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ABSTRACT

Objective: Reducing suicidal behavior among patients in the healthcare system requires accurate and explain-

able predictive models of suicide risk across diverse healthcare settings.

Materials and Methods: We proposed a general targeted fusion learning framework that can be used to build a

tailored risk prediction model for any specific healthcare setting, drawing on information fusion from a separate

more comprehensive dataset with indirect sample linkage through patient similarities. As a proof of concept,

we predicted suicide-related hospitalizations for pediatric patients in a limited statewide Hospital Inpatient Dis-

charge Dataset (HIDD) fused with a more comprehensive medical All-Payer Claims Database (APCD) from Con-

necticut.

Results: We built a suicide risk prediction model for the source data (APCD) and calculated patient risk scores.

Patient similarity scores between patients in the source and target (HIDD) datasets using their demographic

characteristics and diagnosis codes were assessed. A fused risk score was generated for each patient in the tar-

get dataset using our proposed targeted fusion framework. With this model, the averaged sensitivities at 90%

and 95% specificity improved by 67% and 171%, and the positive predictive values for the combined fusion

model improved 64% and 135% compared to the conventional model.

Discussion and Conclusions: We proposed a general targeted fusion learning framework that can be used to

build a tailored predictive model for any specific healthcare setting. Results from this study suggest we can im-

prove the performance of predictive models in specific target settings without complete integration of the raw

records from external data sources.
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INTRODUCTION

Rising rates of suicidal behavior among children and adolescents

constitute one of the United States’ most critical public health chal-

lenges.1–5 Death by suicide has increased by over 30% over the past

20 years and has become the second leading cause of death among

youth ages 10–24.6,7 In the past 5 years, a great deal of effort has

been directed at improving the identification of individuals at risk of

suicidal behavior using clinically derived risk algorithms. Although

such efforts have generated a handful of viable predictive models,8,9

the vast majority have been focused on adults. To date, there were

very limited published suicide risk prediction models for children

and adolescents, with both achieving good predictive performance

albeit in limited patient populations.10,11

However, the most daunting challenge facing those seeking to

use pediatric suicide risk algorithms may not be the development of

the algorithms themselves; rather, the primary barrier involves the

limited data available to most healthcare providers with which to

apply these predictive models to their patients. The rich datasets

that have generated the most comprehensive and accurate suicide

risk algorithms are derived from large and sophisticated integrated

delivery systems, health plans, and research networks. Health

system-wide medical records data of this nature are not, and may

likely never be, available to the vast majority of healthcare providers

in the United States.

Transfer learning,12 a learning mechanism that aims to leverage

the shared knowledge emerging from similar tasks using data from

different contexts and scenarios, provides a promising avenue for

improving predictive analytics across different health research

domains. Despite its promise, it has only recently been deployed for

healthcare analytics yet with encouraging results.13 For example, the

effectiveness of transfer learning techniques has been demonstrated

with a diverse set of medical image analysis problems.14–16 Recent

studies have shown that transfer learning can significantly improve

the early identification of patients at risk of Alzheimer’s disease us-

ing on their longitudinal clinical records.17 In a direct application of

this approach to hospital data, Wiens et al18 showed that health in-

formation from multiple hospitals could be used to improve

hospital-specific predictions of the risk of hospital-associated infec-

tion with Clostridium difficile using a transfer learning framework.

Two challenges in suicide risk prediction are particularly well-suited

to transfer learning approaches: first, the fragmentation of relevant

patient health information across the care spectrum (eg, primary

care, behavioral health, and hospital-based care), and second, the

rarity of suicidal behavior as an outcome, which requires large, inte-

grated datasets under conventional analytic scenarios. As the attrib-

ute of data fusion, we used the terminologies, transfer learning and

fusion learning synonymously.

In this analysis, we propose a general targeted fusion learning

framework that can be used to build a tailored predictive model for

any specific healthcare setting. As a proof of concept, we apply our

model using data from a large statewide All-Payer Claims Database

(APCD), integrated with statewide inpatient hospital claims data, to

develop and test pediatric suicide risk algorithms using principles as-

sociated with transfer learning.12 Our approach, which uses compre-

hensive clinical data to develop both a robust risk prediction model

and a similarity matrix to link patients in a more limited database to

the features in the risk prediction model, is a dramatic departure

from previous efforts to develop suicide risk algorithms using clini-

cal data. The use of data fusion techniques allows us to expressly

target these algorithms to clinical settings with access to sparse and

limited data, that is, the settings in which the vast majority of

patients in the United States receive their healthcare.

