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Excessive lipid accumulation and high oxidative stress have become a serious health and economic problem in the pig industry.
Fatness characteristics are crucial in pig production since they are closely related to meat quality. The gut microbiome is well
acknowledged as a key element in fat deposition. But the link between gut microbiota and fat accumulation in pigs remains
elusive. To examine whether there is a link between pigs’ gut microbiome, lipogenic properties, and oxidative stress, we
selected 5 high-fat pigs and 5 low-fat pigs from 60 250-day-old Jinhua pigs in the present study and collected the colon
content, serum sample, and liver and abdominal fat segments from each pig for metagenomic analysis, the oxidative stress
assay, and RT-qPCR analysis, respectively. The backfat thickness and fat content of the longissimus dorsi muscle were
considerably higher in the high-fat pigs than in the low-fat pigs (P < 0:05). An obvious difference in GSH-Px and MDA in the
serum between the high- and low-fat pigs was observed. After RT-qPCR analysis, we found the gene expression of ACC1 and
SREBP1 in the liver and FAS, PPARγ, and LPL in the abdominal fat were significantly higher in high-fat pigs than in low-fat pigs
(P < 0:05). Additionally, metagenomic sequencing revealed that high-fat pigs had a higher abundance of Archaeal species with
methanogenesis functions, leading to more-efficient fat deposition, while low-fat pigs had higher abundances of butyrate-producing
bacteria species that improved the formation of SCFAs, especially butyrate, thus alleviating fat deposition in pigs. Furthermore, a
total of 17 CAZyme families were identified to give significant enrichments in different fat phenotypes of pigs. This study would
provide a detailed understanding of how the gut microbiome influences fat deposition in pigs, as well as a hint for improving
growth performance and fatness traits by manipulating the gut microbiome.

1. Introduction

The gut microbiota is a complex and dynamic ecosystem
composed of trillions of microorganisms living in the diges-
tive tract and acting as a regulator and barrier for other met-
abolic organs [1]. It has been linked to the onset of metabolic
disorders such as obesity and oxidative stress. A chronic
inflammatory process such as oxidative stress and metabolic
disorders may result from the alteration in the structure of
gut microbiota [2].

Fatness traits are not only a characteristic of obesity and
oxidation injury but also very important in pig production
since they are linked to fattening features and meat quality.
The accumulation of excessive fat in animals and humans
has become an increasing threat to the animal production
industry as well as human health, which would lead to obe-
sity and could further set off many other health problems
such as cardiovascular disease, arthritis, and dementia. Fur-
thermore, lipid accumulation and impaired lipid metabolism
are associated with pathophysiological phenotypes in pigs,
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which has turned into a severe economic and health problem
in pig production [3].

Chronic inflammation in adipose tissue due to excessive
fat accumulation would promote proinflammatory status
and oxidative stress [4]. The substantial rise in the genera-
tion of free radicals in humans and animals that disrupts
the antioxidation-oxidation equilibrium is referred to as oxi-
dative stress [5]. A variety of illnesses have been reported to
be pathologically caused by oxidative stress, which has been
shown to be correlated with fat accumulation [4]. In pigs, a
significant number of free radicals are produced because of
oxidative damage, which leads to several diseases [6]. More
importantly, the development of the pig industry would be
hampered by oxidative stress due to oxidative stress directly
limiting the growth performance and health of pigs [5].
Therefore, studying the oxidative stress in pigs is of great sig-
nificance to pig production, as well as other animals and
human health.

Similar to humans, the pig gut microbiota is also a huge,
sophisticated, and dynamic microbial population with a vari-
ety of vital biological functions [7], including energy harvest,
methane synthesis, and the synthesis of short-chain fatty acids
(SCFAs) [8]. Pig fatness phenotypes are closely associated with
the composition and diversity of the microbial community in
the gastrointestinal gut tract. The composition of fatty acids in
the adipose tissues and liver could be altered by the activities of
the gut microbiota [9]. The Jinhua pig in Zhejiang Province,
China, is characterized by its slow growth speed and high
intramuscular fat content, which is considered an excellent
model for studying fat deposition [10]. In the previous study,
we compared the bacterial community structure of obese Jin-
hua pigs and lean Landrace pigs and illustrated a clear causal
connection between gut microbiota and fat deposition by fecal
microbiota transplantation [11].

