
Long-term ecological assessment of intracranial 
electrophysiology synchronized to behavioral markers in 
Obsessive-Compulsive Disorder

Nicole R. Provenza1,2, Sameer A. Sheth3, Evan M. Dastin-van Rijn1, Raissa K. Mathura3, 
Yaohan Ding4, Gregory S. Vogt5, Michelle Avendano-Ortega5, Nithya Ramakrishnan5, Noam 
Peled6,7, Luiz Fernando Fracassi Gelin8, David Xing1, Laszlo A. Jeni9, Itir Onal Ertugrul10, 
Adriel Barrios-Anderson11, Evan Matteson1, Andrew D. Wiese5,12, Junqian Xu5,13, Ashwin 
Viswanathan3, Matthew T. Harrison14, Kelly R. Bijanki3,5, Eric A. Storch5, Jeffrey F. Cohn15, 
Wayne K. Goodman5,†, David A. Borton1,16,17,†,*

1Brown University School of Engineering, Providence, RI, United States.

2Charles Stark Draper Laboratory, Cambridge, MA, United States.

3Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States.

4Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States.

5Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 
Houston, TX, United States.

6MGH/HST Martinos Center for Biomedical Imaging, Charlestown, MA, United States.

7Harvard Medical School, Cambridge, MA, United States.

8Center for Computation and Visualization, Brown University, Providence, RI, United States.

*Corresponding author: David Borton; 401-863-2963 (phone); 401-863-9028 (fax); david_borton@brown.edu; 184 Hope Street 
Providence, RI USA.
†Co-senior authors
Author contributions statement: WKG, JFC, SAS, and DAB conceived of the study. NRP conceptualized data analysis procedures, 
performed data analysis, interpreted data, and prepared figures and results with support from EMDVR, MTH, RKM, NP, YD, ABA, 
SAS, and DAB. EMDVR carried out packet loss correction and artifact removal procedures with support from NRP and MTH. JX 
optimized the MRI protocol. RKM, NP, KB, and NRP performed MRI analysis, and NP developed the MMVT software. LAJ and IOE 
developed AFAR analysis methodology. YD and LAJ performed AFAR analysis, and NRP, LAJ, and YD created the supplementary 
videos. GSV, MAO, NR, and NRP performed data collection in the clinic. ERM supported data collection. NRP, GSV, and MAO 
guided participant data collection at home. ADW provided clinical ERP sessions, and ADW and NRP collected data during ERP, 
supervised by EAS. ABA documented SUDs ratings using ERP videos. LFFG and DX created new software to enable the collection 
of intracranial electrophysiology at home. NRP and SAS wrote the first draft of the manuscript and all authors contributed to the 
writing and revision of the manuscript. WKG, SAS, AV, and EAS performed the clinical care aspects of the study. SAS and AV 
performed the study surgical procedures. WKG, SAS, JFC, EAS, and DAB oversaw the collection of data, analysis, and manuscript 
completion.

Competing interests statement: DAB and WKG received device donations from Medtronic as part of the NIH BRAIN public-
private-partnership program (PPP). WKG received honoraria from Biohaven Pharmaceuticals. SAS has consulting agreements with 
Boston Scientific, Neuropace, Koh Young, Zimmer Biomet, and Abbott. NP is a co-founder and stocks holder at FIND Surgical 
Sciences Inc. The remaining authors declare no competing interests.

Data Availability: The complete datasets generated (excluding video/audio) and analyzed during the current study will be made 
publicly available at study completion and will be deposited in the NIH Data Archive for the Brain Initiative®. The minimum dataset 
required to reproduce all results of the manuscript (excluding video and audio) is publicly available through the associated Open 
Science Framework project, DOI: 10.17605/OSF.IO/YQA2K.

Code Availability: Custom code used to produce the results in this manuscript is available at https://github.com/neuromotion/
ecological-ephys-behav-ocd.

HHS Public Access
Author manuscript
Nat Med. Author manuscript; available in PMC 2022 June 09.

Published in final edited form as:
Nat Med. 2021 December ; 27(12): 2154–2164. doi:10.1038/s41591-021-01550-z.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/neuromotion/ecological-ephys-behav-ocd
https://github.com/neuromotion/ecological-ephys-behav-ocd


9Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States.

10Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The 
Netherlands.

11The Warren Alpert Medical School of Brown University, Providence, RI, United States.

12Department of Psychology, University of Missouri - Kansas City, Kansas City, MO, United 
States.

13Department of Radiology, Baylor College of Medicine, Houston, TX, United States.

14Division of Applied Mathematics, Brown University, Providence, RI, United States

15Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.

16Carney Institute for Brain Science, Brown University, Providence, RI, United States.

17Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of 
Veterans Affairs, Providence, RI, United States.

Abstract

Detection of neural signatures related to pathological behavioral states could enable adaptive deep 

brain stimulation (aDBS), a potential strategy for improving efficacy of DBS for neurological and 

psychiatric disorders. This approach requires identifying neural biomarkers of relevant behavioral 

states, a task best performed in ecologically valid environments. Here, in human participants 

with obsessive-compulsive disorder (OCD) implanted with recording-capable DBS devices, we 

synchronized chronic ventral striatum local field potentials (LFP) with relevant, disease-specific 

behaviors. We captured over 1,000 hours of LFP in the clinic and at home during unstructured 

activity, as well as during DBS and exposure therapy. The wide range of symptom severity 

over which the data were captured allowed us to identify candidate neural biomarkers of OCD 

symptom intensity. This work demonstrates the feasibility and utility of capturing chronic 

intracranial electrophysiology during daily symptom fluctuations to enable neural biomarker 

identification, a prerequisite for future development of aDBS for OCD and other psychiatric 

disorders.

Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2–3% and is a leading 

cause of disability worldwide 1. Pharmacological and cognitive-behavioral therapy are the 

mainstays of treatment but fail to provide sustained benefit in 25–40% of individuals 1. 

Approximately 10% of individuals fail to achieve benefit from any intervention 2. For 

severe, treatment-refractory cases of OCD, neurosurgical procedures have been used with 

varying degrees of success for half a century 1. Modern neurosurgical approaches include 

both stereotactic lesion procedures and deep brain stimulation (DBS), with roughly similar 

response rates 1. Over half of patients with treatment-resistant OCD are responders to 

DBS targeted to the ventral capsule/ventral striatum (VC/VS) region 3. Beyond marked 

improvement in OC symptoms, VC/VS DBS has been found to improve anxiety, depression, 

mood, and quality of life even in patients who are non-responders to DBS treatment 4,5. To 

date, the number of patients who have received DBS for OCD worldwide is in the hundreds 
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6. Many more individuals may qualify for DBS but do not receive or pursue this treatment 

course due to various barriers (e.g., awareness, access, cost) or treatment preferences.

One of the main advantages of DBS over other neurosurgical approaches (e.g., stereotactic 

lesion procedures) is its adjustability. Stimulation parameters can be varied and optimized 

to maximize beneficial effects and minimize adverse effects. This programmability is 

an important reason why DBS is more common than lesion procedures in the surgical 

treatment of movement disorders such as Parkinson’s disease and essential tremor 7. 

However, adjusting DBS parameters for OCD management differs significantly from that 

for movement disorders. Whereas stimulation effects (both beneficial and adverse) typically 

occur over seconds to minutes in movement disorders, the delay is much longer in 

psychiatric disorders. Reductions in OCD symptoms usually manifest weeks to months 

after initiation of DBS stimulation 4, producing a mismatch in time constants between an 

adjustment and its effect. Further complicating management is the natural temporal variation 

of symptom severity within individuals 8. These factors together impose great barriers to 

the clinician’s attempt to align stimulation parameter adjustments with the moving target of 

symptom fluctuations.

An emerging strategy for surmounting these challenges is the development of adaptive, 

responsive, closed-loop DBS 9–11. Current DBS therapy often operates in an open loop, 

wherein parameter adjustments are made ad hoc during periodic clinic visits weeks or 

months apart. Continuous stimulation at fixed parameters between clinical visits may 

inadequately address the temporal dynamics of neurological or psychiatric illnesses, in 

which symptoms vary over minutes to days. Additionally, stimulation can cause undesirable 

side effects if applied when not needed 3. A responsive, closed-loop, adaptive DBS (aDBS) 

system may improve efficacy by titrating stimulation parameters in response to real-time 

neural signatures (i.e., biomarkers) related to symptoms and side effects.