MATERIALS AND METHODS

Targeted fusion learning framework
We describe our proposed targeted fusion learning framework that

can be used to build a tailored predictive model for any specific

healthcare setting. This approach is based on data from the patient

population in the healthcare setting of interest (referred to as the tar-

get cohort), combined with data on patients from a larger and more

comprehensive data source (referred to as the external cohort), such

as a health information exchange or a research repository.

Figure 1A illustrates our proposed approach. For generality, let

yt
i ; xt

i

� �
and ye

j ; xe
j

� �
denote the response and predictor vector for

the i-th target patient and the j-th external patient respectfully,

where i ¼ 1; . . . ; nt and j ¼ 1; . . . ;ne for target sample size nt and ex-

ternal sample size ne:

Step 1

Generation of individual risk scores rj

� �ne

j¼1
for external patients.

Here, a model for predicting the risk levels of the patients from the

external cohort is constructed. This model can incorporate different

versions of risk scores that utilize multifold information and com-

bine the strengths of different models. Validation of the initial risk

model also typically includes review of the selected features by clini-

cal experts.

Step 2

Construction of similarity scores Sij

� �
between target and external

patients, for i ¼ 1; . . . ;nt; j ¼ 1; . . . ; ne. This step provides the foun-

dation of information transfer and data fusion. The target and exter-

nal cohorts do not necessarily have exactly the same candidate

predictors. However, they generally have shared information

domains which allow us to build a similarity measure to link the 2

sets of patients. For example, in our study of linking hospital inpa-

tient data (target) and all-payers claims data (external), both data-

sets contained patient demographics and diagnosis codes. Different

similarity/distance metrics, including Pearson correlation, Canberra

distance, cosine distance, among others, could be considered in the

computation of the pairwise similarity scores, based on the types of

the available data.

Step 3

Computation of fused risk scores for target patients based on simi-

larity scores and external risk scores. This step produces a set of pro-

jected risk scores Ri for each patient in the target population, by

combining his/her similarity measures with external patients

obtained from Step 2 and the estimated risk scores of the external

patients from Step 1:

Ri ¼ g r1; r2; . . . ; rne ; Si1; Si2; . . . ; Sineð Þ for i ¼ 1; 2; . . . nt; (1)

where g �ð Þ denotes a fusion function for integration of the target

population and external population. As a simple example, the risk

score can be computed as a similarity weighted average of the exter-

nal scores, that is, an external patient with a higher risk score and is

more similar to the target patient will contribute more, and vice

versa.
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Figure 1. Proposed targeted fusion learning framework. (A) The architecture of the general target fusion learning. (B) Model training and evaluation on the HIDD

dataset.
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Step 4

Predictive modeling for the target population assisted with the fused

risk scores. This final step builds a predictive model for the target

population, using both the target data and the fused risk scores from

Step 3. Generally, the fused risk scores are used as predictors in the

predictive model, which are subject to the same selection and shrink-

age estimation process as the other predictors from the target data.

The predicted value for i-th target patient can be formulated as:

byt
i ¼ f xt

i ;Ri

� �
: (2)

Our targeted fusion learning approach provides a flexible way of

utilizing available information from large external databases as an

auxiliary information source for tailoring and improving the predic-

tive model for a target population. An important benefit of this ap-

proach is that it does not require the difficult or even impossible

task of fully integrating the target data with external data sources.

Moreover, in our framework, different data sources may provide

different sets of information, as long as there exists some overlap

that allows for the calculation of a patient similarity measure; we do

not require a unique identifier to link different datasets, and our ap-

proach can be implemented in a distributed fashion so that each pro-

vider does not have to gain full access of the external database.

Data and study cohorts
The 2 datasets used in this study were: the Connecticut APCD,

which contained medical and pharmacy claims for Connecticut resi-

dents from January 1, 2012 to December 31, 2017; and the Con-

necticut Hospital Inpatient Discharge Dataset (HIDD), which

contained inpatient hospitalizations from all acute care hospitals in

the state from January 1, 2012 to September 30, 2017. The APCD

contains both inpatient and outpatient encounters from approxi-

mately 35% of the commercially insured Connecticut population,

while the HIDD contains a census of all inpatient hospitalizations

across all insurers (including Medicaid and Medicare) during this

period. Suicide attempts (SAs) were identified using ICD-9 diagnos-

tic codes and code combinations, all the combinations are listed in

Supplementary Table S1.19,20

Target cohort

The target cohort consisted of children, adolescents, and young

adults aged 10–24 years who had at least one nonsuicide-related

hospitalization from the HIDD data. This cohort had 38 806

patients with 485 suicide attempters. More specific preprocessing

steps are included in Supplementary Table S2.

