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Assortativity is the tendency of individuals connected in a network to share traits and behaviors. Through
simulations, we demonstrated the potential for bias resulting from assortativity by vaccination, where vaccinated
individuals are more likely to be connected with other vaccinated individuals. We simulated outbreaks of a
hypothetical infectious disease and vaccine in a randomly generated network and a contact network of university
students living on campus. We varied protection of the vaccine to the individual, transmission potential of
vaccinated-but-infected individuals, and assortativity by vaccination. We compared a traditional approach, which
ignores the structural features of a network, with simple approaches which summarized information from the
network. The traditional approach resulted in biased estimates of the unit-treatment effect when there was
assortativity by vaccination. Several different approaches that included summary measures from the network
reduced bias and improved confidence interval coverage. Through simulations, we showed the pitfalls of ignoring
assortativity by vaccination. While our example is described in terms of vaccines, our results apply more
widely to exposures for contagious outcomes. Assortativity should be considered when evaluating exposures
for contagious outcomes.

assortativity; contagious outcomes; infectiousness; interference; networks

Abbreviation: eX-FLU Study, Study of Exclusion Criteria in a University Population.

Interference—dependence of an individual’s potential out-
come on their exposure status and the exposure status of
others—has long been recognized in the vaccine literature
(1–3). Previous work has delineated potential estimands (2,
4–6). The average unit-treatment (i.e., direct) effect, the
contrast between average risk with vaccination versus no
vaccination (2, 5), is a common estimand in epidemiology
and is used to calculate direct vaccine effectiveness (2).
For estimation of the unit-treatment effect, researchers must
assume that all else is equal between vaccinated and unvac-
cinated individuals. Differential likelihood of exposure to
a pathogen (pathogen exposure) by vaccination status has
long been recognized as a violation of this principle (1,
2, 7, 8). Recent work has shown that some definitions for
unit-treatment effects may result in differential pathogen
exposures to contagious outcomes (9). Other work has
demonstrated that it is possible to estimate the unit-treatment
effect without explicit knowledge of the interference pattern

in randomized trials (10). However, both of these previous
results relied on vaccination assignment being independent
of other units’ assignments, which may not readily extend
to observational studies.

The previous literature has focused on clusters (11), where
only members who belong to the same cluster can transmit
to each other. Network-based approaches instead assume
that transmission occurs between individuals connected by
an edge, regardless of cluster membership. Prior work has
demonstrated how the distribution of vaccination in a net-
work affects the size of the outbreak (12, 13). In fact, dis-
tributions of vaccination in networks have been used as a
strategy to reduce the number of overall infections, such as
the ring vaccination strategies for smallpox (14) and Ebola
(15). Within network analysis, assortativity is the tendency
for individuals connected in a network to share similar
traits and behaviors (16), potentially arising from various
mechanisms (17). Regarding vaccines, previous work has
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observed assortativity for influenza vaccination (12). The
occurrence of assortativity violates the assumption of all else
being equal between vaccinated and unvaccinated individu-
als, possibly resulting in bias.

Our purpose in this paper is to explore bias of the unit-
treatment risk ratio incurred by ignoring assortativity by
vaccination, where vaccinated individuals are more likely
to share connections with other vaccinated individuals. We
present simulations for a hypothetical infectious disease
outbreak demonstrating that assortativity by vaccination
can lead to biased results, and we explore several simple
remedies. These approaches operate by including network
features in regression models to account for dependencies
between observations. While we frame our simulations as a
hypothetical vaccine, the biases that are demonstrated here
can be generalized to other interventions on other contagious
outcomes.

METHODS

Networks

We simulated outbreaks of a hypothetical infectious dis-
ease in a randomly generated network and an empirically
observed network (see Web Figure 1, available online at
https://doi.org/10.1093/aje/kwab167). The randomly gener-
ated network, hereafter referred to as the stochastic block
network, was generated from a stochastic block random
graph model. Stochastic block models generate networks
with an underlying community structure by partitioning
nodes into distinct sets and randomly creating edges at a
specified probability for nodes within the same set and a
different (in our case, lower) probability for nodes in discor-
dant sets (see Web Appendix 1 for details). The observed
network, referred to as the eX-FLU network, comes from
the Study of Exclusion Criteria in a University Population
(eX-FLU Study), a cluster-randomized trial assessing the
efficacy of 3-day self-isolation among Michigan university
students (18). During follow-up, participating students
reported all contacts with other students in the study each
week. From 10 weeks of self-reported contacts, a static
network from the largest component was generated. The
3-day isolation intervention will have no impact on our
simulations, since contacts were defined as any contact
occurring during the full study and simulated variables are
independent of the isolation intervention. Descriptions of
the study networks are provided in Web Table 1.

