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ABSTRACT

Objective: The novel coronavirus disease 2019 (COVID-19) has heterogenous clinical courses, indicating that

there might be distinct subphenotypes in critically ill patients. Although prior research has identified these sub-

phenotypes, the temporal pattern of multiple clinical features has not been considered in cluster models. We

aimed to identify temporal subphenotypes in critically ill patients with COVID-19 using a novel sequence cluster

analysis and associate them with clinically relevant outcomes.

Materials and Methods: We analyzed 1036 confirmed critically ill patients with laboratory-confirmed SARS-

COV-2 infection admitted to the Mount Sinai Health System in New York city. The agglomerative hierarchical

clustering method was used with Levenshtein distance and Ward’s minimum variance linkage.

Results: We identified four subphenotypes. Subphenotype I (N¼233 [22.5%]) included patients with rapid respi-

rations and a rapid heartbeat but less need for invasive interventions within the first 24 hours, along with a rela-

tively good prognosis. Subphenotype II (N¼418 [40.3%]) represented patients with the least degree of ailments,

relatively low mortality, and the highest probability of discharge from the hospital. Subphenotype III (N¼259

[25.0%]) represented patients who experienced clinical deterioration during the first 24 hours of intensive care

unit admission, leading to poor outcomes. Subphenotype IV (N¼126 [12.2%]) represented an acute respiratory
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distress syndrome trajectory with an almost universal need for mechanical ventilation.

Conclusion: We utilized the sequence cluster analysis to identify clinical subphenotypes in critically ill COVID-19

patients who had distinct temporal patterns and different clinical outcomes. This study points toward the utility

of including temporal information in subphenotyping approaches.

Key words: COVID-19, sequence clustering, intensive care unit

INTRODUCTION

Coronavirus disease 2019 (COVID-19)1 is a novel respiratory dis-

ease, leading to over 33 million confirmed cases with 0.6 million

deaths in the United States by May 2021.2 Efforts to reduce the bur-

den of COVID-19 and its complications include diagnostic and

prognostic models,3 treatments,4–9 and vaccines under emergency

use authorization.10–12 However, in-hospital mortality for the subset

of hospitalized patients who need mechanical ventilation still

exceeds 50%.13 Among patients hospitalized with COVID-19, even

those with similar baseline characteristics may follow different clini-

cal trajectories and have different outcomes.14–19

Subphenotypes are subgroups of a disease with distinct bio-

markers even if patients appear clinically similar at their early

stages.20–23 More research is needed to unveil novel COVID-19 sub-

phenotypes, elucidate their pathophysiology, and investigate

whether subphenotype-specific treatment approaches are needed.

While many studies have focused on identifying novel subpheno-

types using features available at the baseline24–27 or a single tempo-

ral feature,28,29 most of them overlook overall temporality.

Sequence cluster analysis30,31 is a data mining technique to find

groups in a sequential database such that each group contains simi-

lar sequences. This technique can be a rational approach to identify

subphenotypes characterized by distinct patterns of disease progres-

sion over a period of time. Two approaches are widely applied: se-

quence similarity distance metrics and feature engineering. Sequence

similarity distance metrics are a class of distance metrics that mea-

sure similarity by counting the number of operations required to

transform one sequence to the other. Edit distance32–34 and substitu-

tion matrix34,35 are two well-known examples, primarily applied in

DNA/RNA sequencing.34 The resultant distance matrix can be used

in clustering methods. Unlike the sequence similarity distance met-

rics, feature engineering in the context of sequence cluster analysis

transforms spatiotemporal features into different (spatial) subspaces

so that existing distance metrics can measure the similarity of the

sequences. n-gram36 and sequential pattern mining37 are two exam-

ples. While n-gram is widely applied in natural language process-

ing,36 sequential pattern mining is used in learning subsequences to

predict the next event.38–40 The resultant features can be applied to

the classical clustering, yet the feature space’s sparseness can be

challenging.