The last few years have witnessed a rapid expansion in the application of aDBS strategies 

and technology for use in movement disorders 12–15. Successful demonstrations of aDBS, 

notably in Parkinson’s Disease, have emphasized the need for reliable, symptom specific 

behavioral readouts that map to electrophysiological biomarkers 16. For example, beta-band 

power in the subthalamic nucleus (STN) is a well-recognized candidate biomarker for 

certain symptoms in Parkinson’s disease 17. Unlike in movement disorders, however, there 

is currently no objective behavioral readout (e.g., diminished tremor in Parkinson’s Disease) 

in psychiatric disorders that clinicians can gauge in real time to optimize DBS parameters. 

Instead, in psychiatric disorders, clinicians rely on standardized subjective symptom scales 

in order to guide therapy delivery such as DBS parameter adjustments 18.

These two factors – the temporal mismatch between symptom evolution and typical DBS 

adjustment schedule, and the lack of an objective biomarker of psychiatric symptom 

severity – highlight the monumental challenges facing psychiatric neurosurgery. At the same 

time, they also underscore the great opportunity for aDBS 19. Our work seeks to address 

these challenges by recording neural activity during natural, day-to-day OCD symptom 

fluctuations to begin understanding these critical neural-behavioral relationships.
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Recently available devices have provided the technology necessary for both streaming brain 

electrophysiology data and performing closed-loop control of stimulation parameters 20,21. 

Wireless streaming of neural data outside the clinic is key to robust biomarker discovery, 

as it enables the collection of neural data under ecological conditions and over extended 

periods of time, capturing the dynamics of symptom state and neural correlates of behavior. 

Others have demonstrated feasibility and utility of such platforms for recording at home 

from participants with epilepsy and Parkinson’s Disease 22–24.

Here, we present the first longitudinal collection of electrophysiology, behavior, and 

clinical evaluations from five participants with severe, refractory OCD treated with DBS 

as part of an ongoing clinical trial towards developing aDBS for OCD (NCT04281134, 

NCT03457675). For the first time in patients with a psychiatric disorder, we demonstrate 

the utility of not only in-clinic, but also at-home collection of time-synchronized, multi-

modal brain and behavioral data, which vastly increase both the quantity and ecological 

validity of the recorded data. We used computer vision machine learning techniques on 

face video recordings to assess moment to moment changes in emotional state, time-locked 

with intracranial and extracranial neural recordings. We have captured over 1000 hours of 

intracranial recordings during behavioral tasks and daily activities at home labelled with 

ecological momentary assessment of symptom state. Additionally, we conducted intracranial 

VC/VS recordings during provocations of symptoms with concomitant administration of 

two treatment modalities: DBS and Exposure and Response Prevention (ERP) teletherapy. 

Lastly, based on a series of pilot recordings collected during natural OCD exposures and 

ERP teletherapy, we demonstrate the ability to measure VC/VS spectral power during 

natural OCD symptom provocations at home. Continued opportunities for long-term, 

naturalistic intracranial electrophysiological recordings will propel biomarker discovery for 

OCD and other psychiatric disorders.

Results

Study design

Five participants (P1, P2, P3, P4, and P5) with long-standing refractory OCD underwent 

surgery for bilateral placement of DBS leads capable of applying stimulation and bipolar 

sensing of neural activity. Longitudinal intracranial electrophysiology was collected in 

the clinic and at home in three study participants (P3, P4, and P5). Electrophysiological 

recordings were time-locked to behavior and DBS parameter changes in the clinic, and 

momentary self-report of OCD symptoms, ERP therapy, and behavioral tasks at home 

(Figure 1).

Information on participant demographics, stimulation contact, bipolar sensing contact pair, 

stimulation parameters, and responder status, defined by 35% reduction in Yale-Brown 

Obsessive Compulsive Scale II (Y-BOCS II) score 25, is included in Extended Data Table 1. 

All five participants were responders to DBS therapy (Extended Data Table 1).
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DBS electrodes target the VC/VS and BNST

Leads were placed in either the ventral striatum (VS) or bed nucleus of the stria terminalis 

(BNST) and suprajacent white matter based on intraoperative findings during awake testing. 

Due to individual specificity, therapeutic response was evaluated on both sides of the 

anterior commissure (AC) in order to determine the optimal stimulation target within the 

broader VC/VS region. In participants P1 and P2, stimulation targets were the left and right 

BNST (Extended Data Fig. 1). In participant P3, stimulation targets were the left and right 

VS (Extended Data Fig. 1). In participant P4, stimulation targets were the left VS and right 

BNST (Fig. 2 A-E), and in participant P5, the left and right BNST (Extended Data Fig. 1).

Participants P1 and P2 were implanted with the Activa PC+S® system, and participants 

P3, P4, and P5 were implanted with the Summit RC+S® system. The Medtronic Summit 

RC+S® rechargeability and wireless data transmission enables streaming of time-domain 

intracranial electrophysiology both in the clinic and at home not possible with the Activa 

PC+S® system, or any other therapeutic DBS platform. In addition, the Medtronic Summit 

RC+S® system offers improved artifact rejection and sensing performance compared to 

the Activa PC+S® system 20. Therefore, herein we focus on data gathered from the three 

participants implanted with the Summit RC+S®.

Longitudinal recordings show stability over time

To gauge the quality of the longitudinal recordings over time, impedance of sensing and 

stimulation electrodes for P3, P4, and P5 was measured over the course of the study 

(Extended Data Fig. 2). Variation in impedance between the sensing contacts and implanted 

neural stimulator (INS) hermetic enclosure (i.e., case) ranged from 705 Ohms to 1303 Ohms 

for P3 over 101 days, 933 Ohms to 1910 Ohms for P4 over 405 days, and 703 Ohms to 1468 

Ohms for P5 over 181 days (all measured at 100 Hz), reflecting long-term stability in the 

device-tissue interface.

Increase in positive affect captured during DBS programming

During clinical DBS programming sessions, intracranial electrophysiological signals were 

synchronized to behavioral, physiological, and electrophysiological measures in order 

to develop biomarkers for closed-loop control of stimulation. We used video of the 

participant’s face (Fig. 3A) to estimate positive affect (Fig. 3B) and head velocity (Fig. 

3C) as objective measures of the anxiolytic and anxiogenic responses to changes in 

DBS parameters (see Methods). Positive affect was estimated using Automatic Facial 

Affect Recognition (AFAR), which provides an objective, well-validated approach to 

quantify subtle changes in affective responses (i.e., mirth, smiles, and brow furrows) 

intraoperatively and thereafter 26. Additionally, we recorded external electrophysiological 

signals, including blood volume pulse (BVP), electrocardiogram (ECG) (Fig. 3D), and 64-

channel electroencephalography (EEG) (Fig. 3E) and synchronized these signals to changes 

in DBS parameters (e.g., DBS amplitude) (Fig. 3F), VS and/or BNST LFP recordings (Fig. 

3G), and Summit RC+S® acceleration (Fig. 3H). As a demonstrative example, we observed 

an increase in P5’s positive affect in response to an increase in stimulation amplitude, 

highlighted by a captured smile corresponding to the peak in positive affect estimation 

during a period of DBS programming where amplitude was incrementally increased from 
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zero to 4.5 mA in steps of 0.5 mA. During and following an increase in DBS amplitude, 

participant P5 also described positive feelings, including a physical sensation that she was 

no longer “internally trembling” (Supp. Video 1). Clinical experience and limited empirical 

data suggest that this subjective, positive response to increase in DBS amplitude is a typical 

response that may be predictive of treatment outcome 27.

Intracranial LFP during natural symptom variation at home

We then sought to collect intracranial electrophysiology in more ecologically 

valid conditions by using the Summit RC+S® to wirelessly stream intracranial 

electrophysiology during routine activities in the participants’ homes. At home, 

participants used a custom tablet application (frontend: https://github.com/openmind-

consortium/App-OCD-PatientFrontend, backend: https://github.com/openmind-consortium/

App-OCD-PatientBackend) to initiate intracranial VC/VS and/or BNST recordings 

and perform psychophysiological tasks (https://github.com/brown-ccv/honeycomb) 28. 