Notation

Let Yi indicate whether an individual was infected over the
course of the outbreak; Vi be vaccination status; Yi(vi, v−i)
be the potential outcome under vi and v−i, where vi is the
vaccination status of individual i and v−i is the vaccination
status of all other units; and α indicate the vaccination allo-
cation strategy or policy which determines the probability of
vaccination for each individual in the population. Therefore,
the estimand is the unit-treatment risk ratio,

Pr(Yi(1, v−i) = 1)

Pr(Yi(0, v−i) = 1)
.

Network measures

When discussing an individual’s centrality, we refer to
degree, the number of unique contacts (alternative mea-
sures of centrality exist (19)). We summarized contacts’
vaccination status through 2 exposure mappings we refer
to as 1-step vaccination and 2-step vaccination. One-step
vaccination summarizes the proportion vaccinated among an
individual’s immediate contacts and is calculated via

Vs1
i =

∑
j(eijVj)∑

j eij
,

where eij = 1 if an edge exists between node i and node j
and eij = 0 otherwise. One-step vaccination is equivalent to
the percentage of immediate contacts who are vaccinated.

Two-step vaccination summarizes the proportion vacci-
nated among an individual’s contacts’ contacts. In our for-
mulation, the 2-step treatment is calculated by taking the
average of each contact’s 1-step vaccination, but immediate
contact j’s 1-step vaccination does not include node i (i.e.,
individual i’s vaccination status does not contribute to their
2-step vaccination). Our expression of the 2-step treatment is

Vs2
i =

∑
j

∑
k,k �=i(ejkVk)∑

k,k �=i(ejk)∑
j eij

,

where ejk = 1 if an edge exists between node j and node k
and ejk = 0 otherwise.

The assortativity of networks by vaccination status was
calculated using the assortativity coefficient (16), a measure
bounded between −1 and 1, where −1 and 1 indicate per-
fectly disassortative and assortative networks, respectively.
An assortativity coefficient of 0 indicates there is no overall
observed contact pattern by vaccination.

Louvain’s community detection algorithm with a resolu-
tion parameter of 1 was used to identify exclusive clusters
(20), where clusters are exclusive groups of nodes embedded
in the larger network. Within the network literature, those
clusters are referred to as communities. Let Gi indicate a
vector of dummy variables with a value of 1 if node i is in an
exclusive cluster and 0 otherwise. Louvain’s algorithm iden-
tifies communities that maximize the number of connections
within each set of nodes and minimize the number of outside
connections, thereby finding a partition that reduces the
number of paths for interference (21). By defining clusters
through Louvain’s algorithm, assortativity by vaccination
status was manipulated in simulations. Because of the small
size of 6 disparate clusters in the eX-FLU network that were
located between large clusters, these 6 clusters were consid-
ered structurally equivalent and regarded as a single cluster.

Regression models

We compared 4 different regression models for estima-
tion of the unit-treatment risk ratio, termed 1) traditional,
2) cluster, 3) 1-step, and 4) 2-step. Because log-binomial
models have known convergence issues, we instead used log-
Poisson models to estimate the risk ratio. Log-Poisson mod-
dels, when accounting for inflated variance with sandwich
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estimators, provide inference similar to that of log-binomial
models but are more robust to convergence problems (22,
23). For all models, the unit-treatment risk ratio is estimated
by exp

(
β̂1

)
. The traditional model consists of the vaccina-

tion status of the individual:

log(Pr(Yi = 1)) = β0 + β1Vi.

By not including some representation of v−i in the model,
the traditional model implicitly stipulates random mixing by
vaccination status.

Next, the cluster model included indicator variables for
the designated Louvain-identified cluster:

log(Pr(Yi = 1)) = β0 + β1Vi + βGi.