We aimed to derive temporal subphenotypes using sequence

cluster analysis in critically ill patients with COVID-19. Figure 1

illustrates the workflow of this study. We employed the agglomera-

tive hierarchical clustering method with Levenshtein distance, se-

quence similarity distance metrics, and Ward’s minimum variance

linkage on biomarkers and treatments during the first 24 hours of

intensive care unit (ICU) stay to derive subphenotypes. We evaluated

the association of the subphenotypes with two clinical outcomes: in-

hospital mortality and hospital discharge at 30 days. We explored

the temporal characteristics of the subphenotypes. Finally, we

checked the robustness of the subphenotypes to sampling and the

choice of the clustering method.

MATERIALS AND METHODS

Study design and participants
We retrospectively reviewed data from adult patients with

laboratory-confirmed COVID-19 admitted to ICU at five Mount

Sinai Health System (MSHS) hospitals in New York city between

March and December 2020. A confirmed case of COVID-19 was de-

fined by reverse transcription-polymerase chain reaction positivity

for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

from a nasopharyngeal swab sample, which is considered the gold

standard for COVID-19 diagnosis.41 We included patients at least

18 years of age with laboratory-confirmed SARS-COV-2 infection

within 14 days prior or 24 hours posterior to ICU admission. We ex-

cluded patients with ICU admission dates outside the study period

or ICU stay that was less than 24 hours. We also excluded those

without recorded height and weight within the preceding 3 years,

without a blood pressure recording during the first 24 hours of

ICU stay, or without a recorded date of death or discharge from the

hospital.

Data collection and measurements
We extracted electronic health record (EHR) data, specifically socio-

demographic information (age, sex, race, and ethnicity). We also

extracted discretized clinical/laboratory measurements and treat-

ment, which are commonly assessed and intervened in the ICU set-

ting42 as listed in Table 1. Finally, we recorded in-hospital

mortality and hospital discharge at 30 days as outcomes, to assess

the usability of identified clusters.

Data preparation
We transformed biomarkers and treatment administrations during

the first 24 hours of the ICU admission into a sequence consisting of

16 non-overlapping interval slots, each of which was 1.5 hours long

and one of 10 distinct statuses. We did this in the following three

steps.

First, we excluded biomarkers and treatments having less than

10% prevalence in the cohort. Table 1 lists the 10 biomarkers and 7

treatments, which constituted the set of 17 features.

Second, we created a series of 16 non-overlapping interval slots,

each 1.5-hour long, to cover the first 24 hours of the ICU stay. For

each feature, we marked 1 if the feature was present in a time-

window, and 0 if it was not. We arrived at the 1.5-hour window size

based on our subjective assessment of the duration of action of drugs,

and treatment administration intervals available in our dataset.

Third, we applied dimensionality reduction techniques to the 17

features to obtain a 10-level variable for sequence cluster analysis.
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This was done in two steps. We started by using Logistic principal

component analysis56 with 5-fold cross-validation to remove collin-

earity problems and to identify 10 principal components. We then

used the agglomerative hierarchical clustering method with Euclid-

ean distance and Ward’s minimum variance linkage on the principal

components to obtain a 10-level categorical variable. We used a

consensus of 26 indices57 to determine the optimal number of levels.

Subphenotype derivation
We used the agglomerative hierarchical clustering method with Lev-

enshtein distance and Ward’s minimum variance linkage because it

needs only a distance matrix and not measurements themselves. We

determined the number of resulting subphenotypes by average Sil-

houette width,58 the slope changes in Gap statistic,59 Clest,60 elbow

method on the total within the sum of squares,61 and visual evalua-

tion of the dendrogram.

Statistical analysis
We calculated frequencies and percentages for biomarkers and treat-

ments over the first 24 hours of ICU stay and analyzed differences

across the subphenotypes using the chi-square test. We used

Kaplan–Meier survival analysis to compare time to mortality and

hospital discharge among subphenotypes. Survival time for 30-day

in-hospital mortality was defined as 24 hours after the ICU admis-

sion to either date of in-hospital death or last known contact within

31 days after the ICU admission. Similarly, survival time for 30-day

hospital discharge was defined as 24 hours after the ICU admission

to either date of hospital discharge or last known contact within 31

days after the ICU admission or 31 days of those who experienced

in-hospital death. We also explored temporal variation in the

prevalence of the subphenotypes on a monthly basis from March to

December 2020.

We evaluated the robustness of the described subphenotypes to

sampling and choice of clustering algorithm in the following manner.