External cohort

The external cohort consisted of patients of the same age range 10–

24 (in the year 2014) who had at least one nonsuicidal service claim

within the recruiting window: January 1, 2014 to December 31,

2015 from the APCD data. Patients without continuous eligibility

during the recruiting window, or with invalid enrollment were ex-

cluded.21 The illustration and the detailed description for the

recruiting window are included in the Supplementary Material. This

cohort had 155 486 patients with 2053 suicide attempters.

Event of interest

The event of interest was the first SA after the most recent nonsui-

cide-related hospitalization.

Candidate predictors

Historical information was aggregated from the first claim to the

last nonsuicidal claim (or the last nonsuicidal within the recruiting

window for APCD). Predictor variables included major demo-

graphic characteristics (age and gender) and ICD-9/10 diagnosis

codes from each medical encounter. There were up to 10 primary

and secondary diagnosis codes for each encounter or hospitalization.

ICD-10 codes were converted back to ICD-9 codes using R package

“touch” for consistency and were then grouped into larger catego-

ries using their first 3 digits.

Application of targeted fusion between HIDD and APCD
We have tailored the above general framework to build and validate

setting-specific suicide prediction models, using the external data

from APCD to improve the prediction of the target from HIDD

(Figure 1B).

1. To build a suicide prediction model with external data, we fo-

cused on the prediction of the first SA using the APCD data. In

particular, the risk scores for external patients were produced

from an external model built by a “marginal screening þ
elastic-net regularized logistic regression” pipeline.5,21 Predictor

screening was be done by fitting marginal models with each pre-

dictor and a set of control variables. Subsequentially, regular-

ized statistical learning methods were used to conduct

simultaneous risk factor identification and model estimation.

The model hyperparameters were determined based on the

Bayesian information criterion.22

2. The similarities between the 2 sets of patients were computed

based on demographics and diagnosis codes. We first require

the exact match between the age group (10–14, 15–19, or 20–

24) and gender (female or male), patients with different age

group or gender are considered to have similarity score zero.

The binary encoding of diagnosis codes (1 if the patients had

this diagnosis code, 0 otherwise) is further used to compute the

Pearson correlation coefficient. Without loss of generality, we

assume that xt
i1; . . . ; xt

ipo

� �
and xe

i1; . . . ; xe
ipo

� �
are the po com-

mon features between the target population and external popu-

lation, recall Eq. (1) the similarity score for i-th target patient

and j-th external patient is computed as:

Sij¼
Ppo

p¼1 xt
ip� �xt

ip

� �
xe

jp� �xe
jp

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPpo

p¼1 xt
ip� �xt

ip

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPpo

p¼1 xe
jp� �xe

jp

� �2
r for i¼ 1; . . .nt; j¼ 1; . . .ne: (3)

3. For each patient in the target cohort, we created a k-order fused

risk score—the summation of risk scores of the top k most simi-

lar patients in the external cohort weighted by the calculated

similarities. We choose k from the grid of

f1; 10; 20; 50; 100g. In other words, for each patient in the

target cohort, we gathered information of his/her k nearest

neighbors in the external cohort to produce the k-order fused

risk score as a candidate predictor

4. Finally, we built a fusion enhanced model for the target HIDD

cohort following the procedure illustrated in Figure 1B. (a) We

first randomly divided the target cohort into 90% training and

10% testing. (b) On each training set, we perform marginal

screening on the local features (demographics and diagnosis

codes) first. The screening is based on Chi-square/Fisher’s exact

test, the P values are further corrected to control the false dis-

covery rate. The predictors with adjusted P values smaller than

0.1 are kept for the final modeling. (c) The marginal selected
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predictors xif g combined with the k-order fused risk scores Ri

¼ fR1
i ;R

10
i ;R

20
i ;R

50
i ;R

100
i g were used to build the predictive

model. More specifically, we trained a logistic regression model

with all candidate predictors available at the target and the aug-

mented predictors derived by k-nearest neighbors-like risk

scores from the external dataset, that is, C ¼ fxi; Rig, to pre-

dict the occurrence of SA via a forward selection procedure,23–

25 which sequentially select predictor set S to minimize the pre-

diction error. In particular,

(i) We initialized the predictor set as empty, that is, S0 ¼1;

(ii) In each step t 2 f1; 2; 3; . . .g, we selected an optimal pre-

dictor bx 2 C, such that

bx ¼ argmax J St þ xð Þ; x 2 C; (4)

where JðSt þ xÞ is the prediction performance in terms of the

area under the receiver operating characteristics curve (AUC)

of the prediction model based on predictors from St plus x. To

measure predictive performance, we introduced a 5-fold cross-

validation strategy and calculated the mean of the AUC.