The cluster model includes v−i through the inclusion of clus-
ter membership. This model assumes no (few) connections
between clusters as well as no assortativity by vaccination
within clusters.

The 1-step model included individual vaccination status,
1-step vaccination (immediate contacts’ vaccination status),
and degree:

log(Pr(Yi = 1)) = β0 + β1Vi + β2 Vs1
i + β3Di,

where Di indicates degree. The 1-step model operational-
izes v−i as an individual’s immediate contacts’ vaccination
status. This restricts spillover effects to be a result of only
immediate contacts, which we refer to as weak dependence.
Because the vaccination status of immediate contacts is
expressed through a summary measure, the model assumes
that 1-step vaccination is an adequate parametric approxima-
tion of the mechanism of transmission. The above formation
of the 1-step measure further implies that all contacts are
equivalent.

The 2-step model expanded the 1-step model by including
2-step vaccination (immediate contacts’ contacts’ vaccina-
tion status):

log(Pr(Yi = 1)) = β0 + β1Vi + β2Vs1
i + β3Vs2

i + β4Di.

The 2-step model includes v−i through both an individual’s
immediate contacts’ vaccination status and their second-
order contacts’ vaccination status. The extended sphere of
influence similarly assumes that all contacts are equivalent
and that both 1-step and 2-step vaccination are adequate
parametric approximations of the transmission mechanism.
In both 1-step and 2-step models, Vs1

i , Vs2
i , and Di were mod-

eled using restricted quadratic splines to allow for flexibility.

Simulations

All simulations were conducted with Python 3.5.1 (Py-
thon Software Foundation, Beaverton, Oregon) using the
following libraries: NumPy 1.16.0 (24), Pandas 0.23.4 (25),

NetworkX 2.2 (26), and Statsmodels 0.8.0 (27). Code for
simulations is available on GitHub (28).

Outbreaks were simulated via the following process (see
Web Appendix 2 for further details). First, vaccination was
distributed to nodes according to the allocation strategy.
Two randomly selected individuals were set as having initial
infections. Then, over a period of discrete 20-time steps,
infected nodes attempted to transmit the infection to their
immediate contacts in a random order. After 20 cycles, the
overall incidence of the infection was calculated. To reduce
convergence issues, the 4 regression models were fitted to
the generated data set if the incidence of the infection was
greater than 5%. The above procedure was repeated 10,000
times.

To induce assortativity by vaccination, a 2-step random-
ization α was used, where clusters were randomized to dif-
ferent probabilities of vaccination and then each individual
in the cluster was randomly assigned vaccination status
(i.e., probability of vaccination was conditional on the clus-
ter). Through this simulation approach, we controlled the
expected overall proportion vaccinated and the assortativity
coefficient.

Vaccine effects. A variety of different combinations of pos-
sible vaccine mechanisms were studied (Web Table 2).
For scenarios with protective effects of the vaccine for the
individual receiving it (unit-treatment effects), vaccination
reduced the probability of infection based on a single
exposure to an infected individual, referred to as the “leaky”
vaccine model (29). We modified the unit-treatment effect
scenario using a gradient of no, weak, and moderate unit-
treatment effects. The no unit-treatment effect vaccine did
not alter the probability of infection for the individual.
The “weak” unit-treatment effect vaccine had 0.7 times’
the probability of infection given a single exposure to the
infection, and the “moderate” unit-treatment effect vaccine
had 0.4 times’ the probability of infection compared with
unvaccinated individuals.