First, we evaluated sensitivity to sampling by using the holdout

method to randomly split patients into mutually exclusive training

(80%) and test (20%) sets. The k-nearest neighbor classifier with

Levenshtein distance was trained on the training set. The re-derived

subphenotypes were assigned using the k-nearest neighbor classifier

on the test set. We used heatmaps to visualize how subphenotypes

and re-derived subphenotypes on the test coincided with each other.

Second, we evaluated sensitivity to clustering methods by re-deriving

subphenotypes using a k-medoid method with Levenshtein distance

and using Heatmap to evaluate how they coincided with subpheno-

types from the agglomerative hierarchical clustering method.
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Figure 1. Study flow diagram. Both demographic features and those expected to evolve over time were used to identify subphenotypes. Outcomes were analyzed

by subphenotype. Subphenotypes were derived using the agglomerative hierarchical clustering method with Levenshtein distance and Ward’s minimum vari-

ance linkage.
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We performed all statistical analyses using R software version

3.6.3 (R Foundation for Statistical Computing, Vienna, Austria).62

Source code is available at https://github.com/Nadkarni-Lab/ohw_

jamia_2021.

RESULTS

Study population
We considered 1702 patients aged at least 18 and either admitted to

an intensive care unit within 14 days of testing positive for SARS-

COV-2 or having their first positive SARS-COV-2 test within 24

hours of ICU admission. We excluded patients with ICU admissions

dates outside the study period (N¼30), or ICU stays of less than 24

hours (N¼122). We also excluded those without a blood pressure

recording during the first 24 hours of ICU stay (N¼105), without

recorded height and weight within the preceding 3 years (N¼69),

or without a recorded date of death or discharge from the hospital

(N¼2). The remaining 1036 patients formed our final cohort.

The mean age was 63 years (95% confidence interval (CI): 54,

74). Thirty-seven percentage were female, 20% were Black, and

27% were Hispanic. At 30 days, 44.8% of patients had died and

41.1% had been discharged alive from the hospital. We provide de-

scriptive statistics for the cohort in Table 2, under the heading “Full

cohort.”

Characteristics of subphenotypes
We identified four distinct subphenotypes. Table 2 shows patient

characteristics at the time of ICU admission and during the first 24

hours of ICU stay by subphenotype. Figure 2 shows a dendrogram

of the resulting cluster hierarchy. Figure 3 shows the cumulative

prevalence of abnormal biomarkers and treatments of each subphe-

notype. The x-axis denotes the time in hours after the ICU admis-

sion, and the y-axis represents the cumulative prevalence. The upper

two rows depict the 10 biomarkers, and the lower two rows depict

the 7 treatments. Figure 4A and B shows survival curves for in-

hospital death and discharge from the hospital, respectively, for

individuals with each subphenotype.

Subphenotype I (SP-I) included 233 patients in the cohort. These

patients tended to be White (N¼72 [30.9%]) and non-Hispanic

(N¼185 [79.4%]). They were characterized by being tachypneic

(respiratory rate (RR) >20; N¼97 [41.6%]) while not yet being

mechanically ventilated (N¼12 [5.2%]) at the time of ICU admis-

sion. At 24 hours, almost all these patients were tachypneic

(N¼228 [97.9%]), even though the number needing mechanical

ventilation remained low (N¼40 [17.2%]). In particular, 24 hours

after the ICU admission, patients with SP-I experienced 5 times

higher systolic blood pressure <90 mmHg (17.2% vs. 3.3%), 2

times higher HR >90 BPS (62.2% vs. 29.7%), 1.7 times higher RR

>20 BPS (97.9% vs. 58.9%), 2 times higher partial pressure of car-

bon dioxide/fraction of inspired oxygen (P/F)<150 (37.8% vs.

18.9%), 1.8 times higher vasoactive agents administration (18.5%

vs. 10.5%), 1.5 times higher loop diuretics admiration (17.6% vs.

12.0%), and 3 times higher mechanical ventilation administration

(17.2% vs. 5.7%) than with subphenotype II (SP-II). SP-I had the

highest probability of survival (0.449 [CI 0.374, 0.538]) and the

second-highest probability of discharge from the hospital (0.598 [CI

0.507, 0.673]) at 30 days, although the differences were not statisti-

cally significant.