(iii) Update

St ¼ St þ bx;

C ¼ C� bx;

t ¼ t þ 1:

(5)

(iv) GO BACK TO (ii).

Of note, as the number of selected predictors increased, the AUC

first raised and then declined, because too many predictors will lead

to overfitting of the model, that is, the model can well fit training set

but fail to predict over test set. Therefore, we stopped the selection

procedure when AUC begin to decline. We repeated the above

random-splitting procedure 10 times to validate the effectiveness of

our predictive model and identify the predictors with the strongest

association with SAs.

Model evaluation
In order to estimate the proposed predictive model, we compared it

with (1) what we refer to as the conventional model that was built

based on local features of the target cohort only and (2) a model

built using candidate predictors consisting of the fused risk scores

only. To evaluate the predictive performance of the models, we ex-

amined out-of-sample performance metrics, including AUC, sensi-

tivity, specificity, and positive predictive value (PPV). AUC is a

broad metric of discrimination performance in the machine learning

community that ranges from 0.5 (random guessing) to 1.0 (perfect

prediction). Due to the high imbalance of the dataset, we calculated

sensitivities when setting specificities to 90% and 95%, respectively.

We also calculated PPV, which is the probability that predicted

high-risk patients have actual SAs.

Model interpretation
To quantify the contributions to the final prediction from selected

predictors, we counted the frequency that each predictor being se-

lected among the 10 predictive models. The odds ratio of the top 30

most frequently selected risk factors as well as their averaged selec-

tion ranks are further computed. In order to explore how the fusion

information has improved predictive modeling on the target cohort,

we compared the logistic regression coefficients of the local predic-

tors calculated with and without fusion features. Since we used the

binary encoding of each predictor, the patient’s suicide risk score

can be seen as the cumulation of coefficients of individual predictors

associated with this patient. The suicide risk scores for patients in

the testing sets were calculated, and the distribution of the scores

among suicide attempters and nonattempters are compared under

different modeling settings.

In addition to fitted coefficients, we performed statistical analy-

sis to gain further insights into the reasons for the improved predic-

tion performance. To be more specific, when comparing the

predicted high-risk groups from the fusion enhanced model with ac-

tual suicide attempters, we examined whether there were any spe-

cific characteristics (ie, diagnosis codes as predictors) among the

patients who were only correctly identified by the fusion model

(“true” predictions). We computed the number of attempters with

each diagnosis code who were identified correctly by both the con-

ventional model and fusion enhanced model, or only by the fusion

enhanced model. In other words, we developed a contingency table

for each diagnosis code, where the rows correspond to the number

of patients who had or did not have this code, while the columns in-

dicate whether both the conventional and fusion enhanced models

were correct or whether only the fusion enhanced model was cor-

rect. We further performed Fisher’s exact test to determine if the ra-

tio of this code is significantly different between the 2 groups.26

RESULTS

Population demographics
Table 1 presents the distribution of demographic characteristics in

the study population and methods used by attempters. The age

reported for the HIDD was the age at the last non-SA record, while

the age for the APCD was the age at the beginning of the recruiting

window (January 1, 2014). Survival time was defined as the last

non-SA record to the 1st SA, and the SA methods were derived from

patients’ diagnosis codes at the 1st SA. The SA rates were similar in

the HIDD (1.23%) and the APCD (1.32%); the HIDD had a higher

proportion of females, and more patients in the 20–24 age group

than the APCD. For suicide attempters, the age, gender, and SA

method distributions were similar between the 2 cohorts.

Model performance
Results summarizing the quantitative performance of the conven-

tional model and fusion enhanced model in predicting suicide risk in

the target cohort, including receiver operating characteristic curves,

AUC, and sensitivity and PPV at predefined specificity levels (90%

specificity and 95% specificity) are shown in Table 2 and Figure 2.