Participants reported their OCD symptom intensity and sleep start/stop times using the 

StriveStudy OCD mobile application (Rune Labs; iPhone XR). Self-report measures 

were time-synchronized with electrophysiology recordings via network time protocol (see 

Methods). Self-reported intensity of OCD symptoms and Y-BOCS II were collected after 

DBS was turned on for participants P3, P4, and P5 (Fig. 4A). Y-BOCS II was administered 

during clinical visits, while self-reported symptom intensity was captured on a daily basis, or 

more frequently, by each participant through the StriveStudy OCD application. Interestingly, 

self-report values for P4 show that even after a significant reduction in Y-BOCS II score 

at week 27, a high day-to-day variability in symptom intensity (range: 0–8, std: 0.43–2.81) 

remained between clinical visits. Such variation in self-reports may have many sources, 

but motivates the need for an adaptive control system to titrate neuromodulation therapy to 

symptom dynamics. Participants P3 and P5 exhibited less variability in symptom intensity: 

6–8 and 4–9, respectively (P3 std: 0–0.5; P5 std: 0–1.34).

While untreated OCD has a stable course 29, symptom intensity and severity is recognized 

to fluctuate within shorter time intervals (e.g., hours, days) 30. Therefore, it was critical to 

develop a technology platform capable of collecting large datasets over long time periods. 

In total to-date, P3, P4, and P5 have collected 52, 813, and 207 hours of Summit RC+S® 

intracranial electrophysiology and accelerometry data at home, respectively (Fig. 4B), totally 

over 1000 hours. Each intracranial neural recording was matched to self-reported OCD 

symptom intensity ratings, behavioral tasks, and ERP teletherapy sessions. Behavioral 

tasks relevant to functional domains implicated in OCD were self-administered once per 

week at home during participant-controlled neural recording sessions (see Methods). We 

synchronized task behavior with neural recordings and calculated the number of hours of 

neural data collected during behavioral tasks for each participant (P3: 15 hours, P4: 37 

hours, P5: 8 hours). Participant P4 did a multi-day “sprint recording” during which over 24 

hours of data were collected, including Apple Watch heart rate and acceleration, RC+S® 

acceleration and LFP, and self-reported intensity of OCD symptoms (Fig. 4C, D).
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Intracranial LFP during planned and natural exposures

Capturing intracranial electrophysiology during ERP teletherapy sessions is particularly 

relevant toward the goal of identifying a neural biomarker of OCD-related distress. 

The capability to record intracranial electrophysiology that is time-locked to naturalistic 

exposures to OCD triggers at home is a critical technological advancement that may enable 

discovery of ecologically valid biomarkers in psychiatry. During ERP teletherapy sessions, 

we recorded video of the participant and clinician during OCD trigger exposures (Fig. 5B). 

Throughout the ERP sessions, participants were asked to rate their Subjective Units of 

Distress (SUDs) in response to each exposure at various time intervals (Fig. 5C). SUDs 

ratings across all ERP sessions ranged from 4 to −6 for P3, and 3 to −10 for P4, and 1 to 8 

for P5 (Extended Data Fig. 3). We synchronized ERP teletherapy video and SUDs ratings to 

LFP, and Summit RC+S® and Apple Watch acceleration and heart rate for participants P3 

(Extended Data Fig. 4), P4 (Fig. 5D, Supp. Video 2), and P5 (Extended Data Fig. 5).

To demonstrate the utility of at-home data collection toward biomarker identification, we 

sought to gain insight on how spectral power changes with OCD symptoms. We analyzed 

neural data collected from P4 during a three-day continuous recording session. A total of 

41 OCD symptom intensity ratings ranging from zero to eight were reported during neural 

recordings over the three-day span (μ = 4.49 ± 2.57) (Fig. 6A). We chose this particular 

recording for analysis and demonstration due to the occurrence of natural exposures that 

led to relatively high variability and range in self-reported OCD symptom intensity. Average 

normalized spectral band power in predefined frequency bands of interest (Delta: 0–4 Hz, 

Theta: 4–8 Hz, Alpha: 8–15 Hz, Beta: 15–30 Hz, and Gamma 30–55 Hz) was computed for 

LFP data collected one minute before and after each self-report (see Methods). Delta-band 

power in particular showed a strong negative correlation with OCD symptom intensity in 

both the left (Fig. 6B; R = −0.593) and right (Fig 6C; (R = −0.557) VC/VS. While the 

data suggest that the correlation between delta-band power and symptom intensity may be 

statistically significant, more investigation will be required to determine the consistency 

of this relationship across individuals. All other frequency bands of interest (Theta: 4–8 

Hz, Alpha: 8–15 Hz, Beta: 15–30 Hz, and Gamma 30–55 Hz) exhibit relatively weaker 

correlations with OCD symptom intensity (absolute R < 0.343).

We repeated the same spectral analysis for one ERP session during concurrent intracranial 

neural recordings for participants P3, P4, and P5, and found variable correlations between 

spectral power in between frequency bands and SUDs ratings (Extended Data Fig. 6–8). 

These analyses reveal the utility of chronic intracranial LFP for identifying relationships 

between neural activity and behavior (in this case, psychiatric symptoms). In one participant 

(P4), the relationship we observed between delta-band spectral power and self-reported 

symptoms was preserved across natural exposures (Fig. 6B) and planned exposures during 

ERP teletherapy (Extended Data Fig. 7). Future work will determine the degree of 

consistency of these brain-behavior relationships across patients and their potential as a 

biomarker for aDBS applications.
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Discussion

Wireless streaming of intracranial electrophysiology data in both the clinic and in 

naturalistic environments provides a rich data source for biomarker discovery. An 

electrophysiological biomarker of symptom state would enable aDBS for OCD and other 

psychiatric disorders, which may provide a better approach for treating fluctuations in 

symptom intensity 11. Here, we acquired electrophysiological data with behavioral readouts 

over both short and long timescales. In the clinic, we examined changes in affect (AFAR) 

during DBS parameter changes over short timescales (seconds to minutes). At home 

during participant-controlled recordings, we captured behavioral changes (self-reported 

OCD symptoms) over longer timescales (days to weeks to months) in natural settings, 

collected continuous data during natural and planned exposures, and developed methods to 

synchronize behavioral metrics to intracranial electrophysiology. Further, we demonstrated 

the utility of at-home data collection for biomarker identification by observing correlations 

between spectral power and self-reported OCD symptom intensity.

Only with recent advances in device technology is it now possible to collect intracranial 

electrophysiology time synchronized with rich behavioral markers in ecologically valid 

environments from patients with neurological or psychiatric disorders. For example, Gilron 

et al. have described a platform for simultaneous intracranial electrophysiology and 

wearable accelerometer sensors in natural settings with Parkinson’s disease patients 24. 

As an example using another recording-capable device, Topalovic et al. have described a 

platform for simultaneous EEG, wearable sensors, VR, and intracranial electrophysiology, 

all contained in a small backpack. Their work demonstrates a major advance in collecting 

both a neurally and behaviorally rich dataset in freely moving humans 23. Here, we 

demonstrated the first application of recent technological advances to record intracranial 

electrophysiology time-locked with behavioral events in patients with a psychiatric disorder 

in natural settings and at chronic timescales.

Conducting ecological recordings with a psychiatric population poses several key 

challenges that are important to address in future work. First, compliance of study 

participants is variable, and self-report psychological data is often inaccurate 31. Intracranial 

electrophysiology collected over a wide, dynamic range of symptom severity is needed to 

build a classifier, and such a range may not always be available. We have observed that 

participants are more likely to comply with daily recordings when they are feeling well, 

and more likely to avoid engaging in recordings when OCD symptoms are exacerbated. 

Such reporting bias inherently limits the ecological nature of these recordings. Until we have 

the ability to trigger home recordings without engagement from the participant, the timing 

of naturalistic recordings will always be subject to the participant’s motivation, anxiety, 

and mood. Additionally, a lack of overlap in OCD subtypes and timescales of symptom 

fluctuation among our small cohort of participants will likely require personalization of 

biomarkers and adaptive stimulation paradigms.

In future experiments, we expect to need to implement more extensive mood and symptom 

logging at home, in addition to tracking more objective measures of patient state such as 

activity level (e.g., number of steps, distance travelled from home) and engagement in social 
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activities (e.g., smartphone use). The utility of self-report assessments is limited as they rely 

on patient insight into their own psychological state, which is variable 31. Additionally, we 

have observed that some participants may become superstitious about acknowledging that 

OCD symptoms have subsided and tend to report a stagnant trend in symptom intensity even 

after experiencing clinical benefit. More quantitative and objective measures have proven to 

be useful for tracking Parkinson’s disease severity at home and could prove to have equal 

utility for tracking severity of psychiatric symptoms 32.