Most of the related studies focused on the differences in
the structure of the intestinal microflora and fat deposition
among different pig species. However, the relationship
between fat-related phenotypes and the gut microbiome in
pigs is still unclear. Therefore, in this study, fatness charac-
teristics, fat-related gene expression in abdominal fat and
liver, and oxidative stress in serum were measured in high-
and low-fat pigs, respectively. Furthermore, the composi-
tion, diversity, and potential functions of the gut microbiota
between the two groups were studied using a high-
throughput metagenomic sequencing technique, further
analyzing the association between the gut microbiome and
fat deposition. This study will provide basic data for improv-
ing fatness traits in pig production by manipulating the gut
microbiome.

2. Materials and Methods

2.1. Animal Experiments and Sample Collection. A total of 60
newly born Jinhua pigs were fed in 6 pens, 10 pigs per pen,
in a commercial pig facility with a standard corn-soybean-
based diet and water ad libitum as described previously
[12]. Within two months before slaughter, each pig was
healthy and had not been treated with antibiotics. At 250
days of age, pigs were killed to acquire blood samples, liver

segments, and abdominal adipose tissue. Carcass traits,
namely, body weight, loin muscle area, backfat thickness,
and fat content in longissimus dorsi muscle, were analyzed
by a principal component analysis (PCA). These statistics
were utilized to determine which pigs were the most extreme
for the selection of the most extreme pigs [13, 14]. Five high-
fat (H) and five low-fat (L) pigs were chosen to collect lumi-
nal samples from the same colon location. Briefly, the gas-
trointestinal tract was peeled from the enterocoelia. The
luminal samples were collected from the middle section of
each pig’s colon. Within 30min after slaughter, all of the
luminal samples were taken and divided into two parts:
one was for the measurement of SCFAs, and the other one
was placed in a -80°C refrigerator until DNA extraction after
being dipped in liquid nitrogen.

All the procedures for animal experiments were
approved by the Zhejiang Academy of Agricultural Sciences
Institutional Animal Care strictly according to the relevant
rules and regulations (Ethic code: ZAAS-2017-009).

2.2. Luminal DNA Extraction, Metagenomic Sequencing.
According to the manufacturer’s recommendations, the
QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany) was
used to extract the luminal DNA from each colon content
sample. A NanoDrop 1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA) was used to measure
the amount and quality of DNA, and sterile water was used
to dilute the DNA concentration to a final concentration of
1 ng/L. The Illumina TruSeq™ DNA Sample Prep Kit was
used to generate libraries, which were sequenced on an Illu-
mina HiSeq 2500 platform by a commercial sequencing
company, Novogene (Beijing, China).

2.3. De Novo Assembly of Short Reads.We used trimmomatic
[15] for the quality control of raw datasets to remove the 3′-
and 5′-end of reads, eliminate poor quality bases (<20), and
trim containing 10% N of reads, and small segments
(<75 bp). The BWA [16] was performed to align the reads
with the pig genome to filter out the host DNA from the
reads. Megahit [17] (https://github.com/voutcn/megahit)
was used to de novo assemble the filtered reads for each
sample. Contigs were continuous sequences that had clear
linkages between each other.

2.4. Gene Prediction and Functional Annotation. The ORFs
(open reading frames) from each sample’s contigs were pre-
dicted using METAProdigal (http://prodigal.ornl.gov/). We
used cd-hit [18] software (http://www.bioinformatics.org/
cd-hit/) to exclude the redundant genes (parameters for
95% identity; 90% coverage) from all the predicted ORFs.
And then, Salmon [19] (https://github.com/COMBINE-lab/
salmon) was used to determine gene abundances by map-
ping the original sequences to anticipated genes. Finally,
with BLASTP [20] (BLAST Version 2.2.28+, http://blast
.ncbi.nlm.nih.gov/Blast.cgi), the taxonomy of the colon
microbiota was evaluated against the NR database. The rela-
tive abundances of taxa at the domain, phylum, genus, and
species levels were determined using taxonomic profiles.
The NMDS was conducted at the gene level based on the
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Bray-Curtis dissimilarity matrices. The KEGG database
(http://www.genome.jp/kegg/) was used to annotate the con-
tigs with a BLAST E value of 1e − 5. Hmmscan (http://
hmmer.janelia.org/search/hmmscan) was used to annotate
the CAZy functions.