Overall, the proposed fusion enhanced model demonstrated much

better predictive performance compared to the conventional model

trained with local features only and the model trained with fused

features only. Although the conventional model achieved good per-

formance with an averaged AUC of 0.82 (95% CI [0.81, 0.84]), the

proposed fusion enhanced model achieved an AUC of 0.86 (95% CI

[0.84, 0.88]), and displayed sensitivities and PPVs at specific specif-

icity levels that were significantly improved. In particular, the aver-

aged sensitivities at 90% and 95% specificity improved by 67% and

171%, and the PPVs for the combined fusion model improved 64%

and 135% compared to the conventional model (see Table 2 and
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Table 1. Characteristics of the suicide attempt cases and controls for the study population

Variable HIDD (target cohort) APCD (external cohort)

Case Control Case Control

No. of patients 485 38 806 2053 153 433

Sex, N (%)

Female 308 (63.51) 22 937 (59.11) 1281 (62.4) 76 533 (49.88)

Male 177 (36.49) 15 869 (40.89) 772 (37.6) 76 900 (50.12)

Age group, N (%)

10–14 years old 72 (14.85) 6266 (16.15) 368 (17.92) 46 374 (30.22)

15–19 years old 253 (52.16) 12 798 (32.98) 931 (45.35) 53 184 (34.66)

20–24 years old 160 (32.99) 19 742 (50.87) 754 (36.73) 53 875 (35.11)

Survival time, N (%)

>1 year 122 (25.15%) – 418 (20.36) –

>3 years 22 (4.54%) – <11 (<0.54) –

Suicide attempt methods, N (%)

Poisoning 340 (70.1) – 1395 (67.95) –

Cutting 102 (21.03) – 546 (26.6) –

Hanging 9 (1.86) – 21 (1.02) –

Firearm <6 (<1.24) – <11 (<0.54) –

Jumping <6 (<1.24) – <11 (<0.54) –

Others 29 (5.98) – >61 (>2.97) –

APCD: All-Payer Claims Database.

Table 2. Performances of the predictive models

Models Candidate

predictorsa

AUC (95% CI) Sensitivity (SD) PPV (SD)

90% specificity 95% specificity 90% specificity 95% specificity

Fusion enhanced

model

Local features þ
fused risk scores

0.86 (0.84, 0.89) 0.70 (0.03) 0.65 (0.02) 0.082 (0.008) 0.134 (0.015)

Conventional

model

Local features 0.82 (0.81, 0.84) 0.42 (0.07) 0.24 (0.07) 0.050 (0.009) 0.057 (0.018)

Fusion only model Fused risk scores 0.52 (0.49, 0.55) 0.10 (0.03) 0.04 (0.03) 0.012 (0.003) 0.011 (0.006)

AUC: area under the receiver operating characteristics curve; CI: confidence interval; PPV: positive predictive value; SD: standard deviation.
aLocal features included demographics and diagnosis codes collected in target cohort, that is, HIDD cohort.

Figure 2. Prediction performances of the predictive models. A. The receiver operating characteristic curves of the predictive models. B. Curves showing true posi-

tive rate versus cutoff proportion of patients with top predicted risk scores.
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Table 3. Top 30 predictors selected by the proposed predictive model

Predictors Predictor

category

Selection

frequency

Averaged

selection

rank

Case

exposed/

case

nonexposed

Control

exposed/con-

trol

nonexposed

Log

odds

ratio

Contribution

þ/� (count)a

Age 15–19 Demographics 1 10 253/232 12 798/26 008 0.8 10/0

100-order fused risk score Fusion 0.9 12.2 – – – 0/9

50-order fused risk score Fusion 0.7 3 – – – 0/7

ICD-9 V27, Outcome of

delivery

Medical condition 1 4 11/474 8113/30 693 �2.43 0/10

ICD-9 540, Acute appendicitis Medical condition 1 8.4 (1,6)/484 2003/36 803 (�3.27, �1.48) 0/10

ICD-9473, Chronic sinusitis Medical condition 1 14.3 7/478 179/38 627 1.15 10/0

ICD-9 780, General symptoms Medical condition 0.6 19.3 52/433 2902/35 904 0.4 0/6