Additional studies should examine the behavioral task data we collected both in the clinic 

and at home to assess function in cognitive control, impulsivity, and evidence accumulation. 

Candidate biomarkers may not pertain to symptoms but instead to cognitive domains where 

function may be impaired. Administration of behavioral tasks allows for orthogonalization 

onto neurobiological axes (i.e., the Research Domain Criteria) that could provide useful 

information for relating mental processes to electrophysiology 33,34. Once task-related 

electrophysiological signatures are identified, it will be important to explore recurrences 

of task-related neural states in non-task locked, real-world behavior 35. For example, 

if cognitive control signals are insufficient, stimulation amplitude could be increased to 

improve decision-making capacity 36–38.

Changing DBS parameters and electrode impedance over time will present challenges in 

neural data interpretation. Even relatively small changes in impedance have been proven 

to affect the spectral power distribution 39. Further, variability in sensing and stimulating 

contact placement will likely lead to inconsistent neural activity across participants 40–42. 

Here, all five subjects had the deepest portion of the leads anchored in gray matter (VS or 

BNST; Figure 2 and Extended Data Figure 1). The stimulation contacts were the second 

deepest contact on the lead, flanked by sensing contacts. Therefore, the deepest sensing 

contact in each bipolar pair is likely sensing neural activity from gray matter, whereas the 

other contact in the pair is likely sensing neural activity from white matter. LFP from pure 

white matter is notoriously difficult to interpret 43, however it is unknown how heavily 

influenced the recorded voltages are by gray and white matter VS activity. Nevertheless, the 

gray-white bipolar sensing contact pairs undoubtedly lead to caveats in interpretation of our 

neural recordings.

The DBS implants used in our study allow for real-time frequency-domain analysis of 

electrophysiological activity recorded simultaneously during stimulation delivery from 

the implanted electrodes 20. If a reliable relationship between patient state (severity of 

symptoms or adverse effects) and electrophysiology can be determined, computational 

methods can produce a classifier that identifies subject state based on measured activity. 

‘Untethered’, embedded aDBS solutions are limited by onboard feature estimation and 

classification capabilities. For example, when embedded on an implanted device, the device 

can adjust its output based on LFP spectral power in predefined spectral bands used as 

inputs to a linear discriminant classifier 20. While we observed correlations between power 

in various frequency bands and OCD symptom intensity, additional data collection and 

analysis is required to validate this finding in a larger sample. As putative biomarkers are 

identified, further work will be necessary to determine if biomarker-controlled adjustments 

in stimulation parameters result in an increased therapeutic effect of DBS.
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Evidence from tractographic and functional imaging studies suggests that the 

pathophysiology of OCD does not lie in the VC/VS alone, but rather in the cortico-

striatal-thalamo-cortical (CSTC) network 44,45. One frontrunning hypothesis is that DBS 

acts to disrupt pathological frontostriatal hyperconnectivity in OCD. Several studies, via 

functional imaging 46 and intracranial electrophysiology 47, have shown evidence toward 

this hypothesis. Few studies report on oscillatory activity in the VC/VS to date, including 

in cohorts of patients with obesity 48, addiction 49, treatment resistant depression (TRD) 
50,51, and OCD 51–54. While there is no convergence on an oscillatory biomarker of OCD 

symptoms across these studies, there is promising evidence that VC/VS oscillatory activity 

may be correlated with behaviors including reward anticipation 48,50, error monitoring 49, 

OCD symptom provocation 52,54. Chronic, ecologically valid, VC/VS recordings in humans 

may provide opportunities to identify a robust candidate biomarker for OCD symptoms.

For our approach to be optimally useful in treatment of obsessive-compulsive symptoms, 

we must better understand frontostriatal network activity. Obsessive-compulsive behaviors 

implicate symptomatic networks. OCD stimulation targets are anatomically linked to 

structures including the orbitofrontal cortex, the anterior cingulate cortex, the mediodorsal 

thalamic nucleus, and the ventral pallidum 44,45,55,56. Stimulation to these targets impacts 

distributed network-wide activity and has been found to restore frontostriatal network 

activity in OCD 46. Physiological studies point to relationships between frontostriatal 

activity and abnormal reward processing 40,57, cognitive flexibility58, and decision 

making59; mental processes related to OCD symptoms. Further, connectivity with the 

prefrontal cortex/supplementary motor area has been shown to be correlated with 

improvement in OCD symptoms 47,53,60. This literature supports the notion that symptoms 

arise from network phenomena and motivates the need for both cortical and subcortical 

inputs as well as simultaneous chronic, intracortical recordings to replicate findings in 

ecologically valid environments. To best understand the network, technical innovation must 

include the capacity to record in a few key areas in addition to the VC/VS, including the 

orbitofrontal cortex (OFC) or the anterior cingulate (ACC).

Finally, we note that the data collection platform presented here could be used in many other 

contexts beyond DBS programming sessions, daily activities at home, and ERP teletherapy 

for neuropsychiatric patients. To identify robust electrophysiological biomarkers for any 

psychiatric illness, data must be captured and explored for a vast array of behaviors and 

contexts. Wireless streaming of neural data enables capture of intracranial electrophysiology 

data during naturalistic states, including sleep, socialization, eating, and exercise. The 

platform presented here lays the groundwork for future transformational studies reliant on 

ecological neural and behavioral monitoring and assessment of neuropsychiatric illness.

Methods

Study design

An Early Feasibility Study of aDBS was conducted in adults with severe and intractable 

OCD (NCT04281134, NCT03457675). Subjects entered a 6-month trial of open-label 

bilateral DBS targeting the ventral capsule/ventral striatum (VC/VS) followed by 2 months 

of adjunctive exposure and response prevention therapy (ERP). Subsequently, they entered 
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a blinded discontinuation period to assess the need for ongoing DBS. The primary clinical 

outcome measure was change in the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) 

scores, where a 35% reduction from baseline defined subjects as “responders”.

To date, five adult subjects with a principal diagnosis of severe and intractable OCD 

underwent DBS surgery after being apprised of the risks, possible benefits, and alternatives 

to participation in the research study. All subjects had OCD for more than five years and 

failed, or were unable to tolerate, adequate trials of multiple medications (i.e., selective 

serotonin reuptake inhibitors (SSRIs), clomipramine, and SSRI plus antipsychotics) and as 

well as a course of ERP. Two participants (P1: 31M and P2: 39F) were implanted with the 

Activa PC+S® (Medtronic, Minneapolis, MN, USA) device, and three participants (P3: 37F, 

P4: 40M, and P5: 31F) were implanted with the Summit RC+S® (Medtronic, Minneapolis, 

MN, USA) device. Each subject gave fully informed consent according to study sponsor 

guidelines, and all procedures were approved by the local institutional review board at 

Baylor College of Medicine (H-40255 and H-44941 to Baylor College of Medicine, IAA 

17–27 and IAA 19–51 to Brown University, and STUDY20110082 and STUDY20110084 to 

University of Pittsburgh) and the US. Food and Drug Administration Center for Devices and 

Radiological Health. Subjects received a stipend after each study visit via a ClinCard.

DBS surgery

DBS leads (Model 3387) were placed bilaterally in the VC/VS region. Lead locations were 

determined using direct targeting on the preoperative magnetic resonance imaging (MRI): 

we targeted the gray-white interface in the ventral region of the anterior limb of the internal 

capsule. We created two trajectories per hemisphere, one immediately anterior and one 

immediately posterior to the anterior commissure (AC). We conceive of these targets not 

as different regions but rather as two anatomical methods to find the optimal, individual-

specific target within the same “VC/VS region”, consistent with recent connectomic studies 
44. We refer to the anterior target as the “VC/VS” per se, as the VS is the gray matter 

immediately subjacent. We refer to the posterior target as the “BNST”, as the bed nucleus of 

the stria terminalis is immediately subjacent.

We used the observation of a “mirth” or “positive valence” response during intraoperative 

testing as an indicator of which location within the broader ventral capsule region will 

be more promising for eventual symptomatic improvement. Our decision to evaluate 

therapeutic response to DBS on both sides of the AC is driven by empirical evidence 

from the literature that more posterior targets lead to better outcomes. This effect may be 

related to the distribution of the passing fibers that fan out and diverge at the AC, which 

has been characterized via tractography and can vary for individual patients 44,45. There is 

tractographic evidence that this positive mood response is due to DBS engagement of tracts 

that are more ventral, including the anterior cingulate cortex (ACC), OFC and ventromedial 

prefrontal cortex (vmPFC) 56. We think of positive valence activation as a guidepost, as it 

may indicate that DBS is engaging the ventral limbic tracts that are associated with OCD.