SP-II included 418 (40.3%) patients in the cohort. These patients

were younger (mean age 61.5 [IQR 53.0, 73.0]) and more likely to

be Black (N¼96 [23.0%]) than the other three subphenotypes.

They generally had the lowest prevalence of unfavorable physiologi-

cal biomarkers during the ICU stay. They were also less likely to

need vasoactive agents or mechanical ventilation. SP-II showed the

highest probability of hospital discharge at 30 days (0.745 [CI

0.686, 0.794]).

Subphenotype III (SP-III) included 259 (25.0%) patients in the

cohort. These patients tended to be older (mean age 65.3 [IQR 58.0,

73.0]) and were more likely to be males (N¼169 [65.3%]) than the

other three subphenotypes. SP-III had the highest incidence of shock

at ICU admission, and this trend continued over the first 24 hours of

ICU stay. SP-III also had the highest requirement for support with

vasoactive agents and over half of these patients needed mechanical

ventilation, with the need for these interventions increasing over the

first 24 hours. SP-III showed the second-lowest probability of sur-

vival (0.722 [0.649, 0.779]), although the difference was not statisti-

cally significant. The proportion discharged from the hospital

(0.487 [CI 0.381, 0.574]) was comparable to SP-I and SP-IV.

Subphenotype IV (SP-IV) included 126 (12.2%) patients in the

cohort and had a relatively larger proportion of patients of Hispanic

or Latino (N¼42 [33.3%]) ethnicity. A distinct characteristic was

Table 1. Inclusion or exclusion of biomarkers and treatment

Category Biomarker Retained

Shock43–45 SBP <90 mmHg �

HR >90/min �

RR >20/min �

Body temperature <96.8�F �
PaCO2 <32 mmHg �

WBC >12 000/mm3 �

Band cell count >10% �
Serum lactate >4 mmol/l �

HTN-C46,47 SBP >180 mmHg �
DBP >120 mmHg �

ARDS48,49 P/F ratio <150 �

DKA50,51 Glucose >250 mg/dl �

Arterial pH <7.25 �

Serum bicarbonate <15 mmol/l �
AG >12 mmol/l �

AKI52,53 Increase in Cr to two times the baseline �

Cr >4.0 mg/dl �
ALF54 INR >2 �

Category Treatment Retained

Shock43–45 Red blood cell transfusion �

Vasoactive agents �

HTN-C55 Intravenous vasodilators �
Loop diuretics �

ARDS48,49 Mechanical ventilation �

Neuromuscular-blocking agents �

DKA50,51 Insulin �

AKI52,53 Hemodialysis �

Abbreviations: AG: anion gap; AKI: acute kidney injury; ALF: acute liver

failure; ARDS: acute respiratory distress syndrome; Cr: serum creatinine;

DKA: diabetic ketoacidosis; HR: heart rate; HTN-C: hypertensive crisis; INR:

international normalized ratio; P/F: PaO2/FiO2 (fraction of inspired oxygen);

PaCO2: partial pressure of carbon dioxide in arterial blood; RR: respiratory

rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; WBC: white

blood cell count.
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Table 2. Characteristics of cohort and subphenotypes

Feature Full cohort SP-I SP-II SP-III SP-IV P value

Patients, n (%) 1036 (100) 233 (22.5) 418 (40.3) 259 (25.0) 126 (12.2) –

Demographics

Age, years, n (IQR) 63.3 (54.0, 74.0) 64.8 (57.0, 76.0) 61.5 (53.0, 73.0) 65.3 (58.0, 73.0) 62.2 (53.0, 73.8) 0.014

Sex, male, n (%) 651 (62.8) 144 (61.8) 261 (62.4) 169 (65.3) 77 (61.1) 0.815

Race, n (%)

White 273 (26.4) 72 (30.9) 100 (23.9) 77 (29.7) 24 (19.0) 0.075

Black or African American 207 (20.0) 37 (15.9) 96 (23.0) 55 (21.2) 19 (15.1)

American Indian/Alaska native 2 (0.2) 1 (0.4) 0 (0.0) 1 (0.4) 0 (0.0)

Asian 54 (5.2) 13 (5.6) 20 (4.8) 16 (6.2) 5 (4.0)