Spillover effects consisted of 2 different mechanisms: in-
fectiousness effects and contagion effects. Infectiousness
effects reduce the infectiousness of vaccinated-but-infected
individuals (30). Infectiousness effects were created by
reducing the duration of infectiousness of the vaccinated-
but-infected individual and reducing their probability of
transmitting the infection. For the no-infectiousness-effect
vaccine, the duration of infection (5 time steps) and the
probability of transmitting (0.07) were the same between
unvaccinated-and-infected and vaccinated-but-infected indi-
viduals. The “weak” infectiousness effect vaccine reduced
the duration of infectiousness to 4 time steps and reduced the
probability of transmitting by 0.9 times’ that of unvaccinated
individuals. The “moderate” infectiousness effect vaccine
reduced the duration of infectiousness to 3 time steps and
reduced the relative infectiousness by 0.75 times. Contagion
effects result from vaccinated individuals’ being less likely
to develop the infection, thus preventing them from infecting
their contacts, on average. Therefore, all vaccines with a
protective unit-treatment effect had a marginal protective
contagion effect.
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The 9 unique combinations of unit-treatment (none, weak,
moderate) and infectiousness (none, weak, moderate) effects
were simulated for each of the 2 networks. Each of the
previous combinations was further varied by the overall
proportion of the population vaccinated from 25% to 50%
in 5% increments, for a total of 108 unique combinations.
Scenarios were simulated 10,000 times. Across all of the
different scenarios, the mean assortativity coefficient was
0.1.

Assortativity. To explore how varying the assortativity
coefficient influenced the results, we selected the weak unit-
treatment and weak infectiousness effect combination at
an average of 40% vaccinated for further simulations. The
mean assortativity of vaccination in the network was varied
between 0 and 0.25 in 0.05 increments.

Metrics. Estimated unit-treatment risk ratios were com-
pared using 3 metrics: bias, root mean squared error,
and 95% confidence interval coverage of the true risk
ratio. Bias was defined as the regression-model–estimated
log-transformed risk ratio subtracted from the true log-
transformed risk ratio. The root mean squared error was
the square root of the squared bias plus the empirical
variance. Ninety-five percent confidence interval coverage
was calculated as the proportion of estimated confidence
intervals containing the true risk ratio.

True values. For weak or moderate unit-treatment effects,
50,000 outbreaks were simulated with α corresponding
to unconditional random assignment, with the true unit-
treatment effect defined as the mean of the log-transformed
risk ratio across all simulations for each combination of
vaccine effects (see Web Appendix 2 and Web Table 3 for
further details).

RESULTS

No unit-treatment effect

In scenarios of vaccines with no unit-treatment and no
infectiousness effect (Figure 1, Web Figure 2), the tradi-
tional model was unbiased but had confidence interval cov-
erage substantively below the expected level (95%) across
all proportions of vaccination. In settings with no unit-
treatment effect but a protective infectiousness effect, the tra-
ditional model was increasingly biased as the infectiousness
effect increased. Cluster, 1-step, and 2-step models were less
biased than traditional models (Figure 1, Web Figure 2) and
had lower root mean squared error (Web Tables 4 and 5). The
95% confidence interval coverage of the true unit-treatment
risk ratio for no effects was close to the nominal level in
the stochastic block network. For the eX-FLU network,
coverage was slightly below the nominal coverage for 1-step
and 2-step models. With 25% of the overall population vac-
cinated, 1-step and 2-step models failed to converge about
one-fourth of the time (Web Figure 3). Convergence issues
were related to model separation (31). For other proportions
vaccinated and the stochastic block network, failures were
less than 5%.

Weak unit-treatment effect

Estimates from traditional models were biased across
the different infectiousness effects, and 95% confidence
interval coverage was similarly poor (Figure 2, Web Figure
4). Cluster, 1-step, and 2-step models all had improved
performance with regard to bias and root mean squared
error (Web Tables 6 and 7). Similarly, 1-step and 2-step
models had slightly below nominal coverage of the reference
value. Nonconvergence followed a similar pattern (Web Fig-
ure 5).

Moderate unit-treatment effects

The traditional model was further biased from the refer-
ence value and had similarly poor confidence interval cover-
age (Figure 3, Web Figure 6). Cluster models were slightly
biased toward the null, had confidence interval coverage
slightly below 95%, and had smaller root mean squared error
compared with the traditional model (Web Tables 8 and 9).
The 1-step and 2-step models were biased away from the
null, but less so than the traditional model. The 1-step and 2-
step models had lower confidence interval coverage than the
cluster model. Nonconvergence followed a similar pattern
(Web Figure 7).

Assortativity

As the assortativity coefficient increased, the magnitude
of the bias for the traditional model estimated unit-treatment
risk ratio increased (Figure 4). This was true for both net-
works, with the stochastic block network bias increasing
faster as a function of increased assortativity of treatment.
The cluster, 1-step, and 2-step models remained less biased
than the traditional model across all assortativity coeffi-
cients. The bias in the 1-step model also began to increase as
assortativity increased, more notably in the stochastic block
network. Nearly all models converged (Web Figure 8).