The leads were connected to extensions, tunneled down the neck, and connected to the 

Activa PC+S® or Summit RC+S® placed in the upper left chest to enable wireless 
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streaming of Local Field Potential (LFP) data. P1, P3, P4, and P5 received bilateral 

stimulation, and P2 received unilateral stimulation.

Clinical assessments

The Y-BOCS and Yale-Brown Obsessive-Compulsive Scale II (Y-BOCS II) 61 were 

administered during clinical visits before DBS programming sessions. The Y-BOCS is 

the gold-standard clinician-administered tool for measuring severity of OCD and assessing 

treatment response 62,63. The Y-BOCS II is a modified version of the original Y-BOCS that 

was designed to be more sensitive to changes in symptom severity among patients with very 

severe OCD 61.

MRI protocol

Preoperative magnetic resonance imaging (MRI) was performed on a Siemens Prisma 3T 

scanner (Erlangen, Germany) with a 64-channel head-neck coil. High resolution (0.8 mm 

isotropic) T1-weighted (T1w) anatomical images (MPRAGE; TR/TE/TI=2400/2.24/1000 

ms, flip angle=8º, TA ~ 7 min) were acquired. T2-weighted (T2w) images (SPACE; 0.8mm 

isotropic; TR/TE = 3200/563ms, TA ~6min) were acquired in the same session.

CT imaging

In addition, the participants underwent preoperative clinical computerized tomography 

(CT) acquisition with contrast, as well as postoperative clinical CT acquisition to confirm 

electrode implant locations. The postoperative CT data were registered to the T1w MRI 

space and was used to extract the contact positions relative to local neuroanatomy.

Cortical reconstructions

An automatic cortical reconstruction was performed on the preoperative T1w MRI using 

FreeSurfer v7.1.1 (http://surfer.nmr.mgh.harvard.edu) 64 and the T2w MRI was used to 

improve reconstruction of the pial surfaces. The postoperative CT was aligned to the 

preoperative T1w MRI using the Functional Magnetic Resonance Imaging for the Brain 

Software Library’s (FMRIB’s) Linear Image Registration Tool (FLIRT) v6.0 65,66. Electrode 

coordinates were manually determined from the co-registered CT in BioImage Suite v3.5b1 
67 and placed into the native MRI space. The reconstructed cortical surface (pial surface), 

segmented subcortical structures, and electrode coordinates were visualized using the Multi-

Modal Visualization Tool (MMVT) 68,69. The caudate, putamen, and the ventral striatum 

were colored on the T1w slice based on the subcortical segmentation. Anterior Commissure 

(AC) was manually reconstructed by tracing the white fiber tracts on the T1w MRI slice.

Medtronic Summit RC+S® research platform

Herein, we concentrate on data gathered from the three subjects implanted with the Summit 

RC+S® system as it allows for extensive home recordings not possible with the Activa 

PC+S® system. The Summit RC+S® implanted neural stimulator (INS) enables both 

neurostimulation and continuous telemetry of intracranial LFP and accelerometry. The 

Clinician Telemetry Module (CTM) enables bi-directional communication between the INS 

(via telemetry) and a custom-built application developed with the Research Development Kit 
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(RDK) (via bluetooth to a separate host computer). The SurfacePro and SurfaceGo tablets 

were used in the clinic and at home to deploy the custom-built clinician and patient-facing 

applications that interface with the INS and cloud (Box.com) to create a flexible platform for 

data collection and storage. During recording sessions, the CTM must be within arm’s reach 

(1 m) of the INS, and the host computer must be within the same room.

Summit RC+S® DBS programming session protocol

Summit RC+S® recordings during DBS programming sessions in the clinic were 

conducted using a clinician-facing application that communicates with the Medtronic 

Summit Application Programming Interface (API) running on a Surface Pro tablet (https://

github.com/openmind-consortium/App-aDBS-ResearchFacingApp). The application allows 

for changes in bipolar sensing contact configuration, stimulation groups, and stimulation 

parameters including amplitude, pulse width, and rate within previously defined safe 

boundaries set by the clinician using the Medtronic Research Lab Programmer (RLP). 

Starting a recording session triggered sensing from two LFP channels and xyz acceleration.

DBS parameter optimization is completed solely on the basis of clinical evaluation, 

including standardized clinical assessments (e.g., Y-BOCS), interactions with subject and 

family members, and subjective patient reports of changes in mood, anxiety, alertness 

during acute DBS programming. To determine optimal stimulation parameters, the clinician 

adjusted one stimulation parameter at a time (either amplitude or pulse width), pausing to 

assess the participant’s mood and symptoms after each change.

In addition to Summit RC+S® recordings, additional multi-modal electrophysiological 

recordings were conducted simultaneously during DBS programming sessions. These 

recordings include video of the face to enable (AFAR) and estimation of head velocity, 

electroencephalography (EEG), electrocardiogram (ECG), and blood volume pulse (BVP), 

and are further described in the sections below.

At-home recording session protocol

Study participants implanted with the RC+S® (P3, P4, and P5) agreed to participate 

in electrophysiological recordings, momentary self-report behavioral assessments, and 

behavioral tasks in their home environments.

Participants started their own recording sessions using a patient-facing application 

(frontend: https://github.com/openmind-consortium/App-OCD-PatientFrontend, backend: 

https://github.com/openmind-consortium/App-OCD-PatientBackend) that communicates 

with the Medtronic Summit API. To start a recording, the participant opened the application, 

and pressed a button on the User Interface labeled ‘Record’. Pressing the ‘Record’ button 

triggered sensing from two LFP channels and xyz acceleration. Stimulation parameters were 

constant throughout each recording at home. The StriveStudy mobile application was also 

used to collect heart rate and acceleration data via an Apple Watch.

Protocol for the three different types of recordings the participants were asked to complete at 

home (daily recordings, task recordings, and sprint recordings) is further described below.
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Daily recordings

Participants were asked to do at least one 30-minute recording session per day during 

unstructured daily activities at home, with one day off each week. Before each recording 

session, participants were asked to complete a momentary self-report behavioral assessment.

Momentary self-report behavioral assessments

Participants used the Rune Labs StriveStudy mobile application (Rune Labs Inc., San 

Francisco, CA) to report their OCD symptom intensity on a scale from zero to 10, where 

zero corresponds to ‘very slightly or not at all’, five corresponds to ‘moderately’, and 

10 corresponds to ‘extreme.’ Due to the highly yoked nature of obsessive-compulsive 

symptoms, OCD symptom intensity ratings did not distinguish between obsessions and 

compulsions. The Rune Labs mobile application was deployed at zero weeks since DBS ON 

in P3, 13 weeks since DBS ON in P4, and 4 weeks before DBS ON in P5.

Task recordings

Participants were asked to complete behavioral tasks during a recording session one time 

each week. Behavioral tasks include the Multi-Source Interference task for assessing 

cognitive control and cognitive flexibility (https://github.com/brown-ccv/task-msit) 70,71, the 

Beads task for assessing intolerance to uncertainty and sensitivity to reward adapted from 

Voon et. al 72, and the Resting State task to gauge brain activity at rest (https://github.com/

brown-ccv/task-resting-state). Tasks were all developed using Honeycomb, a template for 

reproducible behavioral tasks for clinic, laboratory, and home use (https://github.com/brown-

ccv/honeycomb) 28. Honeycomb allows for flexible task deployment with and without 

external electrophysiological recordings, and enables our experiments in both research 

settings and at home.

Sprint recordings

Participants were asked to engage in multi-day ‘sprint’ recording (i.e., multi-hour recording 

sessions). During the sprint recordings, participants were asked to use the StriveStudy 

mobile application to report their OCD symptom intensity on an hourly basis.

Exposure and Response Prevention therapy recordings

Participants engaged in a course of ERP teletherapy (13 to 14 appointments) from 

approximately 10 to 12 months after DBS was turned on. Participants were asked to start a 

recording session at the beginning of the appointment, and video recordings were saved to 

the clinician’s computer using Zoom Video Communications (San Jose, CA, USA).

