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Abstract

Background: Teeth have unique histology that make this biomatrix a time-capsule for 

retrospective exposure analysis of fetal and early life. However, most analytic methods require 

pulverizing the whole tooth, which eliminates exposure timing information. Further, the range 

of chemicals and endogenous exposures that can be measured in teeth has yet to be fully 

characterized.

Methods: We performed untargeted metabolomics on micro-dissected layers from naturally shed 

deciduous teeth. Using four liquid-chromatography high-resolution mass spectrometry analytical 

modes, we profiled small molecules (<1000 Da) from prenatal and postnatal tooth fractions. In 

addition, we employed linear regression on the tooth fraction pairs from 31 children to identify 

metabolites that discriminate between prenatal and postnatal exposures.
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Results: Of over 10,000 features measured in teeth dentin, 390 unique compounds were 

annotated from 62 chemical classes. The class with the largest number of compounds was 

carboxylic acids and their derivatives (36%). Of the annotated exogenous metabolites (phthalates, 

parabens, perfluoroalkyl compounds, and cotinine) and endogenous metabolites (fatty acids, 

steroids, carnitines, amino acids, and others), 91 are linked to 256 health conditions through 

published literature. Differential analysis revealed 267 metabolites significantly different between 

the prenatal and the postnatal tooth fractions (adj. p-value < 0.05, Bonferroni correction), and 21 

metabolites exclusive to the prenatal fraction.

Conclusions: The prenatal and early postnatal exposome revealed from dental biomarkers 

represents a broad range of endogenous and exogenous metabolites for a comprehensive 

characterization in environmental health research. Most importantly, this technology provides 

a direct window into fetal exposures that is not possible by maternal biomarkers. Indeed, 

we identified several metabolites exclusively in the prenatal fraction, suggesting unique fetal 

exposures that are markedly different to postnatal exposures. Expansion of databases that include 

tooth matrix metabolites will strengthen biological interpretation and shed light on exposures 

during gestation and early life that may be causally linked with later health conditions.
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1. Introduction

Early-life development is particularly vulnerable to environmental factors that may influence 

later health. In fact, a central tenet of the Developmental Origins of Health and Disease 

(DOHaD) is that many childhood and adult diseases, including cancer, arise early in life 

(Sun et al., 2016; Moore, 2016; Almeida et al., 2019). This phenomenon may result 

from increased susceptibility to exposures via greater absorption, nascent detoxification 

mechanisms, or heightened sensitivity to small homeostatic fluctuations that coincides with 

rapid organ and tissue development during prenatal development and early life (Landrigan 

and Goldman, 2011; Lu and Rosenbaum, 2014; van Anker and den; Reed et al., 2018). 

Indeed, epidemiological studies have identified associations between prenatal and early-life 

exposures to air pollution (Stephane et al. 2020; Hsu et al., 2015), endocrine disrupting 

chemicals (Braun, 2017; Tanner et al., 2020), trace metals (Valeri et al., 2017), and 

pesticides (von Ehrenstein et al., 2019; Hyland et al., 2018) and a range of adverse 

health outcomes from neurodevelopment to cancer. However, obtaining direct measurements 

of exposures to the developing fetus or child and related dysregulated biology during 

these critical time periods is challenging, and particularly so for studies of rare and low 

frequency diseases and disorders. Consequently, most epidemiological studies rely on 

questionnaire data and/or measurement of direct exposure in maternal prenatal matrices 

or from external exposure sources (e. g. regional air monitors, pesticide application maps, 

exposures measured at home or school), which may not accurately represent fetal or early 

life exposures.

Human teeth initiate development during second trimester gestation and naturally shed 

during childhood and adolescence. As teeth grow and form, many chemicals circulating 
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in the blood are deposited in the organic matrix which later undergoes mineralization 

forming a crystalline structure that preserves the timing and intensity of the exposure 

(Andra et al., 2015; Arora and Austin, 2013). This deposition is progressive, similar to 

growth rings in a tree, creating a unique ‘biological hard drive’ that keeps a record of 

past exposures. Leveraging this record via chemical interrogation of tooth matrix provides 

a retrospective direct analysis of prenatal and early life exposures. Further, by measuring 

both exogenous chemicals and endogenous metabolites in teeth, data can be collected on 

exposure, metabolism, and biologic response, all at developmentally important time points 

for identifying causal risk factors and unraveling biological pathways.