DISCUSSION

Through a variety of simulations, we demonstrated that
estimates of the unit-treatment risk ratio were biased when
either unit-treatment or infectiousness effects existed and the
network was assortative by vaccination. We further demon-
strated that bias increased as the assortativity by vaccination
in the network increased. Our simulations add to previous
work demonstrating that even if there is no unit-treatment
or infectiousness effects of a vaccine, the confidence
interval coverage can drop below the expected coverage
in assortative networks. Poor confidence interval coverage
means overestimated precision, more erroneous conclusions
in the literature, and ultimately more conflicting studies,
since investigators may mistakenly conclude that there is a
protective or harmful unit-treatment effect more often than
would be expected. This result is particularly concerning for
vaccines or exposures that have no unit-treatment effects
but have protective spillover effects, since assortativity can
incorrectly lead to estimation of protective unit-treatment
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Figure 1. Study of Exclusion Criteria in a University Population (eX-FLU) simulation results for a hypothetical vaccine with no unit-treatment
effect. A) No spillover; B) weak infectiousness effect; C) moderate infectiousness effect. From light to dark gray (left to right), results are shown
for the traditional model, cluster model, 1-step model, and 2-step model. The y-axis and box plots show the bias, defined as the regression model
log-transformed risk ratio (RR) minus the true log-transformed RR. Whiskers indicate the 2.5th and 97.5th percentiles. The z-axis and diamonds
show the 95% confidence interval (CI) coverage, defined as the proportion of 95% CIs that contained the true value. The x-axis indicates the
overall proportion of individuals vaccinated in the population in expectation. R̂R, estimated RR for the unit-treatment effect; RR∗, true RR for the
unit-treatment effect.

effects when ignored. An example of this scenario is malaria
vaccines for prevention of human-to-mosquito transmission
(32). Since the induced human immune response targets the

invasion of the mosquito’s midgut by the malaria parasite,
these vaccines are not expected to provide a direct benefit
to vaccinated individuals but instead exert indirect effects

Am J Epidemiol. 2021;190(11):2442–2452
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Figure 2. Study of Exclusion Criteria in a University Population (eX-FLU) simulation results for a hypothetical vaccine with a weak unit-treatment
effect. A) No infectiousness effect; B) weak infectiousness effect; C) moderate infectiousness effect. From light to dark gray (left to right), results
are shown for the traditional model, cluster model, 1-step model, and 2-step model. The y-axis and box plots show the bias, defined as the
regression model log-transformed risk ratio (RR) minus the true log-transformed RR. Whiskers indicate the 2.5th and 97.5th percentiles. The
z-axis and diamonds show the 95% confidence interval (CI) coverage, defined as the proportion of 95% CIs that contained the true value. The
x-axis indicates the overall proportion of individuals vaccinated in the population in expectation. R̂R, estimated RR for the unit-treatment effect;
RR∗, true RR for the unit-treatment effect.

by targeting the parasite in the mosquito stage to inter-
rupt transmission. Finally, concerns regarding assortativity
extend to other exposures related to infectious diseases.

Assortativity has been observed for condom use (33), alco-
hol use (34), and other health behaviors related to sexually
transmitted infections (33).

Am J Epidemiol. 2021;190(11):2442–2452
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Figure 3. Study of Exclusion Criteria in a University Population (eX-FLU) simulation results for a hypothetical vaccine with a moderate unit-
treatment effect. A) No infectiousness effect; B) weak infectiousness effect; C) moderate infectiousness effect. From light to dark gray (left to
right), results are shown for the traditional model, cluster model, 1-step model, and 2-step model. The y-axis and box plots show the bias, defined
as the regression model log-transformed risk ratio (RR) minus the true log-transformed RR. Whiskers indicate the 2.5th and 97.5th percentiles.
The z-axis and diamonds show the 95% confidence interval (CI) coverage, defined as the proportion of 95% CIs that contained the true value.
The x-axis indicates the overall proportion of individuals vaccinated in the population in expectation. R̂R, estimated RR for the unit-treatment
effect; RR∗, true RR for the unit-treatment effect.