Hawaiian native and Pacific islander 2 (0.2) 0 (0.0) 1 (0.2) 1 (0.4) 0 (0.0)

Some others 498 (48.1) 110 (47.2) 201 (48.1) 109 (42.1) 78 (61.9)

Ethnicity, n (%)

Hispanic or Latino 282 (27.2) 48 (20.6) 123 (29.4) 69 (26.6) 42 (33.3) 0.035

Not Hispanic or Latino 754 (72.8) 185 (79.4) 295 (70.6) 190 (73.4) 84 (66.7)

NYC boroughs

Bronx 59 (5.7) 14 (6.0) 27 (6.5) 11 (4.2) 7 (5.6) 0.001

Brooklyn 267 (25.8) 67 (28.8) 115 (27.5) 64 (24.7) 21 (16.7)

Manhattan 360 (34.7) 74 (31.8) 137 (32.8) 83 (32.0) 66 (52.4)

Queens 257 (24.8) 48 (20.6) 109 (261) 76 (29.3) 24 (19.0)

Staten Island 5 (0.5) 1 (0.4) 4 (0.10) 0 (0.0) 0 (0.0)

Not applicable 88 (8.5) 29 (12.4) 27 (0.62) 25 (9.7) 8 (6.3)

Survival probability

10 days 0.71 (0.68, 0.74) 0.77 (0.71, 0.83) 0.81 (0.77, 0.85) 0.54 (0.49, 0.61) 0.64 (0.56, 0.73) <0.001

20 days 0.49 (0.46, 0.53) 0.56 (0.49, 0.64) 0.56 (0.50, 0.63) 0.36 (0.30, 0.43) 0.42 (0.33, 0.52)

30 days 0.39 (0.35, 0.43) 0.45 (0.37, 0.54) 0.43 (0.36, 0.51) 0.28 (0.22, 0.35) 0.38 (0.29, 0.48)

Hospital discharge probability

10 days 0.25 (0.22, 0.28) 0.22 (0.16, 0.28) 0.38 (0.33, 0.43) 0.12 (0.07, 0.17) 0.06 (0.01, 0.11) <0.001

20 days 0.49 (0.45, 0.52) 0.46 (0.38, 0.53) 0.63 (0.57, 0.68) 0.37 (0.28, 0.45) 0.26 (0.14, 0.36)

30 days 0.62 (0.58, 0.66) 0.60 (0.51, 0.67) 0.75 (0.69, 0.79) 0.49 (0.38, 0.57) 0.43 (0.29, 0.55)

Abnormal biomarkers at the ICU admission

SBP <90 mmHg, n (%) 54 (5.2) 6 (2.6) 3 (0.7) 35 (13.5) 10 (7.9) <0.001

HR >90 bpm, n (%) 178 (17.2) 54 (23.2) 31 (7.4) 66 (25.5) 27 (21.4) <0.001

RR >20 bpm, n (%) 273 (26.4) 97 (41.6) 69 (16.5) 73 (28.2) 34 (27.0) <0.001

PaCO2 <32 mmHg, n (%) 14 (1.4) 2 (0.9) 4 (1.0) 6 (2.3) 2 (1.6) 0.428

WBC >12 000, n (%) 49 (4.7) 7 (3.0) 16 (3.8) 22 (8.5) 4 (3.2) 0.011

P/F <150, n (%) 83 (8.0) 13 (5.6) 15 (3.6) 29 (11.2) 26 (20.6) <0.001

Glucose >250 mg/dl, n (%) 77 (7.4) 14 (6.0) 26 (6.2) 25 (9.7) 12 (9.5) 0.237

pH <7.25, n (%) 41 (4.0) 2 (0.9) 10 (2.4) 21 (8.1) 8 (6.3) <0.001

AG >12 mmol/l, n (%) 83 (8.0) 16 (6.9) 25 (6.0) 31 (12.0) 11 (8.7) 0.039

7 days Cr >2 times, n (%) 10 (1.0) 0 (0.0) 3 (0.7) 5 (1.9) 2 (1.6) 0.134

Treatments at the ICU admission

Red blood transfusion, n (%) 9 (0.9) 1 (0.4) 3 (0.7) 4 (1.5) 1 (0.8) 0.569

Vasoactive agents, n (%) 136 (13.1) 9 (3.9) 8 (1.9) 88 (34.0) 31 (24.6) <0.001

IV loop diuretics, n (%) 10 (1.0) 2 (0.9) 3 (0.7) 4 (1.5) 1 (0.8) 0.743

Mechanical ventilation, n (%) 159 (15.3) 12 (5.2) 4 (1.0) 70 (27.0) 73 (57.9) <0.001