2.5. Real-Time Quantitative PCR (RT-qPCR). Gene expres-
sion was measured in the liver and abdominal adipose tissue.
According to the manufacturer’s instructions, the RNeasy
Plus Mini Kit (Qiagen) was used to isolate the total RNA
from each sample of abdominal fat and liver segments. The
first-strand cDNA was generated using the SuperScript II
Reverse Transcription Kit (Invitrogen). The gene expression
was evaluated by RT-qPCR on the ABI Prism 7700 Sequence
Detector (Applied Biosystems) with gene-specific primers
(see Supplementary Tables S1). The following were the
reaction conditions: 95°C for 5min, followed by 40 cycles
of 15 s at 94°C, 30 s at 63°C, and 1min at 72°C and
fluorescence collection as previously described [11]. The
relative gene expression level was determined by the 2-ΔΔCt

method [21] using the geometric mean of glyceraldehyde
3-phosphate dehydrogenase (GAPDH) mRNA as the
housekeeping gene for the data normalization.

2.6. Colonic Butyrate-Producing Functional Gene Analysis.
The qPCR was performed in triplicate for the DNA
extracted from each sample to assess the gene copy number
of the butyrate-producing functional genes, namely, butyrate
kinase and butyryl CoA: acetate CoA transferase, in pig
intestinal contents on an ABI Prism 7700 Sequence Detector
(Applied Biosystems) [22, 23] using gene-specific primers
(see Supplementary Tables S2) and SYBR Green PCR
Master Mix (Takara, Tokyo, Japan). The thermal cycling
system was 95°C for 2min, 35 cycles of 15 s at 95°C, 45 s at
58°C, and 1min at 72°C. The specificity of the reaction for
each gene was verified by a melting curve analysis.
Standard curves from known quantities of plasmid DNA
were used to determine the copy number of each gene. The
data from qPCR experiments was represented as gene
copies per gram of luminal content.

2.7. Oxidative Stress Determination. Serum antioxidant
levels were determined after homogenization with saline
(1 : 9 w/v) followed by centrifugation at 11,000 × g for 15
minutes at 4°C. As recommended by the manufacturer’s
instructions, we used Nanjing Jiancheng Bio (Nanjing,
China) diagnostic kits to detect indicators including malon-
dialdehyde (MDA), superoxide dismutase (SOD), and gluta-
thione peroxidase (GSH-Px).

2.8. SCFA Measurement. As mentioned in our previous
study [24], the gas chromatographic (GC) was used to deter-
mine the levels of SCFAs in each luminal content sample.
Shortly, the 100mg luminal content sample was weighed
into a 1.5mL centrifuge tube and suspended in 9 volumes
of Milli-Q water. Following a 10min centrifugation at
10,000 rpm, 1,000μL of the supernatant was supplemented
with 0.2mL of crotonic acid (internal standard). Finally, fol-
lowing the membrane filtering (0.22μm), the mixture was
put into the GC-2010 plus (Shimadzu, Kyoto, Japan) with

an FID detector operating at 180°C. The chromatographic
conditions were as follows: column 110°C, vaporization
chamber 180°C. The carrier gas was nitrogen at 0.06MPa
while the auxiliary gas was hydrogen and air with the pres-
sure of 0.05MPa and 0.05MPa, respectively.

2.9. Statistical Analysis. All statistical analyses were con-
ducted using the unpaired two-tailed Students’ t-test with a
P value < 0.05 as the level of statistical significance. Data
were presented as mean ± standard deviation (SD).

3. Results

3.1. Fatness Phenotypes between the High- and Low-Fat Pigs.
To determine whether there is a significant difference in the
fatness phenotypes between the two groups, pigs were raised
under standard management and sacrificed at 250 days old
to determine body weight, loin muscle area, backfat thick-
ness, and fat content of longissimus dorsi muscle. The
high-fat pigs showed significantly higher backfat thickness
and fat content of longissimus dorsi muscle than the low-
fat pigs (P < 0:05, see Figures 1(b) and 1(d)). However, the
two groups had no significant differences in body weight
and loin muscle area (see Figures 1(a) and 1(c)).