ICD-9 682, Other cellulitis and

abscess

Medical condition 0.4 12.7 5/480 1146/37 660 �1.07 0/4

ICD-9 648, Other current con-

ditions in the mother classifi-

able elsewhere but

complicating pregnancy

childbirth or the puerperium

Medical condition 0.4 19.7 10/475 4103/34 703 �1.73 4/0

ICD-9 659, Other indications

for care or intervention re-

lated to labor and delivery

not elsewhere classified

Medical condition 0.3 17.3 (1,6)/483 1986/36 820 (�3.26, �1.47) 1/2

ICD-9 724, Other and unspeci-

fied disorders of back

Medical condition 0.3 20 14/471 480/38 326 0.86 3/0

ICD-9 296, Episodic mood

disorders

Mental health 1 1 334/151 8114/30 692 2.12 10/0

ICD-9 311, Depressive disor-

der, not elsewhere classified

Mental health 1 2 128/357 3560/35 246 1.27 10/0

ICD-9 V62, Other psychosocial

circumstances

Mental health 1 5.2 214/271 3954/34 852 1.94 10/0

ICD-9 300, Anxiety, dissocia-

tive and somatoform disor-

ders

Mental health 1 6.9 203/282 5713/33 093 1.43 10/0

ICD-9298, Other nonorganic

psychoses

Mental health 0.8 13.2 34/451 1061/37 745 0.99 10/0

ICD9-307, Special symptoms

or syndromes not elsewhere

classified

Mental health 0.8 14.2 44/441 869/37 937 1.47 10/0

ICD-9 308, Acute reaction to

stress

Mental health 0.8 17.3 (1,6)/480 65/38 741 (0.22, 2.01) 10/0

ICD-9 295, Schizophrenic dis-

orders

Mental health 0.6 14.1 19/466 672/38 134 0.84 6/0

ICD-9 312, Disturbance of con-

duct not elsewhere classified

Mental health 0.5 17.8 20/465 675/38 131 0.89 5/0

ICD-9 309, Adjustment reac-

tion

Mental health 0.3 17.3 95/390 2035/36 771 1.48 3/0

ICD-9 V17, Family history of

certain chronic disabling

diseases

Other 0.4 19.2 47/438 1587/37 219 0.92 0/4

ICD-9 V69, Problems related to

lifestyle

SDoH 0.5 16.8 9/476 282/38 524 0.95 0/5

ICD-9 V60, Housing household

and economic circumstances

SDoH 0.5 20.6 14/471 294/38 512 1.36 5/0

ICD-9 V61, Other family

circumstances

SDoH 0.3 20 67/418 1196/37 610 1.62 3/0

ICD-9 304, Drug dependence Substance use 1 10 55/430 1457/37 349 1.19 10/0

ICD-9 965, Poisoning by

analgesics antipyretics and

antirheumatics

Substance use 1 10.7 15/470 205/38 601 1.79 10/0

ICD-9 303, Alcohol depen-

dence syndrome

Substance use 0.5 18.6 18/467 411/38 395 1.28 5/0

(continued)
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Figure 2). In contrast, the model based on fused risk scores only

showed poor prediction performance.

Predictor importance
Table 3 depicts the top 30 predictors sorted by frequency and the av-

erage rank for being selected by the sequential forward selection

procedure in our fusion enhanced model. Mental health-related di-

agnoses such as mood disorders, depressive disorders, other psycho-

social circumstances, drug abuse, anxiety, drug dependence, and

psychosocial circumstances, poisoning by analgesics antipyretics

and antirheumatics, and age were the most important risk factors

for suicidal behavior. Other diagnoses including acute appendicitis,

general symptoms, and problems related to lifestyle were negatively

associated with suicidal behavior. The 100- and 50-order fused risk

scores were frequently selected as predictors, indicating that using

information from the top 100 and 50 nearest neighbors in the exter-

nal cohort improved the performance of the conventional model. As

indicated in the right-hand column of Table 3, the signs of the pre-

dictors were uniformly positively or negatively associated with sui-

cidal behavior across all the models in which they were selected.

How does the fusion framework improve the predictive

model?
Further analyses were conducted to explore how the fused risk

scores improved the prediction model for the target cohort. Figure 3

presents the logistic regression coefficients for the top 20 local pre-

dictors selected by the fusion enhanced model, with (red) and with-

out (blue) the fused risk scores. Selected predictors were ordered by

their frequency of being selected by the model. In almost every case,

the magnitudes of the effects of the predictors (measured by the ab-

solute values of their coefficients) were strengthened in the model in-

cluding the fused risk scores. In some cases, the coefficients for the

predictors were increased by a large extent: episodic mood disor-

ders, the most prominent risk factor for suicidal behavior, almost

doubled in magnitude when fusion predictors were added to the

model (eg, for the predictor of ICD-9 296 [episodic mood disorders],

b ¼ 1:3660:03 without incorporating fused risk score vs

b ¼ 2:2760:03 in the fusion enhanced model). The only exception

to this was ICD-9 473 [chronic sinusitis], where the average coeffi-

cients dropped from 1:5760:07 in the conventional model to 1:246

0:07 in the fusion model.

