Abstract
免疫蛋白酶体与血液肿瘤、感染性疾病、自身免疫性疾病、中枢神经系统疾病等密切相关,这些疾病均呈现免疫蛋白酶体高表达。免疫蛋白酶体抑制剂可通过抑制相关细胞诱导因子的生成和自身反应性T细胞的活性来阻断免疫蛋白酶体的表达,从而治疗相关疾病。选择性免疫蛋白酶体抑制剂研发的关键是针对免疫型蛋白酶体的高度选择性,兼顾蛋白酶体上三个活性亚基的活性水平,才能在达到良好疗效的同时减少不良反应。本文介绍了免疫蛋白酶体的结构、功能,以及与多种疾病之间的关系,针对目前已报道的环氧酮肽类共价结合、其他短肽类共价结合、短肽类非共价结合选择性免疫蛋白酶体抑制剂的结构、活性及发展现状作一综述。
Abstract
Immunoproteasome is associated with various diseases such as hematologic malignancies, inflammatory, autoimmune and central nervous system diseases, and over expression of immunoproteasome is observed in all of these diseases. Immunoproteasome inhibitors can reduce the expression of immunoproteasome by inhibiting the production of related cell-inducing factors and the activity of T lymphocyte for treating related diseases. In order to achieve good efficacy and reduce the toxic effects, key for development of selective immunoproteasome inhibitors is the high selectivity and potent activity of the three active subunits of the proteasome. This review summarizes the structure and functions of immunoproteasome and the associated diseases. Besides, structure, activity and status of selective immunoproteasome inhibitors are also been highlighted.
Keywords: Proteasomeinhibitors/analysis, Multienzyme complexes, Structure-activity relationship, Autoimmune diseases, Proteasome inhibitors/therapy, Bortezomib, Review
蛋白酶体是泛素-蛋白酶体蛋白降解系统的重要一环 [ 1- 2] ,其功能失调与肿瘤、免疫性疾病、感染性疾病、中枢神经系统疾病等多种疾病息息相关 [ 3- 8] 。近年研究表明,克罗恩病、溃疡性结肠炎、肝炎、多发性硬化症、类风湿性关节炎、系统性红斑狼疮患者均呈现免疫蛋白酶体高表达 [ 4, 6, 9- 11] 。根据组成亚基的不同,蛋白酶体可分为组成型蛋白酶体、免疫蛋白酶体及胸腺蛋白酶体三类 [ 2] 。组成型蛋白酶体的β1c、β2c和β5c亚基在TNF-α和γ干扰素等细胞因子的诱导下分别生成β1i(低分子量蛋白2,LMP2)、β2i(复合催化内肽酶样蛋白1,MECL-1)和β5i(低分子量蛋白7,LMP7)等新的亚基,即形成免疫蛋白酶体,其主要表达于单核细胞和淋巴细胞中,参与细胞免疫并促进主要组织相容性复合体-Ⅰ类分子的抗原提呈 [ 12- 13] 。
目前,已有三个蛋白酶体抑制剂硼替佐米、卡非佐米和伊沙佐米(ixazomib citrate)被FDA批准用于多发性骨髓瘤和套细胞淋巴瘤的治疗,还有一些抑制剂正在临床试验中,但大部分均属于非选择性蛋白酶体抑制剂,能同时抑制组成型蛋白酶体和免疫蛋白酶体。由于对两种蛋白酶体多个活性位点无差别抑制,非选择性蛋白酶体抑制剂在临床应用中存在严重不良反应。因此,开发选择性免疫蛋白酶体抑制剂作为毒性更小的血液肿瘤治疗药物、神经系统疾病治疗药物和免疫系统治疗药物尤为迫切。目前,选择性免疫蛋白酶体抑制剂的研究还没有取得重大突破,但随着人免疫蛋白酶体蛋白晶体结构的解析,组成型与免疫蛋白酶体结构的差异得到了具体阐释,为开发选择性免疫蛋白酶体抑制剂提供了药物设计的依据。本文就近年来选择性免疫蛋白酶体抑制剂的最新研究进展作一综述。
1 短肽共价结合类选择性免疫蛋白酶体抑制剂
1.1 环氧酮肽类
环氧酮肽类化合物是目前研究最深入、数量最多的一类选择性免疫蛋白酶体抑制剂。其中KZR-616是唯一进入Ⅰb/Ⅱ期临床试验的选择性免疫蛋白酶体抑制剂( 图 1) [ 14] 。该化合物是由Kezar Life Sciences公司开发的三肽环氧酮类衍生物,对人免疫蛋白酶体β5i、β2i、β1i三个活性亚基的半抑制浓度(IC 50)分别为0.039、0.131、0.623 μmol/L,对相应的组成型蛋白酶体三个亚基的IC 50值分别为0.688、>10.6、0.604 μmol/L,对β5i和β2i的选择性分别达到了18和81倍以上,对β1i则缺乏选择性 [ 14] 。研究表明,要实现对细胞因子表达的抑制,需同时抑制免疫蛋白酶体三个活性亚基中的两个。KZR-616对β5i和β2i均有较强的抑制作用,因此该化合物具有良好的体内活性 [ 14] 。目前,KZR-616针对系统性红斑狼疮的Ⅰb/Ⅱ期临床试验(NCT03393013)正在进行,该药物有望为自身免疫性疾病的治疗提供新的选择。
图1.