3.2. Expression of Lipid Metabolism Genes. To further test
the gene expression of lipid metabolism in the liver and
abdominal fat tissue, we collected liver and abdominal fat
segments from each of the high- and low-fat pigs, followed
by RNA isolation and RT-qPCR analysis. In the liver, the
two key lipogenic genes, ACC1 (acetyl-CoA carboxylase-1)
and FAS (fatty acid synthase), showed higher levels in the
high-fat pigs than in the low-fat pigs, with ACC1 being sig-
nificantly higher (P < 0:05, see Figure 2(a)). Additionally,
SREBP1 (Sterol Regulatory Element Binding Protein-1) was
also significantly higher in the liver of high-fat pigs
(P < 0:05), while the gene expression ofMLXIPL (Mlx-inter-
acting protein-like) showed no significant difference (see
Figure 2(a)).

In the abdominal fat tissue, a significant increase in the
gene expression of lipogenesis genes, FAS and LPL (lipopro-
tein lipase), and the adipogenesis gene PPARγ (peroxisome
proliferator-activated receptor-γ) in the high-fat pigs was
observed (P < 0:05). The ACC1 and FABP4 (fat acid-
binding proteins 4) showed higher levels in the high-fat pigs
than the low-fat pigs with no significant difference (P > 0:05,
see Figure 2(b)).

3.3. Oxidative Stress Levels in Pigs with Different Fat
Deposition. To evaluate whether oxidative stress functions
in the lipid metabolism, the key markers of oxidative stress,
including MDA, GSH-Px, and SOD, were further analyzed.
The low-fat pigs had decreased MDA content and increased
GSH-Px activity compared to the high-fat pigs (see Figure 3,
P < 0:05).

3.4. Profiling of the Colon Metagenome in Pigs. Next, the
composition and diversity of the colonic microbiota between
the two groups were investigated by metagenomic sequenc-
ing. For the construction of libraries, we pooled 10 samples
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of luminal DNA from Jinhua pigs. Each DNA pool included
an average of 12.84Gb of raw data (9.94–19.00Gb). Clean
data ranged from 9.33Gb to 17.90Gb after removing low-
quality reads and host contamination. All short sequence

data was assembled by Megahit [25] (https://github.com/
voutcn/megahit). Ten DNA pool samples had a total num-
ber of contigs ranging from 243,029 to 710,018 with a length
greater than 500 bp. METAProdigal [26] (http://prodigal
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Figure 1: Fatness phenotypes in the high- and low-fat pigs. Newly born piglets were fed commercial feed for 250 days before being
sacrificed. The body weight (a), backfat thickness (b), loin muscle area (c), and fat content of longissimus dorsi muscle (d) were
determined. Data are expressed as mean ± SD (n = 5) and analyzed by the unpaired two-tailed Students’ t-test. H: the high-fat pigs; L:
the low-fat pigs. ∗P < 0:05 and ∗∗P < 0:01.
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Figure 2: Relative gene expression levels of lipid metabolism genes in the liver (a) and abdominal fat (b) of Jinhua pigs. The tissue segments
of liver and abdominal fat were collected from the high- and low-fat pigs at 250 days old for RNA isolation. The relative expression level of
each indicated gene was determined by RT-qPCR using the 2-ΔΔCt method. Data normalization employs GAPDH as a housekeeping gene.
Data are expressed as mean ± SD (n = 5) and analyzed by the unpaired two-tailed Students’ t-test. H: the high-fat pigs; L: the low-fat pigs.
∗P < 0:05.
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.ornl.gov/) predicted the open reading frame (ORF) of each
contig. A total of 5,617,408 ORFs that were longer than
60 bp were obtained in the pool of ten samples (see Table 1).

3.5. Comparison of Microbial Domains between High- and
Low-Fat Pigs. Nonmetric multidimensional scaling (NMDS)
revealed a robust separation between high- and low-fat pigs
(see Figure 4(a)). The microbial structure in the colons of the
two groups was compared. The relative abundance of
Archaea in the high-fat group was obviously higher than
that of low-fat pigs (P < 0:05) while eukaryota and viruses
were not significantly different (P > 0:05, see Figure 4(b)).
We then compared the relative abundance of Archaea bacte-
rial genera between the colon microbiomes of the two
groups with distinct fatness. Two genera (see Figure 4(c))
and seven species (see Figure 4(d)) were identified to give a
significant difference in the relative abundances between
the two groups (P < 0:05), which all belong to the methano-
gen genus.