Local field potential recordings

LFPs were sampled at a rate of 200 Hz (Activa PC+S®) or 1000 Hz (Summit RC+S®) 

in the clinic, and 250 Hz (Summit RC+S®) at home. LFPs were sensed in bipolar 

configuration, meaning that a pair of sensing contacts was selected on each lead so that 

the signal recorded by one sensing contact is referenced to the other in the pair. Sensing 

and stimulation contact information for each participant is provided in Extended Data Table 

1. To reduce DBS-related artifacts, the sensing contact pair was configured to flank the 
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stimulation contact when possible. The low pass filter stage 1 and 2 cut-off frequencies were 

both set to 100 Hz to further minimize impact of stimulation artifact on the recorded signal. 

The high pass filter cut-off frequency was set to 0.85 Hz. All sensing was conducted using 

active recharge stimulation. Acceleration in the x, y, and z axes was also measured onboard 

the Summit RC+S® device by an accelerometer located in the case.

Electroencephalography and peripheral electrophysiology recordings

Electroencephalography (EEG) was recorded during programming sessions and behavioral 

tasks in the clinic using a 64-channel active-electrode cap (actiCAP slim, Brain Products 

GmbH, Munich, Germany) and amplifiers (BrainAmp MR Plus) with an online reference 

at electrode FCz. Event markers were recorded along with EEG data using a TriggerBox 

(Brain Products GmbH) as well as a photodiode. EEG data was sampled at 5 kHz with a 

high cutoff at 1000 Hz using BrainVision Recorder. Three-lead electrocardiogram (ECG) 

and Blood Volume Pressure (BVP) were connected to the BrainAmp ExG amplifier. ECG 

leads were connected to just above and below the left pectorals, grounded to below the right 

pectoral. The BVP sensor was clipped onto the index finger of the non-dominant hand.

Audio and video recordings

Video and audio were recorded using the GoPro Hero 6 (GoPro, San Mateo, CA, USA) 

at 25 fps, and an external microphone (Zoom H4n Pro 4-Track Portable Recorder, Zoom 

Corporation, Tokyo, Japan) at 44.1 kHz. High quality audio was synchronized with video by 

cross correlating the low and high quality audio tracks recorded by the GoPro Hero 6 and 

external microphone, respectively. Then the original audio was removed from the video and 

replaced by the high quality audio.

Remote data management

Data from the Summit RC+S® patient-facing application and behavioral task data was 

automatically uploaded to Box.com from SurfaceGo tablets via a .BAT script triggered 

by Windows Task Scheduler upon connecting to the internet, or user login/logout (https://

github.com/neuromotion/rcps-box-upload).

Data synchronization: EEG to LFP

LFP and EEG data were synchronized by identifying features common to both recordings. 

Sequences of 5 Hz pulses were briefly applied at the beginning and end of each recording 

session. These pulses are visible in both the LFP and EEG recordings due to the high 

amplitude of the stimulation artifacts they produce. Corresponding pulses were identified in 

both recordings and used as alignment points.

Data synchronization: EEG to task (in-clinic)

The start and end time of DBS programming sessions were marked in the EEG recording 

using a “pseudo-behavioral task” consisting solely of a start/stop button. Pressing the 

start and stop button in the task triggered a serial event message that was sent from the 

SurfacePro tablet to the Brain Vision EEG amplifier via the TriggerBox.
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Data synchronization: EEG to video

The pseudo-behavioral task also triggered a unique audible tone at the same time the serial 

event was sent. This tone was recorded by both the GoPro video camera and external 

microphone. The tone was identified algorithmically in each audio file using the Matlab 

function findsignal, and the time point of the tone was used as the synchronization point 

between audio/video and EEG recordings.

Data synchronization: Intracranial Electrophysiology to task (at-home)

Each behavioral task outputs a .JSON file containing data saved from the task including 

the Unix time (time of day) when each task event occurred. Task behavior and LFP were 

timestamped using the same clock (SurfaceGo clock), and therefore could easily be aligned.

Data synchronization: Intracranial Electrophysiology to Rune StriveStudy mobile 
application output

LFP Unix time was aligned to OCD symptom intensity rating, Apple Watch acceleration, 

and Apple Watch heart rate unix time.

Data synchronization: Intracranial Electrophysiology to ERP video

ERP video recordings were saved with a date and timestamp on each video frame. Time of 

day from the video was used to align video to LFP Unix time.

Signal reconstruction after packet loss

We accounted for packet losses in LFP data to enable synchronization between LFP and 

other data streams73. Details and code for the procedure we used is available at https://

github.com/openmind-consortium/Analysis-rcs-data.

Artifact removal: low pass filter

Prior to filtering, missing LFP samples were replaced with the mean value of the remaining 

samples. LFP and EEG were then low-pass filtered using an FIR filter between 100 and 130 

Hz with 40 dB of attenuation in the stopband and 0.1 dB of passband ripple. The filter was 

designed using the Matlab function designfilt and applied to the recording using filtfilt.

Objective, automatic measurement of affective valence and head dynamics

Facial expression of positive and negative valence and the dynamics of head motion were 

measured using Automated Facial Affect Recognition (AFAR). AFAR is a computer-vision 

based approach that can objectively measure the occurrence, intensity, and timing of facial 

action units 26,74–76, head pose 77 and gaze 78 at video frame rate (30 to 60 fps). Action 

units are anatomically based actions that individually or in combination can describe nearly 

all-possible facial expressions 79. Previous research has identified action units associated 

with positive (e.g., enjoyment) and negative (e.g., fear, anger, disgust, and anxiety) emotion 
80–82; and representations of positive and negative valence and pain 83–86. Velocity of head 

motion has been found to increase with strong negative affect 87–90 and is inversely related 

to severity of depression 91,92. In preliminary studies, AFAR revealed strong effects of DBS 

in both intraoperative contexts and interviews 93,94.
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We measured positive valence on a zero to five scale as the mean intensity of facial action 

units (AU) 6 and 12. AU 6 (orbicularis oculi pars orbitalis) raises the cheeks, narrows 

the eye aperture laterally, and can cause crows-feet wrinkles at the eye corners. AU 12 

(zygomatic major) stretches the lips obliquely and affects shape and appearance of the 

nasolabial furrows. Head movements are measured by the angular velocity of pitch and yaw 

head motions in units of degree per second. Head pitch and yaw were smoothed using a five-

second moving average before calculating frame-to-frame velocity. To aid interpretation, the 

frame-level velocity was converted to degrees per second. An example of AFAR tracking of 

positive valence and head velocity is shown in Figure 3B and C. Participants P4, P5, and 

author (A.D.W.) gave informed consent for publication of their images and videos in this 

manuscript.

Neural data analysis for sprint and ERP recordings at home

We analyzed one sprint dataset collected at home over multiple days by P4, 531–533 days 

after DBS surgery. We chose this dataset due to the high variability and large range in 

self-reported OCD symptom intensity ratings over the three day span. Our goal was to 

characterize how the spectral content of the VC/VS LFP signal was changing with OCD 

symptom intensity rating.

A total of 41 OCD symptom intensity ratings were reported during LFP recordings over the 

three-day span. LFP data were divided into two minute segments; one minute before and one 

minute after each self-reported OCD symptom intensity rating was logged. Within that time 

frame, all contiguous segments of data with a duration of 500 ms or more were included in 

analysis. A Hamming window (Matlab: hamming) was used to divide the data into 500 ms 

segments with 250 ms of overlap, and the mean of the entire recording was subtracted from 

each window to remove DC offset. Power Spectral Density (PSD) estimates were calculated 

using the Welch method (Matlab: pwelch). The median PSD was computed for each two 

minute segment. Transient outliers due to motion or background device processes were not 

explicitly removed but were handled by our choice of using median for central tendency. 

The median PSD was normalized by dividing by the average power between four and 80 Hz.

We then calculated average power in predefined frequency bands of interest (Delta: 0–4 Hz, 

Theta: 4–8 Hz, Alpha: 8–15 Hz, Beta: 15–30 Hz, and Gamma 30–55 Hz) by computing 

the mean power within each frequency band. Resulting values in [mV2/Hz] were converted 

to decibels, [dB], by computing ten times the base ten logarithmic transform. Therefore, 

each OCD symptom intensity rating was associated with normalized average power in each 

predefined frequency band of interest. A line of least squares was fit to each scatter plot 

(Matlab: lsline) and the coefficient of correlation (R) was computed to measure the strength 

of the relationship between spectral band power and OCD symptom intensity rating.

