Skip to main content
. 2022 Jan 29;22(2):70–76. doi: 10.1016/j.ipej.2022.01.004

Table 3.

Comparative evaluation of the performance of various ML models.

Model Sensitivity (%) Specificity (%) AUC Accuracy (%) Accuracy (weighted)[%] MCC (%)
MLP Classifier 91.3 87.5 89.3 89.1 88.9 78.3
Ada Boost Classifier 85.8 66.6 76.3 75 76.2 52.5
Logistic Regression 77.1 74.1 75.6 75.5 75.3 50.9
SVC 84.7 65.8 75.2 74.1 75.2 50.5
Cat Boost Classifier 79.3 68.3 73.8 73.1 73.5 47.3
Extra Trees Classifier 77.1 65 71.1 70.3 70.8 41.9
XGB Classifier 79.3 58.3 68.9 67.4 69 37.8
Random Forest Classifier 75 60 67.6 66.5 67.4 34.9

Abbreviations: AUC: area under the curve; MCC: Matthews's correlation coefficient; MLP: Multiple Perceptron (MLP); ML: machine learning.