3.6. Significant Difference in Bacterial Community
Compositions of Pigs with Distinct Fatness Phenotypes. As
shown in Supplementary Figure S1, the low-fat pigs
exhibited a higher α diversity of gut microbiota than the
high-fat pigs. Further studies were performed on the
microbial community structures between the two groups

with distinct fatness phenotypes in the colon. Bacteroidetes
were found in significantly higher abundance in the colons
of low-fat pigs than in high-fat pigs (P < 0:05,
Supplementary Figure 2). At the genus level, 13 genera
were significantly different between the two groups.
Prevotella and Bacteroides were significantly more
abundant in the colons of low-fat pigs (P < 0:05).
Prevotella relative abundance was 2.979% and 5.659%
between the two groups, respectively, while Bacteroides
relative abundance was 1.300% and 1.935%, respectively.
Additionally, the relative abundance of Prevotella and
Bacteroides was above 1.0%, whereas most other genera
were below 1.0% in the colon. It is worth noting that
Acidaminococcus was significantly enriched in the low-fat
pigs (P < 0:05, see Figure 5(a)).

At the species level, we discovered 33 bacterial species
giving different enrichments between the two groups.
Among these species, 12 species were enriched in the high-
fat pigs, while the other 21 species were more abundant in
the low-fat pigs (see Figure 5(b)). Furthermore, we observed
that ten of the 12 species with higher abundances in the
high-fat pigs are Firmicutes and Tenericutes. The bacteria
abundant in low-fat pigs have been correlated with fiber fer-
mentation and butyrate production, namely, Ruminococcus
sp. AF12-5 [27], Faecalibacterium sp. OF04-11AC [28],
and Oscillibacter sp. CAG:155 [29].
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Figure 3: Oxidative stress levels in the high- and low-fat pigs. The serum samples were collected from the high- and low-fat pigs at 250 days
old for the determination of SOD activity (a), GSH-Px activity (b), and MDA content (c) by different assays. Data are expressed as mean
± SD (n = 5) and analyzed by the unpaired two-tailed Students’ t-test. H: the high-fat pigs; L: the low-fat pigs. ∗P < 0:05.
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3.7. Gut Microbiome Functional Capacity in Pigs with
Different Fatness Phenotypes. The functional capacity of the
gut microbiome between the two groups was further ana-
lyzed using KEGG annotation. At Level 2 of KEGG function
analysis, “Glycan biosynthesis and metabolism” was the
most significantly different metabolic function between the
two groups (see Figure 6(a)). At Level 3, “Methane metabo-
lism,” “Other glycan degradation,” and “RNA polymerase”
were found to be the significant markers in the pigs with a
distinct fatness phenotype. More importantly, the relative

abundance in the function pathway profile of “Other glycan
degradation” was higher in the low-fat pigs than in the high-
fat pigs (see Figure 6(b)).

To further study the colonic microbiota’s functional
capacity, we analyzed the enzymes that break down glycans
(CAZymes: Carbohydrate-Active Enzymes) [30]. There were
significant differences in the enrichments of 17 CAZyme
families between the two groups of pigs (P < 0:05, see
Figure 6(c)). We found 2 enriched CAZyme genes, which
function to degrade carbohydrates such as cellulose,

Table 1: Data summary of metagenomics.

Sample Raw bases (Mbp) Clean bases (Mbp) Contigs Contigs bases (bp) N50 (bp) ORFs Average length (bp)

H1 11,300 10,500 277327 345242102 1,337 581,709 619.16

H2 9,940 9,330 243029 303872492 1,315 520,091 603.23

H3 10,300 9,570 249525 280357289 1,151 448,785 619.48

H4 12,400 11,500 298036 321492268 1,026 444,650 574.05

H5 15,000 13,800 710018 626251331 824 526,644 610.65

L1 12,500 11,700 304407 394804127 1,379 797,874 629.86

L2 10,500 9,980 285676 351527843 1,283 586,934 636.42

L3 19,000 17,900 399192 555397511 1,523 458,592 539.68

L4 14,200 13,500 275692 415245171 1,805 492,082 504.58

L5 13,300 12,100 351437 358387739 942 760,047 372.78
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Figure 4: Microbial profiles of the high- and low-fat pigs. The colon content samples were collected at 250 days old for DNA isolation and
metagenome sequencing. (a) NMDS analysis of colon content samples was performed with the abundance of genes. (b) The relative
abundance of microbial domains between the two groups. (c) The relative abundance of Archaea at genus level between the two groups.
∗P < 0:05. (d) The relative abundance of Archaea at species level between the two groups. The heatmap was generated with z-score
calculated from the relative abundance of each Archaea species. Data are expressed as mean ± SD (n = 5) and analyzed by the unpaired
two-tailed Students’ t-test. H: the high-fat pigs; L: the low-fat pigs.
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hemicellulose, and starch, while 6 were enriched in the low-
fat pigs (GH28, GH76, GH81, GH106, CE6, and AA6). GTs
had the function of carbohydrate synthesis. In the present
study, the high-fat pigs had 5 enriched GTs, namely, GT7,