Neural data analysis for ERP recordings at home

We repeated the analysis described in the previous section using one ERP dataset for each 

participant. The datasets chosen were 232 days after surgery for P3, 278 days after surgery 

for P4, and 281 days after surgery for P5.
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Extended Data

Extended Data Fig. 1 |. Anatomical localization of DBS lead placement (P1, P2, P3, P5).
(A,B) Coronal (A) and axial (B) T1-weighted (T1w) MRI in radiographic convention 

from participants P1, P2, P3, and P5 overlaid with reconstructed DBS lead trajectories. 

Colored regions indicate anterior commissure (AC), caudate, putamen, and ventral striatum 

(VS). The MRI slice shown is immediately posterior (A; coronal) or inferior (B; axial) 

to the most ventral contact. Enlarged coronal slices (corresponding to white box outlines 

in panel A) showing DBS contact locations in each hemisphere are shown on either side 

of the full coronal slice. Green spheres indicate sensing contacts, red spheres indicate 

stimulating contacts, black spheres indicate contacts that were used for neither stimulation 

nor sensing. In each participant, the tips of the leads were targeted to either the VS or the 

bed nucleus of the stria terminalis (BNST) (target regions for each participant are included 

in Table 1). Enlarged slices shown are immediately posterior to the most ventral contact 
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in each hemisphere. Anterior-posterior slice location (y) is referenced to the posterior 

border of the AC, which is defined as y=0. (D,E) Front (D) and top-down (E) view of 

the reconstructed cortical surface, subcortical structures, DBS leads, and AC, shown in 

radiographic convention.

Extended Data Fig. 2 |. Impedance of sensing and stimulation electrode contacts reflect long term 
stability at device-tissue interface.
(A) Impedance in kOhms of sensing and stimulation electrode contacts in the left (left 

panel) and right (right panel) VC/VS of P3. Blue points indicate impedance between the 
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two sensing contacts. Green points indicate the impedance between the deepest (light green) 

and shallowest (dark green) sensing contact and the INS case. Light red points indicate 

the impedance between the stimulation contact and the INS case. Sense and stimulation 

electrode contacts on the Medtronic 3387 leads are visualized to the right of each panel, 

with contact 0 as the deepest contact on the left, and contact 8 as the deepest contact on 

the right. Light green indicates the deepest sensing contact, Green indicates the shallowest 

sensing contact, and light red indicates the stimulation contact. Black contacts are unused. 

(B) Impedance in kOhms of sensing and stimulation electrode contacts in the left (left 

panel) and right (right panel) VC/VS of P4. Gray shaded region indicates the timespan when 

sensing and stimulation contacts correspond to the Medtronic 3387 lead diagram labelled 

with “A”, whereas the following timespan with no shading corresponds to the Medtronic 

3387 lead diagram labelled with “B”. Elsewise, the format is identical to panel A. (C) 

Impedance in kOhms of sensing and stimulation electrode contacts in the left (left panel) 

and right (right panel) VC/VS of P5. Format is identical to panel A.

Provenza et al. Page 20

Nat Med. Author manuscript; available in PMC 2022 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3 |. Distribution of self-reported, Subjective Units of Distress (SUDs) ratings 
collected by participants during Exposure Response Prevention (ERP) teletherapy.
(A) The distribution of SUDs ratings by participant P3 for all recorded sessions. The Y-axis 
shows SUDs ratings provided by the participant after being prompted to indicate their level 

of OCD related distress at irregular time intervals during each ERP session on a scale 

of 0–10 with 0 representing ‘no distress’ and 10 representing ‘the worst distress.’ The 

X-Axis shows each consecutive, hour-long, recorded ERP session (n=13 to n=14 for each 

participant) completed. Gray shading indicates the session analyzed in Extended Data Fig. 6. 

(B) The distribution of SUDs ratings by participant P4 for all recorded sessions. Format is 

identical to panel A. Gray shading indicates the session analyzed in Extended Data Fig. 7. 

(C) The distribution of SUDs ratings by participant P5 for all recorded sessions. Format is 

identical to panel A. Gray shading indicates the session analyzed in Extended Data Fig. 8.

Extended Data Fig. 4 |. Intracranial electrophysiology during Exposure and Response Prevention 
(ERP) teletherapy at home with Participant P3.
(A) Calendar availability plot of ERP sessions for participant P4, over days since the first 

ERP session. Shaded portions indicate data availability for ERP video, Apple watch heart 

rate, Apple watch acceleration, RC+S acceleration, and RC+S LFP. Rectangular dotted line 

corresponds to the ERP session example data shown in panels B-D. (B) Video of participant 

P4 (left), clinician (right). (C) Time-course in minutes of self-reported Subjective Units of 

Distress (SUDs) ratings. Vertical black line corresponds to the video frame shown in panel 

B. (D) Ten seconds of example data synchronized to video, including RC+S acceleration, 
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and two bipolar LFP channels. Vertical black line corresponds to the video frame shown in 

panel B.

Extended Data Fig. 5 |. Intracranial electrophysiology during Exposure and Response Prevention 
(ERP) teletherapy at home with Participant P5.
(A) Calendar availability plot of ERP sessions for participant P4, over days since the first 

ERP session. Shaded portions indicate data availability for ERP video, Apple watch heart 

rate, Apple watch acceleration, RC+S acceleration, and RC+S LFP. Rectangular dotted line 

corresponds to the ERP session example data shown in panels B-D. (B) Video of participant 

P4 (left), clinician (right). (C) Time-course in minutes of self-reported Subjective Units of 

Distress (SUDs) ratings. Vertical black line corresponds to the video frame shown in panel 

B. (D) Ten seconds of example data synchronized to video, including RC+S acceleration, 

and two bipolar LFP channels. Vertical black line corresponds to the video frame shown in 

panel B.
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Extended Data Fig. 6 |. Ventral Capsule/Ventral Striatum spectral activity vs. SUDs ratings 
during P3 Exposure and Response Prevention (ERP) teletherapy recording.
(A) Self-reported intensity of OCD symptoms (scatter points) shown over time in hours 

with LFP data availability (orange shading). Vertical black lines indicate timepoints of 

OCD exposures. B) Normalized left VC/VS spectral power in Delta (0–4 Hz), Theta (4–8 

Hz), Alpha (8–15 Hz), Beta (15–30 Hz), and Gamma (30–55 Hz) (from left to right) vs. 

self-reported OCD symptom intensity from zero to 10. Black lines represent the line of least 

squares. R values correspond to the coefficient of correlation. (C) Normalized right VC/VS 

spectral power in frequency bands of interest vs. self-reported OCD symptom intensity from 

zero to 10. Format is identical to panel B.
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Extended Data Fig. 7 |. Ventral Capsule/Ventral Striatum spectral activity vs. SUDs ratings 
during P4 Exposure and Response Prevention teletherapy recording.
(A) Self-reported intensity of OCD symptoms (scatter points) shown over time in hours 

with LFP data availability (orange shading). Vertical black lines indicate timepoints of 

OCD exposures. B) Normalized left VC/VS spectral power in Delta (0–4 Hz), Theta (4–8 

Hz), Alpha (8–15 Hz), Beta (15–30 Hz), and Gamma (30–55 Hz) (from left to right) vs. 

self-reported OCD symptom intensity from zero to 10. Black lines represent the line of least 

squares. R values correspond to the coefficient of correlation. (C) Normalized right VC/VS 

spectral power in frequency bands of interest vs. self-reported OCD symptom intensity from 

zero to 10. Format is identical to panel B.
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Extended Data Fig. 8 |. Ventral Capsule/Ventral Striatum spectral activity vs. SUDs ratings 
during P5 Exposure and Response Prevention teletherapy recording.
(A) Self-reported intensity of OCD symptoms (scatter points) shown over time in hours 

with LFP data availability (orange shading). Vertical black lines indicate timepoints of 

OCD exposures. B) Normalized left VC/VS spectral power in Delta (0–4 Hz), Theta (4–8 

Hz), Alpha (8–15 Hz), Beta (15–30 Hz), and Gamma (30–55 Hz) (from left to right) vs. 

self-reported OCD symptom intensity from zero to 10. Black lines represent the line of least 

squares. R values correspond to the coefficient of correlation. (C) Normalized right VC/VS 

spectral power in frequency bands of interest vs. self-reported OCD symptom intensity from 

zero to 10. Format is identical to panel B.
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Extended Data Table 1 |
Participant demographics, DBS surgery device 
and targets, and stimulation and sensing contact 
information.