Organic compounds directly measured in teeth include drugs, tobacco metabolites, 

plasticizers, and pesticides (Ottaviani et al., 2017; Palmer et al., 2015; Camann et al., 2013; 

Marchei et al., 2008; Pellegrini et al., 2006), demonstrating the broad range of chemical 

exposures preserved in teeth for exposome analysis. However, most teeth preparation 

protocols require pulverizing the whole tooth to analyze the powder, which results in a 

loss of temporal information for examining the role of exposure timing. We developed 

laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technologies 

to enable measurements of metals with weekly temporal resolution (Austin et al., 2013). 

This technique successfully identified key windows of susceptibility to metal exposures 

linked with adverse health outcomes such as autism spectrum disorder (ASD) (Arora et 

al., 2017) and amyotrophic lateral sclerosis (ALS) (Figueroa-Romero et al., 2020), and 

reinforces the importance of exposure timing in environmental health research. Further 

methods development can help to maximally leverage this unique exposure matrix for future 

discovery.

One approach to generate extensive exposure data is untargeted metabolomics, the unbiased 

measurement of thousands of small molecules, including both exogenous compounds and 

endogenous metabolites, that can be linked to exposures and health outcomes. To date, 

only a single proof-of-concept study has reported metabolite and environmental exposure 

measurements in teeth while maintaining temporal resolution between prenatal and postnatal 

tooth fractions (Andra et al., 2015). Here, we perform the first comprehensive untargeted 

profiling of deciduous teeth using liquid chromatography high-resolution mass spectrometry 

(LC-HRMS) to characterize the tooth exposome. Further, using 31 naturally shed deciduous 

teeth, we investigate differences in metabolome profiles between prenatal and postnatal 

fractions to demonstrate the utility of this method for molecular phenotyping to discriminate 

groups for population-based etiological research.

2. Methods

2.1. Tooth samples

Experimental deciduous teeth for pooled comprehensive metabolomics profiling across four 

analytical modes were anonymously donated to the Icahn School of Medicine at Mount 

Sinai (ISMMS).

Pediatric study teeth were collected from 31 pediatric subjects enrolled in the Early Autism 

Risk Longitudinal Investigation (EARLI Study). EARLI enrolls pregnant mothers, who have 
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already had a child with ASD, and follows them prospectively throughout pregnancy and the 

child’s first 3 years of age. EARLI is a network of four recruitment sites across the country, 

leveraging a common protocol for phenotypic assessment and biosampling. EARLI sites on 

the East Coast (Baltimore, Philadelphia) recruited primarily through mailings to families in 

early intervention and special education systems. The EARLI site in Sacramento recruited 

families through records of the California Developmental Disabilities Service system, while 

the EARLI site in San Francisco (Kaiser Permanente) recruited through their membership. 

All cohorts advertised through autism service, community, and advocacy organizations in 

their regions.

Teeth were naturally shed between January 2017 and April 2018, collected at home, and 

were mailed to each EARLI collection site in polypropylene vials. Teeth were assigned 

a coded identifier and shipped at room temperature to ISMMS for untargeted chemical 

analysis.

2.2. Sampling pretreatment

Teeth were prepared including washing, mounting, and drilling as previously described to 

separate prenatal and postnatal fractions (Hare et al., 2011). At the time of collection, teeth 

were washed in distilled water, air-dried and placed individually in sterile plastic specimen 

containers (Sarstedt, USA). Specific regions of the tooth dentin are micro-dissected using 

a custom-built robotic platform that removes dentine fragments at pre-specified locations 

in prenatal and postnatal dentine. The prenatal and postnatal dentin fractions are then 

dried using a freeze-dryer and weighed before storage at – 20°C until extraction. Tooth 

dentin were then pooled and re-aliquoted before extraction. Details of the general analytical 

methods have been described elsewhere (Andra et al., 2015) and we summarize here.

For metabolomics profiling, pooled experimental tooth extracts and process blanks were 

analyzed on four LC-HRMS modes: ZIC-hydrophilic liquid chromatography (HILIC) in 

positive and negative electrospray ionization (ESI) mode (ZHP, ZHN) for analysis of polar 

metabolites, and reverse phase liquid chromatography in positive and negative ESI mode 

(RPP, RPN) for analysis of semi- and non-polar metabolites, using established methods 

(Yu et al., 2020; Hu et al., 2021). See Supplemental Materials for instrument details. 