Assortativity by vaccination results in bias, since the as-
sumption that each individual has an equal likelihood of
pathogen exposure no longer holds (1, 2). Estimation of the

unit-treatment risk ratio compares the incidence in vaccinated
individuals with that in the unvaccinated, holding all else
equal, where “all else equal” extends to include vaccination
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Figure 4. Study of Exclusion Criteria in a University Population (eX-FLU) and stochastic-block network simulation results for a hypothetical
vaccine according to varying assortativity coefficients. A) eX-FLU network; B) stochastic-block network. From light to dark gray (left to right),
results are shown for the traditional model, cluster model, 1-step model, and 2-step model. The y-axis and box plots show the bias, defined as
the regression model log-transformed risk ratio (RR) minus the true log-transformed RR. Whiskers indicate the 2.5th and 97.5th percentiles. The
z-axis and diamonds show the 95% confidence interval (CI) coverage, defined as the proportion of 95% CIs that contained the true value. The
x-axis indicates the value for the assortativity coefficient in expectation. Higher values indicate greater assortativity. R̂R, estimated RR for the
unit-treatment effect; RR∗, true RR for the unit-treatment effect.

of contacts (2, 6). When vaccination is distributed randomly,
this assumption holds in expectation. When assortativity by
vaccination occurs, the comparison instead consists of some
combination of unit-treatment and spillover effects, since
contacts’ vaccination status differs by an individual’s vac-
cination status. Assortativity and protective spillover effects
are expected to result in overestimation of the protectiveness
of the unit-treatment risk ratio, as shown in the simulation
results for scenarios of no unit-treatment effect but protective
infectiousness effects. Our results are consistent with previ-
ous simulations in the context of no effect of tobacco use on
human papillomavirus infection, which demonstrated that
assortativity of tobacco use resulted in a harmful effect when
only individual-level characteristics were considered (35).
For scenarios with no unit-treatment or spillover effects,
the traditional model was unbiased on average, but 95%
confidence interval coverage was below nominal levels. By
chance, a(n) (un)vaccinated individual becomes infected
and subsequently infects immediate contacts who are more

likely to have a similar vaccination status, leading to esti-
mates further from the null. While these occurrences balance
out over repetitions (hence why there is little bias in the
scenario of no unit-treatment and spillover effects), the
overestimation in either direction leads to reduced confi-
dence interval coverage. Halloran and Struchiner (7) have
proposed restricting analyses to only individuals who were
exposed to the contagious agent in order to avoid this
issue. However, this approach results in a reduced sample
size, requires a precise definition for what constitutes expo-
sure to the contagious agent, assumes that “all exposures
to the infection are discrete and equivalent” (7, p. 145),
and changes the estimand (i.e., conditions on infection of
contacts).

Both the cluster and step models, which incorporated
network effects into the models, outperformed the traditional
model with regard to bias and confidence interval coverage
across scenarios when vaccination was assortative. The clus-
ter model performed well, as vaccination was randomly
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distributed within communities and there were relatively
few connections between clusters. Despite the assumption
of weak dependence being incorrect, the 1-step model out-
performed the traditional model because it was able to
capture some of the dependencies in the network. However,
95% confidence intervals were below the expected coverage
levels of 95% in the eX-FLU network, and some resid-
ual bias was present (particularly under increasing assor-
tativity). These observations are consistent with the 1-step
modeling failing to sufficiently capture the full dependence
structure in the network. The 2-step model was meant to cap-
ture additional dependencies in the network by expanding
the sphere of influence allowed. Both of these approaches
rely on strong parametric assumptions. Many alternative
formations of the proposed 1-step vaccination exist (e.g.,
sum of contacts’ covariates, thresholds (36), etc.). Two-step
vaccination has even more alternative formations, and care
should be taken when selecting the summary measure. Addi-
tionally, 1-step and 2-step summary measures assume all
contacts are equivalent, but these measures could instead be
defined through a weighted network (e.g., number of sexual
contacts between 2 individuals) or have multiple measures
that are stratified by edge attributes (e.g., relationship types).