In Figure 4, we illustrate how the fusion enhanced model im-

proved the identification of high-risk patients. Figure 4 presents the

distributions of individual cumulative risk score using all predictors

selected by the fusion model, all local predictors selected by the fu-

sion model, and all local predictors selected by the conventional

model, respectively, in all 10 testing sets. Compared to the other 2

methods, the fusion model led to the improved separation of individ-

ual cumulative risk scores among the cases and controls. More spe-

cifically, it amplified the risk scores of the high-risk cases while

reducing the risk scores of the controls. Such observations may ex-

plain why the fusion model resulted in large improvement in sensi-

tivity (ie, the true positive rate) while maintaining a high level of

specificity (see Figure 2).

The statistical analysis of the characteristics of fusion improved

subjects who were incorrectly characterized as attempters/nonat-

tempters in the conventional model but correctly characterized in

the fusion enhanced model further confirmed these observations.

Table 4 summarizes the prediction performance of the conventional

model and fusion enhanced model across the 10 testing sets. The fu-

sion model improved the identification of actual suicide attempters

by 26.93–37.82%. In addition, we performed Fisher’s exact test be-

tween the “only fusion correct” and “both correct” groups, with the

significant predictors and the corresponding percentage of patients

that had that diagnosis presented in Table 5. The results are meant

to be exploratory, and so we have listed all the potentially distinctive

features based on unadjusted P values with a significance level of

5%. If a predictor was less frequently observed in the “only fusion

correct” group, we refer to it as “Fusion Assisted.” For instance, the

diagnosis of disorders involving the immune system (ICD-9 279)

was only observed in the both correct group, which suggests that

our fusion model managed to correctly identify patients who

attempted suicide even when they did not have a high frequency of

ICD-9 279. In other words, those codes were “assisted” by the

power of the fusion model, which correctly identified the suicide

attempters despite the low frequency of certain codes. In contrast,

predictors that were more frequently observed in the only fusion

correct group were labeled “Fusion Corrected.” They were underes-

timated in the conventional model and corrected by the fusion en-

hanced model.

DISCUSSION

To the best of our knowledge, our study is the first to combine the

concepts of target learning and data fusion to address the rarity, un-

certainty, and high-dimensionality of complex healthcare data in

Table 3. continued

Predictors Predictor

category

Selection

frequency

Averaged

selection

rank

Case

exposed/

case

nonexposed

Control

exposed/con-

trol

nonexposed

Log

odds

ratio

Contribution

þ/� (count)a

ICD-9 969, Poisoning by

psychotropic agents

Substance use 0.2 19 10/475 159/38 647 1.63 2/0

ICD-9 305, Nondependent

abuse of drug

Substance use 1 6 158/327 5984/32 822 0.97 10/0

Note: Data are also available at: https://docs.google.com/spreadsheets/d/1TANDUqo0N6vLoA1BgsV1ZzbKVs0gsCiX/edit?usp¼sharing&ouid¼1030286479

72665991974&rtpof¼true&sd¼true.

SDoH: Social Determinants of Health.
aThe sign of coefficients of the predictors in each repeat in the predictive modeling.
bTo comply with cell suppression requirements, we present ranges for cell counts under 6 and their associated log odds calculations.
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building actionable predictive models of suicide risk. Our conven-

tional model, which was developed using 5 years of statewide inpa-

tient hospitalization data, demonstrated good performance when

compared with results generally observed in studies using clinical or

claims data to predict suicide risk in the general population.27 How-

ever, our fusion enhanced model, which incorporated information

from a complementary database containing a broader spectrum of

healthcare encounters, substantially improved the predictive perfor-

mance of the conventional model, surpassing the predictive perfor-

mance reported in the literature for both adult and pediatric patients.

The mechanism through which this improvement was achieved was

tied to the strengthening of the selected predictors—which were

mainly mental health and substance use diagnoses commonly associ-

ated with suicide—thereby clarifying their impact on suicidal behav-

ior. This “tuning” of the model using fusion predictors derived from

a more expansive, complementary database, resulted in a significant

improvement in predictive performance and resulted in a dramatic

reduction in the number of patients deemed to be at risk. Our results

illustrate the potential of improved suicide risk prediction, as well as

improved risk prediction generally, through the application of princi-

ples associated with transfer learning.