GT66, GT76, GT81, and GT84, while the low-fat pigs had
3 enriched GTs, namely, GT20, GT23, and GT90. In addi-
tion, the carbohydrate-binding modules (CBMs) are nonca-
talytic CAZymes with the function of the breakdown of
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Figure 5: The relative abundance of microbiota in the colon of the high- and low-fat pigs. The colon content samples were collected from 5
high-fat and 5 low-fat pigs at 250 days old for DNA isolation and metagenome sequencing. The genus (a) and species (b) levels of bacteria in
the colons of high- and low-fat pigs were compared. Heatmaps were generated with z-score calculated from the relative abundance of each
bacteria genus (a) or species (b). The top 13 genera and 33 species are shown. H: the high-fat pigs; L: the low-fat pigs.
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complex carbohydrates. The low-fat pigs had 1 enriched
CBMs in the colon, CBM65.

3.8. Changes in Colonic SCFA Levels in the Pigs with
Different Fatness Phenotypes. To examine whether pigs with
different fatness phenotypes would alter the SCFA content in
the colon, we quantified the absolute concentrations of the
total SCFAs, namely, propionate, acetate, and butyrate. In
comparison to the high-fat pigs, the low-fat pigs’ colons
had much higher levels of acetate, propionate, and butyrate
(see Figure 7(a)). Furthermore, the colon of low-fat pigs
had a relatively higher abundance of butyryl-CoA acetate-

CoA transferase (see Figure 7(b)), which functions to modu-
late the butyrate production in the colonic microbiome.

To reveal the potential linkage between gut microbiota
and SCFAs, we correlated between differential gut microbi-
ota and SCFA levels. At the species level, Bacteroides ple-
beius, Bacteroides uniformis, Bacteroides ovatus,
Peptococcus niger, Bacteroides sp. CAG:770, 709, 545, and
Bacteroidales bacterium 43, which belong to the Bacteroi-
detes phyla, were positively correlated with intestinal con-
tents SCFA levels, especially with propionate and butyrate.
Species Firmicutes bacterium CAG:884, 240, 24053 and Clos-
tridium sp. CAG:302 (which belongs to phylum Firmicutes)
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Figure 6: Enrichment of CAZymes and KEGG functions in the colon. The colon content samples were collected from 5 high-fat and 5 low-
fat pigs at 250 days old for DNA isolation and metagenome sequencing. (a) The relative abundance of each KEGG pathway (Level 2) in the
high- and low-fat pigs after an enrichment analysis. (b) The relative abundance of each KEGG subsystem (Level 3) in the high- and low-fat
pigs after an enrichment analysis. (c) The relative abundance of each CAZyme functional term after an enrichment analysis. Heatmaps were
generated with z-scores calculated from the relative abundance of each KEGG or CAZyme function. H: the high-fat pigs; L: the low-fat pigs;
GH: Glycoside Hydrolase; GT: Glycosyl Transferase; PL: Polysaccharide Lyase; CE: carbohydrate esterases; CBM: carbohydrate-binding
module; AA: Auxiliary Activities.
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Figure 7: The association between colonic SCFA levels and colonic microbiome in the high- and low-fat pigs. The colon content samples
were collected from 5 high-fat and 5 low-fat pigs at 250 days old for the determination of SCFA content, DNA isolation, and metagenome
sequencing. (a) Concentrations of SCFAs in the colons of the two groups were examined by GC. Data are expressed as mean ± SD (n = 5)
and analyzed by the unpaired two-tailed Students’ t-test. (b) The gene abundance of the butyrate-producing genes in the colon of the high-
and low-fat groups. Data was expressed as log10 gene copies of total DNA/g colon content. (c) The Spearman correlation between the 33
differentially abundant species and SCFAs in the colon of Jinhua pigs. The X-axis shows SCFAs, whereas the Y-axis shows bacteria
species. The chart’s various colors and numbers reflect the correlation coefficient between the SCFA and bacteria species indicated. H:
the high-fat pigs; L: the low-fat pigs. ∗P < 0:05 and ∗∗P < 0:01.