Pooled experimental samples were analyzed in triplicate using MS full scan and MS/MS 

data-dependent analysis (DDA) mode for metabolite identification, in all four analytical 

modes.

Individual extracts of the pre- and postnatal tooth fractions of EARLI study subjects were 

analyzed in a randomized run order only on the RPP mode as a single injection using full 

MS1 mode. An external diluted reference plasma sample was prepared as a quality control 

(QC) and injected routinely throughout the batch. Process blanks were analyzed at the 

beginning and end of the analytical run. Remaining extracts from the EARLI samples were 

pooled to generate pre- and postnatal sets, and analyzed in MS/MS mode either as targeted 

MS/MS or as DDA.
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2.3. Data analysis

2.3.1. Data preprocessing, visualization, and statistics analysis—Raw data 

from the LC-MS analyses were converted into mzXML format and analyzed using R 

programming platform (version 3.6.3) (R Core Team, 2020). The ‘XCMS’ package was used 

to extract peaks, align the peaks, group peaks into features, and fill the baseline for grouped 

peaks as a final peak table using optimized parameters by IPO package (Smith et al., 2006; 

Libiseller et al., 2015). Further preprocessing details can be found in the Supplemental 

Materials. For the comparison of overall feature numbers across analytical modes using 

experimental pooled teeth extracts, only peaks that appeared in all triplicate injections were 

retained for further analysis. For analysis of EARLI tooth samples, peaks that were missing 

in more than 50% of either prenatal or postnatal samples were removed before downstream 

analysis.

The extracted peaks list from MS1 was filtered by calculating the ratio of the average 

intensity in the sample: average intensity in the blank samples (fold change, FC). Retained 

features were those with a FC > 3 in the pooled samples compared to blanks for qualitative 

analysis, or FC > 3 in either the prenatal or postnatal groups compared to the blanks for 

differential analysis between the pre- and postnatal fractions.

To visualize the annotated compounds for qualitative analysis, tanimoto chemical similarity 

scores were calculated based on ECFP6 molecular fingerprints, which were generated by 

SMILES representation of each compound (Bajusz et al., 2015; Rogers and Hahn, 2010). 

Each compound was mapped as a node, with edges representing chemical similarity scores > 
0.4.

Prenatal tooth fractions consistently weighed less than postnatal fractions. For comparisons 

between prenatal and postnatal metabolite profiles, tooth metabolite profiles were first 

normalized by dividing metabolite signal intensities by the original dried tooth mass. 

Further, missing peaks in the prenatal fraction may be a result of lower original tooth mass 

compared to the postnatal fraction and not as a result of peaks uniquely observed in the 

postnatal fraction. Therefore, we removed peaks that appeared in more than 15 postnatal 

samples and less than 16 prenatal samples. Furthermore, statistical analysis was performed 

only on peaks well-retained on the column (>25 s and <900 s).

Differential analysis between prenatal and postnatal fractions was performed based on 

a linear model for a paired study using the limma package (Ritchie et al., 2015). The 

differences between prenatal and postnatal samples from the same subjects were tested using 

an Empirical Bayesian method to provide a stable beta estimation. To control for false 

discovery rate (FDR), a Bonferroni correction was applied to the p- values. Statistically 

significant peaks were assessed visually, and only those representing high-quality peaks and 

integrations were reported (Schiffman et al., 2019; Chetnik et al., 2020).

Network analysis was performed to describe the overall relationship among unknown 

compounds that were significantly different between prenatal and postnatal fractions. 

To avoid redundant peaks from the same compounds such as isotopologue, adducts, 

or fragments, the GlobalStd algorithm (Yu et al., 2019) was applied to retain reduced 
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independent peaks considering the Pearson’s correlation coefficient larger than 0.7 to filter 

the high frequency paired mass distances. Edges were built using the Pearson correlation 

coefficient among paired independent peaks larger than 0.9.

2.3.2. Metabolite annotation and identification—Detected metabolites were 

annotated and identified based upon in- house database matching considering retention 

time, accurate mass, and MS/MS matching (when available) with pure standards analyzed 

under the same conditions using the in-house Personal Chemical Database Library (PCDL) 

and Profinder software (Agilent Technologies, Santa Clara, USA) within a tolerance of 20 

ppm and 0.3 min. Targeted MS/MS and DDA MS/MS data were exported from Masshunter 

software (Agilent Technologies, Santa Clara, USA), and matched to the Metlin database 

(Scripps Research, La Jolla, USA) (Xue et al., 2020) and the Global Natural Products Social 

Molecular Networking Database (GNPS) (Wang et al., 2016) for putative identifications. 