Neuromuscular blocker, n (%) 39 (3.8) 4 (1.7) 3 (0.7) 13 (5.0) 19 (15.1) <0.001

IV insulin, n (%) 31 (3.0) 5 (2.1) 7 (1.7) 12 (4.6) 7 (5.6) <0.001

Hemodialysis, n (%) 4 (0.4) 1 (0.4) 1 (0.2) 1 (0.4) 1 (0.8) 0.040

Abnormal biomarkers during the first 24 h of ICU admission

SBP <90 mmHg, n (%) 219 (21.1) 40 (17.2) 14 (3.3) 118 (45.6) 47 (37.3) 0.003

HR >90 bpm, n (%) 519 (50.1) 145 (62.2) 124 (29.7) 175 (67.6) 75 (59.5) <0.001

RR >20 bpm, n (%) 766 (73.9) 228 (97.9) 246 (58.9) 197 (76.1) 95 (75.4) <0.001

PaCO2 <32 mmHg, n (%) 125 (12.1) 37 (15.9) 40 (9.6) 39 (15.1) 9 (7.1) 0.236

WBC >12 000, n (%) 447 (43.1) 88 (37.8) 142 (34.0) 158 (61.0) 59 (46.8) 0.050

P/F <150, n (%) 372 (35.9) 88 (37.8) 79 (18.9) 137 (52.9) 68 (54.0) <0.001

Glucose >250 mg/dl, n (%) 324 (31.3) 74 (31.8) 110 (26.3) 101 (39.0) 39 (31.0) 0.161

pH <7.25, n (%) 192 (18.5) 17 (7.3) 31 (7.4) 107 (41.3) 37 (29.4) 0.008

AG >12 mmol/l, n (%) 571 (55.1) 128 (54.9) 204 (48.8) 74 (67.2) 65 (51.6) 0.007

7 days Cr >2 times, n (%) 184 (17.8) 22 (9.4) 32 (7.7) 96 (37.1) 34 (27.0) 0.010

Treatments during the first 24 h of ICU admission

Red blood transfusion, n (%) 46 (4.4) 8 (3.4) 13 (3.1) 20 (7.7) 5 (4.0) 0.681

Vasoactive agents, n (%) 406 (39.2) 43 (18.5) 44 (10.5) 230 (88.8) 89 (70.6) <0.001

(continued)
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the high prevalence of respiratory failure. Over half of these patients

were mechanically ventilated at the time of ICU admission, and all

of them were mechanically ventilated at 24 hours. Associated with

this were low P/F ratios and the need for neuromuscular blockade.

The hospital discharge rate (0.430 [CI 0.286, 0.545]) at 30 days was

similar to SP-I and SP-III.

Temporal (monthly) characteristics of subphenotypes
Figure 5 shows the temporal (monthly) characteristics of subpheno-

types. The histogram on top shows the number of patients each

month between March and December 2020, and the bar plot on the

lower subgraph shows the corresponding percentage of each subphe-

notype. The number of COVID-19 patients surged during the two

waves in March and November 2020, aligned with daily hospitaliza-

tion trends in New York state.56 However, the percentage of each

subphenotype was not consistent across the months. In particular,

the proportion of SP-I increased over the months (20.1% in March

and 54.5% in November 2020), while that of SP-II and SP-III de-

creased (39.8% and 26.9% in March and 27.3% and 9.1% in No-

vember 2020, respectively). On the other hand, SP-IV showed a

relatively stable prevalence (13.5% in March and 9.1% in Novem-

ber 2020), with small fluctuations.