9Oxidative Medicine and Cellular Longevity



were negatively correlated with acetate, propionate, and
butyrate levels. These results revealed the changed composi-
tion and function of the gut microbiota might well have con-
tributed to the SCFA production in the colon (see
Figure 7(c)).

4. Discussion

The gut microbiota is considered essential in the utilization
of nutrients and energy and the maintenance of healthy sta-
tus in farm animals. Thus, the gut microbiota is regarded as
an important component affecting the growth performance
and development of pigs. Nowadays, numerous studies
investigating the structure of the gut microbial community
in pigs by metagenomics have been proposed to reveal the
association between gut bacterial species and porcine fatness
in different breeds [31]. We explored the interaction among
the gut microbiota, lipogenic features, and oxidative stress in
pigs with two different fat phenotypes. Furthermore, we
tried to implicate the possible relationship between the gut
microbiome and fat deposition in pigs using metagenomic
analysis.

The liver and adipose tissue are the main parts of the
body that deposit, metabolize, and transport fat. ACC1,
FAS, SREBP-1, and ChREBP are the key genes in de novo
fat synthesis [32]. The gene expression of ACC1 and
SREBP-1 was significantly higher in the liver of the high-
fat pigs than in the low-fat pigs, indicating that high-fat pigs
might have a stronger ability to synthesize fat than low-fat
pigs. The abdomen and intestines are the main sites of fat
accumulation. The “master regulator” of adipogenesis is
PPARγ, required for fat cell production [33]. The upregula-
tion of PPARγ, LPL, and FAS in the high-fat pigs indicated
enhanced lipid synthesis in the abdomen. Collectively, the
imbalance in lipid metabolism might contribute to the
abnormal fat accumulation in pigs.

On the other hand, the development of the pig industry
would be hampered by oxidative stress due to oxidative
stress directly limiting the growth performance and health
of pigs. MDA is a biomarker for free radical species-related
damage [34]. In the present study, MDA levels in serum
were obviously higher in high-fat pigs than in low-fat pigs.
Increased oxidative stress associated with fat consumption
may alter the bacterial composition and the expression of
lipogenic genes. GSH-Px is a critical enzyme that catalyzes
hydrogen peroxide decomposition, which would protect
the structure and function of the cell membrane [35].
GSH-Px levels were significantly lower in high-fat pigs.
These findings show that high-fat pigs are more susceptible
to oxidative stress than low-fat pigs, and hence more suscep-
tible to obesity.

Consistent with our earlier investigation of 16S rRNA
gene sequencing in pigs [23], the bacterial community of
the two groups showed taxonomic discrepancies. It implies
that bacteria contribute more to host fatness than other
microbial kingdoms. Bacteria, not other microbial king-
doms, are responsible for the majority of the breakdown
and fermentation of feed biopolymers [36]. Interestingly,
the majority of the species with significantly increased abun-

dances in the low-fat pigs were from the Bacteroides genus,
which is one of the most frequent core genera in the pig col-
ony. Bacteroides was able to utilize the fermentation of die-
tary fibers to produce acetate, propionate, and butyrate
[24]. Prevotella and Bacteroides were found to be signifi-
cantly less abundant in the colons of high-fat pigs than in
low-fat pigs. The more Bacteroides–Prevotella–Porphyromo-
nas there are in developing pigs, the better their ability to
ferment polysaccharides to SCFAs [37]. Furthermore, Bac-
teroides-Prevotella was negatively correlated with inflamma-
tion and fat mass development in diet-induced obese mice
[38]. Taken together, these results suggest that enhanced
SCFA production in the low-fat pigs might be linked with
the higher abundance of Prevotella and Bacteroidetes, which
further alleviate host lipid accumulation.