Suicide prediction represents a class of risk prediction scenarios

in healthcare involving rare events. Although a variety of techniques

have been developed to mitigate the class imbalance problem,28

robust improvements in both model performance as illustrated by

improved PPV and AUC have been lacking. Our proposed fusion

framework demonstrated, for the first time in suicide risk research,

the ability to improve such predictive models by leveraging external

large-scale patient datasets that incorporate patient similarities as

additional covariates. While we provided quantitative and qualita-

tive criteria to analyze the impact of those covariates, theory regard-

ing exactly how they improve predictive performance is ongoing.

Our research has shed light on the value of open data science, where

large-scale, comprehensive clinical datasets can be used to improve

the performance of prediction models trained on local patient popu-

lations. Importantly, our approach does not require the actual inte-

gration of identifiable patient data, thus freeing it from many of the

limitations associated with the sharing and release of sensitive infor-

mation.

As a proof-of-concept study, our statewide data do have certain

limitations. First, the target data (HIDD) do not include a unique

patient identification (ID) but rather was generated based on date of

birth, gender, race and ethnicity, and zip code. The source data

(APCD) were also deidentified and did not include patient race and

ethnicity. Access to this additional information may improve the fu-

sion model further by allowing us to construct similarity scores

more accurately. Second, only demographic and medical history (ie,

diagnosis codes) were included as predictors. The external data

source used also included medication information, which if incorpo-

rated might help to build a more accurate external model. Third, the

local cohort was restricted to inpatient settings with a limited num-

ber of suicidal events. Of the 39 291 patients eligible for analysis,

Figure 3. Coefficients of top 20 local predictors by logistic regression. Data were presented as mean value with standard deviation (SD).
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only 485 (1.23%) had SAs. Specific strategies to address the

positive-negative imbalance of SAs were not introduced. Conse-

quently, certain risk factors, which have been associated with suicide

risk but appear infrequently in this patient population, may not be

identified. The need for methods addressing imbalanced clinical

data analysis in the future is great.29,30 Finally, our analysis was con-

fined to commercial claims data due to lack of access to Medicaid

data, which may potentially limit the generalizability of our findings

to these patient populations.

This analysis has also identified many important avenues for fur-

ther research. One important avenue concerns the characteristics of

the source and target data used for data fusion. In this study, there is

some overlap in the kinds of data included in both datasets, as ap-

proximately 25% of the encounters in the target data would also be

included in the source data. We view this as both a strength and a

possible limitation. It is a strength as it presents a very common use

case for a fusion approach, where limited data from a particular hos-

pital are augmented and enhanced by fusion with a dataset contain-

ing ambulatory encounters. However, the overlap might actually

raise the bar for demonstrating the utility of the fusion approach, as

it may limit the benefits that could be reaped from data fusion given

the source data are not completely distinct from the target data.

This will be explored in future work. On the modeling side, it is

worthwhile to explore other alternative statistical approaches in

practice. Different similarity/distance metrics, including Pearson

correlation, Canberra distance, cosine distance, among others, could

be considered in the computation of the pairwise similarity scores,

based on the types of the available data. In our study, alterative ma-

chine learning methods, including random forest, neural network,

and support vector machines, did not lead to much improved perfor-

mance comparing the reported regularized logistic regression. How-

ever, it is certainty worthwhile to explore different predictive

modeling strategies under our proposed framework.

Finally, this study has substantial clinical relevance. By drawing on

data commonly available in clinical data systems, the predictive model

can be readily incorporated into existing electronic health record

(EHR) platforms to support clinical decision-making without the need

for additional data collection. The availability of such algorithms is of

particular importance to facilities required to meet the Joint Commis-

sion’s National Patient Safety Goal (January 1, 2015): Reduce the risk

for suicide.31 This required performance element for all JCOAH

accredited hospitals and behavioral health care organizations has to

date almost exclusively been met through the use of manual screening

for patient suicide risk using tools such as the Columbia-Suicide Sever-

ity Risk Scale or the Ask Suicide-Screening Questions (ASQ) Tool-

kit.32,33 Although such screening tools have demonstrated good to

excellent performance in identifying at-risk patients, the burden associ-

ated with screening patients is significant and demands clinical resour-

ces that could be allocated elsewhere if automated predictive

algorithms could reduce or even eliminate the need for the collection of

screening data.
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