Robustness of subphenotypes
Sensitiveness to the choice of clustering algorithm

Figure 6A shows the heatmap of prevalence co-occurrence of sub-

phenotypes from hierarchical clustering and k-medoid methods. The

x-axis represents re-derived subphenotypes from the k-medoid

method, and the y-axis represents subphenotypes from the hierarchi-

cal clustering method. Overall, SP-I (67.8 %), SP-II (83.7 %), and

SP-IV (75.3%) were robust to clustering methods, while SP-III (47.1

%) was not.

Sensitiveness of sampling

Figure 6B shows the heatmap of how the subphenotypes and the

re-derived subphenotypes coincided with each other. We derived

subphenotypes (x-axis) directly from the test set, while the re-

derived subphenotypes (y-axis) were inferred using the k-nearest

neighbor model learned on the training set and then applied to the

test set. SP-I (88.2 %), SP-III (64.5 %), and SP-IV (69.0 %) appeared

to be quite robust to sampling but SP-II (57.8 %) was less so.

DISCUSSION

We used sequence cluster analysis to identify subphenotypes of criti-

cally ill adult patients with COVID-19, based on biomarkers and

treatments during the first 24 hours of ICU stay. While other investi-

gators have looked at the derivation of subphenotypes using features

available at baseline,24–27 or time series with a single feature,28,29

these may overlook temporal patterns that are apparent only when

multiple features are considered over a period of time. We identified

four subphenotypes with distinct temporal patterns during the first

24 hours and different clinical outcomes at 30 days.

Among those subphenotypes, SP-II consisted of patients with

comparatively smaller physiological derangements and minimal

need for invasive interventions, with relatively good outcomes. SP-I

demonstrated significant physiological derangements but relatively

low rates of invasive interventions and good outcomes comparable

to SP-II. Thus, SP-I may represent patients with a higher level of

physiological reserve at the time of ICU admission. SP-III and SP-IV

showed a significant prevalence of hemodynamic instability and re-

spiratory failure needing mechanical ventilation at the time of ICU

admission. At the end of 24 hours of ICU care, shock needing vaso-

active agents appeared to be more prevalent in the former, and respi-

ratory failure requiring mechanical ventilation was universally

needed for patients in the latter. This suggests that exploration of

the temporal progressions of clinical features can help identify

meaningful subphenotypes.

The relative change in the proportion of different subphenotypes

over time may reflect changes in clinical practice over the course of

the study period. For example, when the first wave of COVID-19 hit

New York city in March 2020, hospital capacity was quickly over-

whelmed due to the COVID-19’s high infectivity63 and infection fa-

tality,64 as well as lack of standard admission criteria and treatment

guidelines. Accordingly, the SP-II subphenotype, which was associ-

Table 2. continued

Feature Full cohort SP-I SP-II SP-III SP-IV P value

IV loop diuretics, n (%) 154 (14.9) 41 (17.6) 50 (12.0) 44 (17.0) 19 (15.1) 0.798

Mechanical ventilation, n (%) 340 (32.8) 40 (17.2) 24 (5.7) 150 (57.9) 126 (100.0) <0.001

Neuromuscular blocker (IV), n (%) 193 (18.6) 23 (9.9) 32 (7.7) 86 (33.2) 52 (41.3) 0.001

IV insulin, n (%) 162 (15.6) 16 (6.9) 41 (9.8) 75 (29.0) 30 (23.8) 0.039

Hemodialysis, n (%) 47 (4.5) 7 (3.0) 17 (4.1) 18 (6.9) 5 (4.0) 0.681

Abbreviations: NYC: New York City, AG: anion gap; Cr: serum creatinine; HR: heart rate; ICU: intensive care unit; P/F: PaO2/FiO2 (fraction of inspired oxy-

gen); PaCO2: partial pressure of carbon dioxide in arterial blood; RR: respiratory rate; SBP: systolic blood pressure; SP-I: subphenotype I, SP-II: subphenotype II,

SP-III: subphenotype III, SP-IV: subphenotype IV; WBC: white blood cell count, IQR:interquartile range, BPM: beats per minute.

Figure 2. Dendrogram of the agglomerative hierarchical clustering method

with Levenshtein distance and Ward’s minimum variance linkage.
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Figure 3. Cumulative incidence of abnormal biomarkers and treatments. AG: serum bicarbonate; Cr: serum creatinine; HR: heart rate; P/F: PaCO2/FiO2 (fraction of

inspired oxygen); PaCO2: partial pressure of carbon dioxide; RR: respiratory rate; SBP: systolic blood pressure; WBC: white blood cell count.