Accordingly, our findings indicated that colonic SCFA
levels were significantly higher in pigs with low-fat in com-
parison to pigs with high-fat traits. Butyrate could directly
activate AMP kinase to prevent mice from having excess
fat deposition in the liver [39]. The mice transplanted from
lean cotwin’s fecal microbiota showed lower fat storage in
adipose tissue compared to the mice transplanted from
obese cotwin’s fecal microbiota [40]. Importantly, we found
correlations between SCFAs and differential gut microbiota
in pigs. The phylum Firmicutes and its subordinate species
were related to reduced SCFAs, whereas the phylum Bacter-
oidetes and its subordinate species were related to increased
SCFAs. All SCFAs showed synchronous correlations with
the differential gut microbiota, suggesting that the differen-
tial gut microbiota and the SCFAs they produced might
work synchronously in fat deposition.

Based on the metagenomics, KEGG analysis revealed the
gut microbiome functional changes in the two groups. The
metagenomes of the high-fat pigs had a significantly higher
enrichment of methane metabolism and RNA polymerase.
Methane metabolism, in particular, has been reported to
produce methane from hydrogen with carbon dioxide, ace-
tate, and various methyl metabolites [41]. Bacterial NADH
dehydrogenases could be suppressed by the improvement
of H2, resulting in a decrease in ATP output [42]. Methane
is able to slow down the gut transport rate, which allows
nutrients to stay in contact with the gut for longer, giving
more time for nutrients and energy to be absorbed. This
might explain why the high-fat pigs gained more weight
than the low-fat pigs.

Since glycan degradation was found to be significantly
enriched in the functional microbiome of low-fat pigs, we
further determined that CAZymes shifted between the two
groups in the present study. The results showed that GH,
CE, PL, AA, and CBM, which exert a function of carbohy-
drate degradation, were enriched in low-fat pigs, implying
that low-fat pigs might have a better ability to deconstruct
complex substrates. For example, the colon of the low-fat
pigs showed a higher relative abundance of GH28, GH76,
GH81, and GH106, which are polygalacturonosidase [43],
α-1,6-mannanase [44], β-1,3-glucanase [45], and α-L-rham-
nosidase [46], respectively.

In contrast to the low-fat pigs, the higher abundance of
GTs in the high-fat pigs showed that the colon microbiomes
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of high-fat pigs might have a better capability to utilize
hydrolytic products to produce SCFAs, thus providing more
energy to high-fat pigs. Generally speaking, feed-efficient
animals generate more SCFAs and less methane [36]. The
higher level of SCFAs and lower abundance of methanogenic
functions in the colon of low-fat pigs suggest that low-fat
pigs may be more feed-efficient than high-fat pigs. To con-
firm our assumptions, further research on feed efficiency
and methane emissions is required in the future.

Notably, the higher relative abundance in genusMethano-
brevibacter and various species, namely, M. millerae, M.
gottschalkii, M. sp. YE315, M. thaueri, M. smithii, M. sp.
A27, andM. oralis, was observed in the colons of high-fat ani-
mals, which suggests that more methane might be produced,
resulting in more efficient fat deposition in the high-fat pigs
[47]. The metagenome gave us a chance to study the gut
microbiome at different kingdom levels, such as eukaryote
and virus, except for bacteria and Archaea. The interactions
between bacteria and eukaryotes or viruses might also change
the status of host fat deposition, because our main concern

was not with eukaryotes or viruses in the present study. Addi-
tional research in the future is needed.

In summary, we found that there were abundant
methanogenic Archaea and relatively lower SCFA-
producing bacteria in the colons of high-fat pigs compared
to low-fat pigs. The increased methane produced by the
Archaea and the decrease of SCFAs would promote fat
deposition in the liver and abdomen, which is manifested
by the high expression of adipogenic genes in the liver
(ACC1 and SREBP1) and abdominal fat (FAS, PPARγ, and
LPL), furthering the oxidative stress injury (see Figure 8).

5. Conclusions

In summary, the high oxidative stress and lipid metabolism
dysbiosis in the high-fat pigs could contribute to the fat
deposition in Jinhua pigs. Host fat deposition is influenced
by both the methanogenesis functions of Archaea and the
short-chain fatty acids produced by bacteria. In addition,
we discovered 17 CAZyme families and 3 KEGG pathways
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Figure 8: Relationship between intestinal microbiome and fat deposition.
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(Level 3) with distinct enrichments in the high-fat and low-
fat pigs. The present study would give a deep insight into
how gut microbiomes influence fat deposition in pigs and
provide a hint for improving growth performance and fat-
ness traits by manipulating gut microbiomes.
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