Annotations are Metabolomics Standard Initiative (MSI) level 1 or 2, as they were either 

matched to authentic standards by m/z and retention time (and MS/MS when available) or 

matched to a spectral database by m/z and MS/MS. Further details on the criteria used for 

spectral matching can be found in Table S1. Links to the GNPS results can be found in the 

Supplemental Materials. Metabolite classes were determined using ClassyFire (Djoumbou 

Feunang et al., 2016).

3. Results and discussion

3.1. Metabolite profiling of deciduous teeth

Untargeted chemical profiling of pooled prenatal experimental tooth dentine were performed 

across the four analytical modes. After filtering to remove signals < 3 fold greater in the 

tooth samples than procedural blanks, the total number of metabolite features for each 

analytical mode were 4579 and 2045 for reverse phase liquid chromatography in positive 

and negative mode, respectively (RPP and RPN), and 1503 and 2553 for ZIC-HILIC liquid 

chromatography in positive and negative mode, respectively (ZHP, ZHN). Bubble plots (Fig. 

1) suggest that tooth metabolites measured with reverse-phase chromatography, in particular, 

positive mode, were well retained across the column compared to ZH chromatography. 

We further characterized the tooth exposome with respect to chemical parameters for each 

analytical mode, to prioritize analysis conditions for the limited sample available from 

teeth dentin. We then compared the molecular mass (m/z) and signal intensity (log scale) 

distribution of the tooth exposome (see Figs. S1 and S2). Molecules measured on the RPP 

mode were skewed toward smaller m/z distributions (median m/z 466.1250, 90% range 

of [189.0982, 774.4105], Fig. S1a) while molecules measured on the ZHN mode were 

skewed toward higher m/z distributions (median m/z 699.8351 [290.093, 1047.717], Fig. 

S1d). Distributions of measured molecules for RPN and ZHP modes were more gaussian, 

with median m/z of 555.4814 [221.2368, 970.4119] and median m/z 542.1089 [173.2469, 

946.5747], respectively. In addition, median signal intensities (log scale) were similar for 

metabolites measured in positive mode (median 4.14 and 4.12) with a 90% range of 

[3.43, 5.42] and [3.48, 5.50], for RPP and ZHP, respectively (Fig. S2a,c). Mean signal 

intensities were slightly lower in negative mode for both chromatographies (median 3.90 

and 4.00) with a range of [3.26, 5.08] and [3.43,5.08] for RPN and ZHN, respectively (Fig. 
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S2b,d). These results suggest a broad range of small and larger molecules and a range of 

lipophilicity in the tooth exposome. Given the limited available sample volume, RPP mode 

was selected for analysis of the 31 study teeth.

Using a combination of mz, rt, and MS/MS matching to authentic standards or MS/MS 

matching to Metlin database or GNPS, 390 unique metabolites were identified in the tooth 

extracts from the 4 analytical modes (see Table S1). These metabolites comprised only 2.6% 

(177/ 4579) of the total features measured in RPP, 10.4% (157/1503) of the total features 

measured in ZHP, 3.7% (76/2045) of the total features in RPN, and 2.5% (64/2553) of 

the total features measured in ZHN, suggesting that current metabolite databases do not 

sufficiently cover the tooth exposome. Nevertheless, metabolites in teeth represented a broad 

range of structures and functions distributed across 62 chemical classes as determined by 

ClassyFire (Djoumbou Feunang et al., 2016). Carboxylic acids and their derivatives made 

up the largest proportion of metabolites (35.9%, 140/390); other common classes were 

benzene substituted derivatives (14.9%, 58/390), fatty acyls (11.3%, 44/390), organonitrogen 

compounds (3.3%, 13/390), organooxygen compounds (3.6%, 14/390) and steroids and their 

derivatives (3.1%, 12/390). The remaining 28.0% of identified metabolites are categorized 

into the other 56 classes.