主要环氧酮肽类选择性免疫蛋白酶体抑制剂的结构式
KZR-504及其类似物1和类似物2同样由Kezar Life Sciences公司开发,均属于二肽环氧酮类衍生物( 图 1)。不同于KZR-616,这三个化合物均为β1i选择性免疫蛋白酶体抑制剂( 表 1),对β5c和β5i只有中等强度的抑制作用,对β2c和β2i无抑制活性,且均无选择性 [ 15] 。与KZR-504类似,UK-101也属于β1i选择性免疫蛋白酶体抑制剂( 图 1),从环氧酮类天然产物Epoxomicin衍生而来。研究表明,其对免疫蛋白酶体的抑制活性优于组成型蛋白酶体,对β1i和β5i的IC 50值分别为0.1和1.0 μmol/L [ 15] 。UK-101能够抑制前列腺癌细胞的增殖,对前列腺癌移植瘤同样具有抑制作用 [ 16] 。
表1 KZR-504及衍生物的蛋白酶体抑制活性及选择性 [ 15]
Table 1 Proteasome inhibitory activities and selectivities of KZR-504 and its derivatives [ 15] (μmol/L)
|
化合物 |
蛋白酶体抑制活性(IC 50) |
选择性(β1c/β1i) |
|
|
β1i |
β1c |
||
|
KZR-504 |
0.05 |
46.35 |
927 |
|
类似物1 |
0.11 |
>222 |
>2000 |
|
类似物2 |
0.14 |
91.07 |
651 |
IC 50:半抑制浓度.
ONX-0914是首个报道的三肽环氧酮类β5i选择性免疫蛋白酶体抑制剂( 图 1),共晶结构(PDB蛋白质结构数据库ID: 3UNF、3UNB)数据表明,其P1位置的苯环与β5i的S1口袋能很好地契合,但与β5c的S1口袋结合较差( 图 2)。其对β5i和β5c的IC 50值分别为5.7和54 nmol/L;对β1i和β2i也有中等抑制活性,IC 50值分别为460和590 nmol/L;对β1c和β2c的活性较差( 表 2) [ 12] 。这类化合物的氨基末端多为吗啉乙酰基,该基团不与蛋白酶体形成结合作用,但对于提高化合物水溶性、改善理化性质至关重要。临床前研究表明,ONX-0914能通过抑制γ干扰素和IL-2来缓解类风湿性关节炎,并能通过抑制α干扰素的合成和自体反应性浆细胞治疗系统性红斑狼疮 [ 17] 。以ONX-0914为先导化合物进行结构修饰,发现了一系列选择性更好的β5i抑制剂,如LU系列化合物 [ 18] ( 图 1, 表 2),保持与ONX-0914相当的β5i抑制活性,但选择性大大提高。与β5c相比,LU-015i对β5i的选择性达到了553倍。LU-005i将ONX-0914的P1苯环替换为环己基,选择性达到了43倍。化合物LU-025i、PR-924和LU-015i的P2基团是体积更大的吲哚环,LU-025i与LU-045i两者比较可知,吲哚的引入对β5i抑制活性无影响,但却使β5c抑制活性大幅度减弱,说明P2位置大体积基团能够提高化合物对β5i的选择性。此外,P3丙氨酸的构型对活性和选择性也有影响,LU-005i与LU-045i两者比较可知, S-丙氨酸会引起活性和选择性的轻微下降,这可能与分子的整体构型有关。P3位置同样为 S-丙氨酸的PR-924,其N-Cap为刚性的茚时,β5i抑制活性(IC 50为2.5 nmol/L)和选择性(91倍)均大大提高。
图2.
ONX-0914与不同蛋白酶体共晶结合模式图
A:ONX-0914与免疫蛋白酶体共晶结合,P1位置的苯环与β5i的S1口袋能很好地契合;B:ONX-0914与组成型蛋白酶体共晶结合,P1位置的苯环与β5c的S1口袋结合较差.箭头指示结合口袋.

