correlations. 

In the progression of different types of cancers, APEX1 is 
another key role. For APEX1-rs1130409, Zhang et al. (146) 
reported that the G allele and GG/TG genotype associated 
with the decreased risk of ovarian carcinoma. However, 
Yuan et al. (147) revealed that rs1130409 do not play any 
role in head and neck neoplasms in Chinese, another 
study conducted in gastric cancer reported the same 
conclusion (148). In our work, we obtained the result that 
re1130409 is not associated with LC risks. For another 
role polymorphism in APEX1, Lu et al. (99) first reported 
the potential risk of rs1760944 in LC. In a study about 
Korean, rs1760944 was reported associated with the risk 
of gastric cancer, but another study conducted in Chinese 
indicated that GT or GG genotypes might have a higher 

survival rate (148,149). Dai et al. managed a meta-analysis, 
the result supported the conclusion that rs1760944 acts as 
a protector in cancer of Asian (150). Consistent with these 
data, we demonstrated that M allele and MM genotype 
were associated with a decreased risk of LC than W allele, 
WW and MW + WW genotypes. 

Another BER gene we analyzed here is OGG1, which 
plays a key role during the repair process of oxidative DNA 
damage. rs1052133 polymorphism had been reported 
could substitution Serene to Cysteine at codon 326, and 
influence the function of OGG1 protein (151). As reported 
by Wikman et al. (122), LC susceptibility might not be 
impacted by the OGG1 polymorphisms in Caucasians. 
Hung et al. (70) and Vogel et al. (84) also observed no link 
between OGG1 polymorphisms and LC susceptibility. Ito  
et al. (107) found that OGG1-rs1052133 polymorphism had 
no effect on the development of adenocarcinoma or small cell 
carcinoma. Whereas in our work, overall results suggested a 
null correlation for this polymorphism and LC risk.

In this meta-analysis, we comprehensively searched 
all available eligible studies to obtain the precise result. 
Some advantages of this study should be focused on. 
Firstly, a wide search was conducted to identify more 
qualified studies for each genetic variant in BER genes, 
therefore these analyses were persuasive and substantive. 
For example, several previous meta-analyses have been 
published concerning XRCC1 polymorphisms and LC risk, 
while they only focus limited polymorphisms on LC risk, 
and their results were not adjusted, increasing the false-
positive results rate. Secondly, we evaluated the quality of 
each registered research by NOS scale before calculating, 
and eliminated low-quality studies. and adjusted all the 
results according to Bonferroni corrections, making the 
conclusions more convincing. Thirdly, according to the 
subgroup, we also conducted the stratification analyses by 
ethnicity, source of controls, tumor type or race, in order 
to eliminate the influence of heterogeneity. Fourthly, the 
sensitivity analysis was performed to confirm the stability of 
the obtained results, and Egger’s test and Begg’s funnel plot 
were performed to draw out the potential publication bias. 

Several disadvantages should also be displayed to avoid 
any incorrect understanding of the results. First of all, there 
were no sufficient samples for the analyses of some variants, 
and it might prove an undependable association between 
polymorphisms and LC. For example, there are only 3 or 4 
studies in APEX1-rs2307486, LIG1-rs156641 and PARP1-
rs1136410, more studies conducted in these polymorphisms 
are needed to reveal a more convincible result in the future. 

Table 4 Egger’s regression test for polymorphisms in BER pathway 
gene

Gene Polymorphism Egger’s test (P > |t|)

XRCC1 rs1799782 0.896

rs25487 0.248

rs25489 0.99

rs3213245 0.497

rs3547 0.565

rs915927 0.115

LIG1 rs156641 0.377

rs20579 0.401

rs20581 0.388

rs3730931 0.127

rs439132 0.589

APEX1 rs1130409 0.006

rs1760944 0.312

rs2307486 0.38

PARP1 rs1136410 0.603

OGG1 rs1052133 0.337
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Moreover, only the articles in English were enrolled, 
which might miss the important result in other languages 
and countries. Finally, the detail information about the 
histological result of each LC patient was missed, so the 
stratification analyses based on histological type and the 
clinical stage could not be conducted. 

Conclusions

To conclude, this meta-analysis shows that XRCC1-
rs3213245 and OGG1-rs1052133 polymorphisms are risk 
factors for LC, while APEX1-rs1760944 polymorphism is a 
protective factor. Future studies with larger sample size are 
warranted to verify these findings.
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