3.2. Towards a novel approach to retrospective temporal biomarker phenotyping

Metabolites annotated included both exogenous compounds (phthalates, parabens, 

perfluoroalkyl compounds, and cotinine) and endogenous metabolites (fatty acids, steroids, 

carnitines, amino acids, and other classes) detailed in Table S1. A subset of the annotated 

metabolites are visualized in Fig. 2, where several clusters of chemically similar compounds 

are formed. Therefore, our teeth exposome approach provides direct measurements across 

the continuum from external exposures and their metabolites, to molecular building blocks 

of physiological functions, and to biological response as a result of environmental factors 

interacting with our physiology (Fig. 2). Combined with the crucial component of being 

able to include developmental timing, we provide a new approach to molecular phenotyping 

beyond what genomics can offer.

To evaluate biological and health relevance of the metabolites measured in early-life tooth 

dentin, we then linked the 390 annotated compounds with disease-associated metabolite 

sets from the human metabolites database (HMDB) (Wishart et al., 2007). Of the 

identified metabolites, 91 compounds were found in HMDB and were linked with 256 

health conditions through HMDB (Wishart et al., 2007). Diseases and disorders linked 

with at least 20 annotated tooth metabolites included colorectal cancer (70 metabolites), 

eosinophilic esophagitis (48 metabolites), ulcerative colitis (35 metabolites), Crohn’s disease 

(32 metabolites), schizophrenia (32 metabolites), and Alzheimer’s disease (21 metabolites). 

Schizophrenia (Modabbernia et al., 2016), Crohn’s disease, and ulcerative colitis (Nair 

et al., 2020) have been linked with deciduous tooth metal levels. Thus, our findings 

indicate that tooth metabolomics may be a particularly important resource to reveal 

early- life etiological factors, biological pathways, and biomarkers linked with adverse 

neurodevelopment and gastrointestinal health. In addition, nineteen metabolites measured 

in deciduous teeth—2-hydroxybutyrate, alanine, asparagine, citric acid, creatine, estriol, 
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glutamine, glycine, arginine, isoleucine, leucine, phenylalanine, proline, serine, threonine, 

tyrosine, lauroylcarnitine, lysophosphatidylcholine (18:0), sphingosine, and succinate—have 

been linked with pregnancy complications, suggesting that teeth exposomics may facilitate 

understanding of complex relationships between maternal and fetal biological response. 

In essence, the disease-relevant signatures we are finding in prenatal and early postnatal 

fractions have the potential to serve as early warning indicators for diseases that currently 

are detected many years later.

3.3. Metabolites distinct to the prenatal fraction of the early-life tooth exposome

The fetal period is a time of rapid biological changes that may raise susceptibility to 

exposures that may initiate later adverse health outcomes. Capturing these fetal exposures is 

possible through leveraging the unique tooth histology. To measure the fetal exposome, we 

used 31 paired prenatal and postnatal tooth fractions from individual EARLI deciduous teeth 

and assessed whether any metabolites were distinct to the prenatal period. These metabolite 

features were those found in at least half of the prenatal fractions (>15 out of 31) but absent 

in the postnatal fraction, or were found in at least half of the prenatal fractions (>15 out of 

31) but no more than half of the postnatal period fractions (<15 out of 31). We rationalized 

that such an approach would reveal direct measurements of fetal exposures that may be of 

particular interest for etiological studies of diseases hypothesized to have fetal origins.

After peak filtering, 4815 peaks were retained in all 62 tooth extracts analyzed on the RPP 

platform. We identified metabolite features that were present in a high proportion of prenatal 

fractions, and retained only those with peaks and peak integrations that were of high quality 

(Chetnik et al., 2020) (Table 1). There were 11 metabolite features present in at least 16 

prenatal samples but not present in any postnatal samples, and 15 metabolite features present 

in at least 16 prenatal samples and present in only 2 or less postnatal samples (<10%). Of 

the 21 metabolites distinct to the prenatal fraction, only a single metabolite feature eluted 

early, at 0.57 min with an m/z of 294.9823, suggesting a highly hydrophilic compound. All 

other features distinct to the prenatal fraction were well retained on the column and eluted 

between 5.11 min and 7.55 min, with m/z ranging from 523.2758 to 683.4331. Confident 

annotations of these metabolites could not be made based on MS/MS spectral matching to 

the available databases. However, metabolite classes such as phthalates and fatty acyls elute 

from 5 to 8 min suggesting the analytes in question are possibly medium hydrophilicity 

compounds. While we were only able to annotate one of the metabolites (Tyr Leu Phe Asp), 

MS/MS fragments, when available, and m/z and retention time information is provided to 

enable future identifications (Table 1).