MDD: Major Depressive Disorder, PTSD: Post-Traumatic Stress Disorder, GAD: General 

Anxiety Disorder, TS: Tourette’s Syndrome., ET: Essential Tremor. *Responder = 35% or 

greater decrease in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) after 12 months 

of activation compared to presurgical baseline. N/A refers to participants that have not 

completed study yet.

Participant: PI P2 P3 P4 P5

Gender Male Female Female Male Female

Age at time of consent 31 39 37 40 31

Race White White White White White

Ethnicity Not Hispanic/
Latino

Hispanic/
Latino

Hispanic/
Latino

Not Hispanic/
Latino

Not Hispanic/
Latino

Primary diagnosis OCD OCD OCD OCD OCD

Comorbid diagnoses MDD PTSD, MDD, 
GAD

PTSD, MDD, 
TS

Bipolar Disorder 
II

MDD

Principal OCD 
symptoms

Intrusive 
aggressive/
taboo 
obsessions 
with checking 
and repeating 
rituals

Intrusive 
aggressive/
sexual taboo 
obsessions 
with 
checking and 
repeating 
rituals

Intrusive 
aggressive 
thoughts, 
magical 
thinking, and 
scrupulosity 
with checking 
and repeating 
rituals

Contamination 
and scrupulosity 
obsessions with 
cleaning and 
checking rituals

Intrusive 
aggressive and 
contamination 
obsessions with 
checking and 
cleaning rituals

Age of OCD onset 
(years)

17 18 12 16 8

Responder status Yes Yes Yes Yes Yes

Initial Y-BOCS II (Y- 
BOCS) score

37 (35) 39 (34) 46 (40) 42 (38) 47 (37)

Final Y-BOCS II (Y- 
BOCS) score

8(6) 11(9) 27 (25) 25 (22) 26 (23)

DBS Device PC+S PC+S RC+S RC+S RC+S

DBS Target 
Region

L BNST BNST VCVS VCVS BNST

R BNST BNST VCVS BNST BNST

Stimulating 
Contact

L 1−/C+ 2−/C+ 1−/C+ 1 −/C+ 1−/C+

R 10−/C+ OFF 9−/C+ 9−/C+ 9−/C+

Sensing contact
L 0–2 1–3 0–2 0–2 0–2

R 9–11 9–11 8–10 8–10 10–11

Final DBS Rate
L 150 Hz 150 Hz 150.6 Hz 150.6 Hz 150.6 Hz

R 150 Hz OFF 150.6 Hz 150.6 Hz 150.6 Hz

Final DBS 
Amplitude

L 5.0 V 5.5 V 6.0 mA 5.2 mA 6.0 mA

R 5.0 V OFF 5.7 mA 5.0 mA 6.0 mA

Final DBS 
Pulse Width

L 120 μs 120 μs 210 μs 120 μs 180 μs

R 120 μs OFF 210 μs 120 μs 180 μs

Provenza et al. Page 26

Nat Med. Author manuscript; available in PMC 2022 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Streaming of intracranial electrophysiology data in the clinic and at home.
(Top left) Data collection in the clinic during DBS programming. Streaming intracranial 

electrophysiology (Local Field Potentials, LFP) from the Summit RC+S®, along with EEG, 

EKG, BVP, and video. (Top right) Data collection at home during symptom provocation 

(e.g., compulsive hand washing). Streaming LFP and capturing self-reported intensity of 

OCD symptoms on phone. (Bottom) Data collection at home during sleep. Streaming LFP 

and capturing self-reported start and stop time of sleep on iPhone.
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Figure 2: Anatomical localization of DBS lead placement.
(A,B) Coronal (A) and axial (B) T1-weighted (T1w) MRI in radiographic convention from 

participant P4 overlaid with reconstructed DBS lead trajectories. Colored regions indicate 

anterior commissure (AC), caudate, putamen, and ventral striatum (VS). The MRI slice 

shown is immediately posterior (A; coronal) or inferior (B; axial) to the most ventral 

contact. Enlarged coronal slices (corresponding to white box outlines in panel A) showing 

DBS contact locations in each hemisphere are shown on either side of the full coronal 

slice. Green spheres indicate sensing contacts, red spheres indicate stimulating contacts, 

black spheres indicate contacts that were used for neither stimulation nor sensing. Here 

the tip of the left lead was targeted to the VS and the tip of the right lead was targeted 

to the bed nucleus of the stria terminalis (BNST). Enlarged slices shown are immediately 

posterior to the most ventral contact in each hemisphere. Anterior-posterior slice location (y) 
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is referenced to the posterior border of the AC, which is defined as y=0. (D,E) Front (D) and 

top-down (E) view of the reconstructed cortical surface, subcortical structures, DBS leads, 

and AC, shown in radiographic convention.
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Figure 3: Intracranial VS LFP synchronized with continuous affect estimation during DBS 
programming for OCD.
Data shown corresponds to the initial DBS programming session for participant P5. (A) 

Video of the face (used with permission) was used to do automatic 3D face tracking. Arrows 

indicate the tracked three degrees of freedom of head pose. The contours of tracked key 

facial parts are highlighted in green. The three video frames (1, 2, and 3) shown correspond 

to the timepoints indicated by the vertical lines. (B) Estimation of positive affect on a scale 

of zero to five based on facial action units 6 and 12. (C) Estimation of head velocity in terms 

of yaw and pitch in units of degrees of displacement per second. (D) Blood volume pulse 
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(BVP) and electrocardiogram (ECG). (E) 64 channel EEG. (F) DBS amplitude. (G) Bilateral 

(left and right hemisphere) ventral striatum LFP recordings. (H) RC+S® acceleration (xyz).
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Figure 4: At home symptom monitoring synchronized with ecologically valid intracranial 
electrophysiology.
(A) Y-BOCS II scores, and self-reported intensity of OCD symptoms over weeks since DBS 

ON in P3, P4, and P5. Square black scatter points indicate Y-BOCS II scores. Circular 

scatter points indicate one symptom intensity rating from 0–10, and vertical dotted lines 

denote DBS programming clinical visits. (B) Number of hours of LFP data collected at 

home for P3, P4, and P5 corresponding to self-reported intensity of OCD symptoms ratings, 

behavioral tasks, ERP sessions, and in total. (C) Example data availability plot for at-home 

sprint recording over 32 hours, completed by participant P4. Shaded portions indicate data 
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availability for Apple watch heart rate, Apple watch acceleration, RC+S® acceleration, 

RC+S® LFP, and OCD intensity ratings. (D) 90 seconds of example data corresponding to 

dotted line callout in panel C.
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Figure 5: Intracranial electrophysiology during Exposure and Response Prevention Teletherapy 
at home with Participant P4.
(A) Calendar availability plot of ERP sessions for participant P4, over days since the first 

ERP session. Shaded portions indicate data availability for ERP video, Apple watch heart 

rate, Apple watch acceleration, RC+S® acceleration, and RC+S® LFP. Rectangular dotted 

line corresponds to the ERP session example data shown in panels B-D. (B) Video of 

participant P4 (left), clinician (center), and image of exposure (right). (C) Time-course 

in minutes of self-reported Subjective Units of Distress (SUDs) ratings and heart rate 

collected via the Apple Watch throughout the ERP session. Vertical black line denotes the 

start of the exposure period. Gray shaded area corresponds to the time period shown in 

supplemental video 2. (D) 20 seconds of example data synchronized to video, including 

apple watch acceleration, RC+S® acceleration, and two bipolar LFP channels. Vertical black 

line corresponds to the video frame shown in panel B.
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Figure 6: Ventral Capsule/Ventral Striatum spectral power shows correlations with OCD 
symptom intensity during P4 natural exposures at home.
(A) Self-reported intensity of OCD symptoms (scatter points) shown over time in hours with 

LFP data availability (orange shading). (B) Normalized left (top row) and right (bottom row) 

VC/VS spectral power in Delta (0–4 Hz), Theta (4–8 Hz), Alpha (8–15 Hz), Beta (15–30 

Hz), and Gamma (30–55 Hz) (from left to right) vs. self-reported OCD symptom intensity 

from zero to 10. Black lines represent the line of least squares. R values correspond to the 

coefficient of correlation.
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