Our simple approaches of incorporating network infor-
mation are based on the concepts of other approaches used
to address interference. First, the cluster model operates
similarly to methods that assume partial interference—that
interference occurs within groups but not between groups
(37). These approaches included 2-stage randomization
(6), household studies (38), minicommunity studies (39),
geography-based clusters (40), and extensions of inverse
probability weights (41–43). The major advantage to partial
interference is that use of exclusive group data allows for
application of standard statistical theory (5, 11, 41). While
our example consists of communities defined by the under-
lying network, there may be structural or environmental
features that strongly determine contact patterns (e.g., class-
rooms, isolated villages, etc.) that are reasonable to use
instead.

General interference instead allows for interference to
occur between any 2 individuals in the sample, but it is
often restricted to edges in a network. The 1-step and 2-step
models are examples of general interference with restrictions
on general interference to immediate or second-order con-
tacts, respectively. Network summary measures have been
proposed for risk assessment (44), outbreak detection (45),
and use in estimation (46) and causal inference (47, 48).
One example for causal inference is the extension to targeted
maximum likelihood estimation that summarizes immediate
contacts through parametric measures under the assumption
of weak dependence (49–51). In order to address possible
violations in the weak dependence assumption, use of lon-
gitudinal data, with the amount of time between follow-ups
chosen to limit interference to immediate contacts, has been
suggested (50, 51). Lastly, an extension of the g-formula
(auto-g-computation) avoids the assumption of weak depen-
dence and allows for any units connected in a network to be
dependent (52).

The advantage of some previously described alternatives
in the contexts of partial and general interference over our

simple corrections are that those approaches retain marginal
interpretations, allow alternative estimands outside of the
unit-treatment risk ratio, and provide valid inferences. First,
the proposed models that incorporate information from the
network are conditional on the network summary measures
used. While the marginal and conditional unit-treatment
risk ratios were similar in our simulations, unit-treatment
risk ratio estimates conditional on information from the
network may not always closely approximate the marginal
unit-treatment risk ratio. Approaches like inverse proba-
bility weights for partial interference (41, 42) or auto-g-
computation (52) retain the focus on the marginal parameter.
Second, there are a variety of other potential estimands
of interest in a setting with interference. Our simulations
focus solely on the unit-treatment risk ratio. However, the
unit-treatment risk ratio in the context of differing α’s or
estimation of spillover effects is probably of interest as
well.

There are several items readers should note regarding the
interpretation of our simulations. First, our simulations pre-
dominantly used an assortativity coefficient of 0.10, which
is a mild level of assortativity. Assortativity above this level
has been observed for influenza vaccination among US high
school students (12), suggesting the threats to validity may
be even greater. Second, we relied on a static network of
contacts in which all contacts had equal probabilities of
transmission conditional on vaccination. Contacts in reality
are more complex and vary over time. Third, the 1-step mea-
sure performed better in the eX-FLU network, which had a
higher clustering coefficient than the stochastic block net-
work, suggesting that the performance of these approaches
depends on the underlying network structure. Further work
on comparing approaches and their performance based on
differing network characteristics is needed. Fourth, 1-step
and 2-step summary measures are assumed to be adequate
parametric representations of how contacts affect an individ-
ual. Alternative definitions for 1-step measures, their perfor-
mance, and model selection are areas for future work. Some
assortative networks in which exposure is less common may
preclude the use of more flexible models because of separa-
tion (31), as seen in the 1-step and 2-step models for the eX-
FLU network when the overall proportion vaccinated was
25%. Reducing the flexibility of the model, use of penalized
regression, or use of Bayesian methods may help to alleviate
issues (53), but estimation of the unit-treatment effect may
not be possible when the assortativity coefficient is near 1
(e.g., almost no vaccinated individuals have all unvaccinated
contacts). Lastly, the infection parameters were not chosen
on the basis of a particular disease; rather, the parameters
were selected so as to remain constant across the different
simulation scenarios and networks and reduce the run times
of infection cycles.

In conclusion, through a variety of simulated outbreaks,
we have demonstrated that assortativity by vaccination can
result in biased estimates of the unit-treatment risk ratio.
While they are discussed in terms of a hypothetical vac-
cine and infection, our simulation results apply broadly to
exposures on contagious outcomes. Methods for addressing
assortativity should be considered when evaluating interven-
tions or exposures for contagious outcomes.
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