3.4. Metabolites differentially measured in prenatal versus postnatal tooth fractions

We then assessed whether there were significant differences in individual peak levels 

between the prenatal and postnatal tooth fractions. In total, 267 peaks show significant 

differences between pre- and postnatal dentin after Bonferroni correction (adjusted p-value 

< 0.05), with 237 metabolite features with higher abundances in the postnatal than the 

prenatal fraction, and 30 metabolite features with higher abundances in the prenatal fraction 

than the postnatal fraction (see Fig. 3, Table S2.) For metabolite features more abundant 

in the prenatal fraction, fold changes (prenatal abundance/postnatal abundance) ranged 
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from 1.88 to 8.77, while for metabolites more abundant in the postnatal fraction fold 

changes (prenatal abundance/postnatal abundance) ranged from 0.06 to 0.49. These results 

are not surprising given that exposures (environmental, nutritional, psychosocial, etc.) are 

expected to differ between fetal life and infancy. Interestingly, however, the number of 

significantly increased metabolite features is smaller in the prenatal fraction (30 compared to 

237), indicating possibly less diverse exposures, a role of maternal metabolism dampening 

exposures, a filtering effect of the placenta, or less developed metabolism during fetal life. In 

fact, qualitative comparison of untargeted profiles between prenatal and postnatal fractions 

suggests that features more abundant in the prenatal samples, but not reaching statistical 

significance, were eluted on the early or late ends of the chromatogram, which may reflect 

more easily excreted metabolites (very polar) or those very hard to metabolize (very non-

polar) in the prenatal samples (Fig. S3). Further, the ability to detect a large number of 

statistically different features between the prenatal and postnatal fractions suggests that 

the tooth methodology described here is robust to performing relative quantification across 

groups for environmental health studies and etiological discovery. Interestingly, the 267 

differentiating metabolites could not be annotated as the obtained MS/MS spectra did not 

match well to any databases. The use of acetic acid as a LC-buffer additive in this analysis 

could have hindered spectral matching to the databases. Acetate adducts may not match 

spectra obtained from the more conventionally used formic acid. More importantly, however, 

these results point to the vast chemical space in the tooth exposome that has yet to be fully 

characterized.

To obtain biological interpretation of the significant metabolites, we retained only the 195 

independent peaks (Yu et al., 2019) after correlation filtering (see Methods). This reduces 

the total number of peaks for easier visualization without losing biological information. 

Since it has been shown in KEGG that many metabolites that are involved in similar 

biological pathways are highly correlated (Kanehisa et al., 2016), we generated a correlation 

map with edges representing those feature pairs with a Pearson’s correlation coefficient 

> 0.9 (see Fig. 4). We then mapped to the network the annotated metabolites from Table 

S1 (labels, Fig. 4), as well as those metabolites significantly different between pre- and 

postnatal fractions (triangles, Fig. 4) to infer biological information on the unknowns. 

Twenty metabolites with levels significantly different between the tooth fractions were 

located on the periphery of a large cluster of highly connected nodes that included dipeptides 

and tripeptides. In addition, four metabolites with levels significantly different between tooth 

fractions were correlated with acetylphenylalanine, acetylleucine, and acetylproline. Thus, 

we speculate that these 24 unknown differentially measured metabolites are functionally 

similar to small peptides or acetyl amino acids, respectively.

3.5. Considerations for future analysis

Although we demonstrated that a broad range of metabolites can be measured across the 

tooth exposome, there is a large chemical space of unidentified metabolites. This included 

all 267 significant peaks that discriminated the prenatal versus postnatal fraction and 20 

of the 21 metabolites that were distinct in the prenatal tooth fraction. Even though we 

were able to generate MS/MS fragmentation data of several of these peaks (Table 1), they 

did not match any spectra in the Metlin or GNPS databases. This is surprising since both 
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Metlin and GNPS are expansive databases with 4,000,000 and 221,000 reference MSMS 

spectra, respectively (Xue et al., 2020; Aron et al., 2020). It is possible that the complex 

processes involved in extracting small organic molecules from dentin tooth compared to 

simple protein precipitation that is commonly used in urine or plasma metabolomics produce 

unique adducts of metabolites that may limit spectral matching. Alternately, as this is the 

first untargeted analysis of tooth dentin, we may be observing small molecules (di- and 

tripeptides included) that are unique to this matrix. Future untargeted chemical studies on 

tooth dentin will enhance the breadth of annotations and identifications to facilitate deeper 

biological interpretation of early-life exposures and biology.