(b)(a)

Figure 4. (A) Survival probability of 30-day in-hospital mortality. (B) Probability of 30-day hospital discharge.
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ated with a better prognosis, comprised a significant number of ICU

admissions during March and April 2020 (39.8% and 43.8%, re-

spectively). However, with new interim guidelines,65 these patients

comprised a smaller proportion of ICU admission during the second

wave in November and December 2020 (27.3% and 28.7%, respec-

tively). The interim guidelines may also have worked on the limit of

patients developing severe complications during the first 24 hours of

the ICU admission. SP-III, which was associated with a high shock

and mechanical ventilation rate, decreased from 26.9% and 32.5%

in March and April 2020 to 9.1% and 12.6% in November and De-

cember 2020. This was accompanied by an increase in the percent-

age of SP-I, associated with less physiological derangements, less

severe complications, and, potentially, better outcomes. Unfortu-

nately, we did not see much change in the prevalence of SP-IV,

which was associated with poor outcomes and an almost universal

need for mechanical ventilation.

The derivation of these four subphenotypes was possible through

sequence cluster analysis. Sequence cluster analysis lets multiple fea-

tures be considered over a period of time, allowing us to separate

subphenotypes even if some subphenotypes appear clinically similar

at the admission or by the end of the observation period. We tested

whether we could identify similar subphenotypes from non-

temporal cluster analysis. We used flattened data with distance met-

rics for binary vectors and found that the resulting subphenotypes

did not coincide with our original subphenotypes and appeared in-

stead to separate patients primarily based on the intensity of the

presence of biomarkers and treatment administration. We hypothe-

size that non-temporal clustering was less effective because bio-

markers and treatment administrations during the first 24 hours of

ICU stay follow multimodal distributions, causing valuable informa-

tion to be lost when the data is collapsed into binary vectors.

The details of this comparison can be found in the Supplementary

Materials.

Model validation is important for machine learning-based stud-

ies.66–68 The use of standardized terminologies decreases the burden

of model transferability and facilitates model validation. We used

standards like LOINC and CPT codes, and the RxNorm drug vo-

cabulary to obtain data from the EHR. We have made our code

freely available at https://github.com/Nadkarni-Lab/ohw_jamia_

2021 to encourage reproducibility.

This study is not without limitations. First, we were not able to

access some relevant information, like cardiac ejection fraction, elec-

trocardiogram tracings, or radiology images. Second, our cohort of

patients was limited to those receiving ICU-level care at five MSHS

hospitals in New York city. As a result, our cohort was geographi-

cally limited, although it was demographically diverse. Third, we

have not quantified the effect of resource availability on the case

mix admitted to ICUs over the course of the pandemic. We also didFigure 5. Temporal characteristics of subphenotypes.

(a) (b)

Figure 6. Robustness of subphenotypes: (A) sensitivity to clustering algorithm and (B) sensitivity to sampling.
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not consider how the population at risk in New York city changed

over the period of the study and the resulting impact on subpheno-

type prevalence. Fourth, we do not know how well our findings will

describe patients after December 2020, as the standard of care for

COVID-19 has evolved, different SARS-COV-2 variants have be-

come prevalent, and a substantial proportion of the population has

been vaccinated. Assessment of generalizability of the subpheno-

types identified in this paper will require validation against cohorts

from different time periods and geographical areas; the ability of

our method to leverage temporal information for this remains. Fifth,

we used data from only the first 24 hours of ICU stay to extract tem-

poral patterns. This was because of our assessment of the clinical

importance of the first 24 hours, and also a decrease in cohort size

when we tried to extend the observation period. As a result, we may

not capture some patterns that only appear later in the ICU course.

We are currently conducting a follow-up study on National COVID

Cohort Collaborative (N3C) data to study patterns that may emerge

with a longer observation period.

CONCLUSION

The four subphenotypes we derived for critically ill patients with

COVID-19 were associated with distinct temporal patterns and clin-

ical outcomes and may form the basis of studies exploring

subphenotype-specific treatment.
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