4. Conclusion

The tooth exposome represents an unparalleled landscape for etiological discovery of early 

life exposures and biological pathways. We performed the first untargeted assay to directly 

profile fetal and early postnatal exposures in tooth dentin. This approach identified several 

hundred small molecules including exogenous exposures and endogenous metabolites, many 

of which are biologically relevant and have been linked to adverse health outcomes. While 

this discovery study was limited to only 31 samples, we identified metabolites representing 

distinct fetal exposures and demonstrated the robustness of the methodology, which revealed 

over 250 metabolites significantly different between pre and postnatal tooth fractions. These 

compounds are unknown, but future work to identify these metabolites is warranted to 

define whether they play important roles in fetal and early-life programming, dysregulated 

physiology, and biological response linked with diseases and disorders.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Bubble plots showing peaks and their relative abundances measured in each of four 
analytical modes: RPP, RPN, ZHP, and ZHN.
A broad range of small and larger molecules and a range of lipophilicity can be observed in 

the tooth exposome. The broad distribution of peaks across the RP modes, particularly for 

RPP, suggests better retention on the column.
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Fig. 2. Retrospective temporal molecular phenotyping.
(A) The approach we are proposing provides a pathway from external exposures and their 

metabolites to the molecular architecture of physiology (the ‘building blocks of life’) to the 

biological response that is invoked when environmental factors interact with our physiology. 

(B) A subsample of the classes of compounds we have detected in prenatal and postnatal 

components of teeth to exemplify the categories in panel A. Clusters are generated by 

chemical similarity between metabolites.
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Fig. 3. Volcano plot of measured features.
Red features are those with p- values < 0.05 after Bonferroni correction. Significant peaks 

that were considered redundant peaks or those with unreliable peak integrations were 

removed. Fewer significant metabolites with positive fold changes (higher in prenatal tooth 

fraction than postnatal tooth fraction) were observed compared to those with negative fold 

changes.
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Fig. 4. Untargeted metabolite correlation network map.
Each node is an independent peak determined by the GlobalStd algorithm with correlation 

coefficient filtering. Edges are those peaks with Pearson correlation coefficient > 0.9. 

Independent peaks that could be matched to Table S1 are colored blue and labeled with 

annotations. Triangle nodes are those metabolites with significantly different abundances 

between paired pre- and postnatal samples (<0.05 adj. p-value, Bonferroni correction). 

Although not annotated, significantly different peaks may be functionally similar to small 

peptides or acetyl amino acids.

Yu et al. Page 17

Environ Int. Author manuscript; available in PMC 2022 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 18

Table 1

Summary of molecular features of the early-life tooth exposome that are found primarily in the prenatal 

fraction.

Precursor (m/z) Retention Time (min) Annotation and Major MS/MS 

Fragments
a

Number of Prenatal 
Samples

Number of Postnatal 
Samples

 294.9823 0.57
NA

b 21 1

 523.2758 5.11 523.2754 (392.1813, 293.1131, 231.1707, 
136.0758, 72.0797)

21 0

 537.2915 5.45 NA 21 0

 557.2597 5.70 Tyr Leu Phe Asp, 557.2587 (86.0956, 
136.0757, 249.1599, 277.1541, 281.1124)

29 0

 551.3071 5.97 551.3101 (420.2122, 293.1509) 26 0

 537.2914 5.98 NA 16 0

 571.2758 6.06 NA 29 5

 539.2497 6.12 539.2454 (249.1604, 136.0755) 29 12

 571.2755 6.46 NA 26 4

 509.2757 6.52 509.2764 (410.2056, 313.1539, 197.1290, 
64.9776)

26 1

 443.6955 6.57 NA 23 4

 451.6842 6.57 451.6842 (333.5884, 248.2046) 28 1

 864.4130 6.57 NA 29 0

 452.1867 6.58 NA 26 0

 735.3702 6.68 NA 28 0

 585.2911 6.76 NA 18 0

 308.6307 7.05 NA 28 0

 316.6199 7.05 NA 23 5

 523.2915 7.12 NA 25 2

 620.3446 7.38 NA 28 0

 683.4331 7.55 683.4307 (328.2220, 197.1284) 30 10

a
Precursor ion in MS/MS spectra with major fragment ions listed in parenthesis.

b
NA is listed for precursor ions that did not yield good-quality MSMS spectra and consistent fragment ions.
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