表2 ONX-0914及衍生物的蛋白酶体抑制活性及选择性 [ 12, 18]
Table 2 Proteasome inhibitory activities and selectivities of ONX-0914 and its derivatives [ 12, 18] (nmol/L)
|
化合物 |
蛋白酶体抑制活性(IC 50) |
选择性(β5c/β5i) |
|||||
|
β1i |
β1c |
β2i |
β2c |
β5i |
β5c |
||
|
ONX-0914 |
460 |
>10 4 |
590 |
1100 |
5.7 |
54 |
9 |
|
PR-924 |
1840 |
>10 4 |
>10 4 |
>10 4 |
2.5 |
227 |
91 |
|
LU-005i |
300 |
>10 4 |
410 |
2500 |
6.6 |
287 |
43 |
|
LU-025i |
>10 4 |
>10 4 |
>10 4 |
>10 4 |
36 |
1900 |
53 |
|
LU-045i |
>10 4 |
>10 4 |
>10 4 |
>10 4 |
32 |
827 |
26 |
|
LU-015i |
7100 |
>10 4 |
>10 4 |
>10 4 |
8.3 |
4600 |
553 |
YU-102是一个含有脯氨酸的四肽环氧酮类衍生物( 图 1),对β1c和β1i均有较好的抑制活性,IC 50值分别为209和46 nmol/L,对β1i选择性较β1c的约5倍。对于β2和β5,YU-102的抑制活性不高,IC 50值大于5 μmol/L [ 19] 。az-NC001是一个含有叠氮基团的β1选择性四肽环氧酮类免疫蛋白酶体抑制剂( 图 1),最早是针对β1亚基设计的探针分子,其对β1c和β1i的IC 50值分别为88和45 nmol/L。研究表明,通过在az-NC001分子中的脯氨酸结构中引入氟原子可以提高化合物对β1i的活性和选择性,同时将P1基团改为环己基得化合物LU-001i( 图 1),该化合物对β1c和β1i的IC 50值分别为24和0.095 μmol/L,不仅增强β1i的活性,选择性也提高了252倍 [ 18] 。
环氧酮肽类选择性免疫蛋白酶体抑制剂延续了组成型蛋白酶体抑制剂卡非佐米的结构特征,仍然通过共价结合作用与受体结合,但该结构特征不是维持其选择性的关键,P1位置空间结构较小的氨基酸残基及氨基末端的柔性取代基更为重要。随着人免疫蛋白酶体晶体结构的解析,基于结构的药物设计思想指导下会有越来越多免疫蛋白酶体选择性抑制剂的出现,而环氧酮肽结构仍然是该类抑制剂的主流。
1.2 其他短肽类
组成型蛋白酶体抑制剂中常见的醛基和硼酸基在免疫蛋白酶体抑制剂较少见。ML604440是一个二肽硼酸类化合物( 图 3),其对免疫蛋白酶体β1i的IC 50值约为10 nmol/L,而在12.5~1000 nmol/L间对β5i没有明显的抑制作用,由此可见化合物对β1i的选择性 [ 20] 。
图3.

其他短肽类选择性免疫蛋白酶体抑制剂的结构式
IPSI-001属于醛肽类衍生物( 图 3),对β1i和β5i有同样的抑制活性,IC 50值分别为1.45和1.03 μmol/L,相对于β1c(239 μmol/L)和β5c(105 μmol/L)有较好的选择性,分别达到了165倍和100倍。IPSI-001能促进骨髓瘤细胞凋亡,并克服硼替佐米引起的耐药性 [ 21] 。
共价结合蛋白酶体抑制剂的羧基端亲电基团对活性位点的选择性也至关重要。磺酰氟是一个能保持化合物良好蛋白酶体抑制活性的重要基团。化合物3和化合物4分别是ONX-0914和卡非佐米的环氧酮基团被磺酰氟取代得到的化合物,其对β5c和β5i的抑制活性见 表 3。化合物3虽然对β5c和β5i的抑制活性均有所下降,但选择性从原来的9倍提升到了25倍 [ 22] 。而化合物4对β5c和β5i的抑制活性均很强,且对β5c的抑制活性更好,但对β5i缺乏选择性。
表3 磺酰氟类与相应的环氧酮类化合物的蛋白酶体抑制活性及选择性 [27]
Table 3 Proteasome inhibitory activities and selectivities of sulfonyl fluoride and corresponding epoxyketone derivatives [27] (μmol/L)
|
化合物 |
蛋白酶体抑制活性(IC 50) |
选择性(β5c/β5i) |
|
|
β5i |
β5c |
||
|
ONX-0914 |
0.06 |
0.51 |
9 |
|
化合物3 |
1.13 |
28.46 |
25 |
|
卡非佐米 |
0.02 |
0.005 |
0.3 |
|
化合物4 |
0.05 |
0.03 |
0.6 |
2-CA和4-CA是一类比较特殊的共价结合免疫蛋白酶体抑制剂( 图 3),其羧基末端并不具有能与活性亚基氨基末端苏氨酸残基进行亲核加成的活性基团,但其P4位置含有氯乙酰氨基侧链结构,能与β5i中的非催化半胱氨酸(Cys48)相连接,从而提高对β5i亚基的选择性。2-CA和4-CA对β5i的IC 50值分别达到了6.65和0.64 μmol/L,对于β5c的选择性分别达75和150倍以上 [ 23] 。这两个化合物对β5i较高的选择性导致其细胞毒性更低,其还能抑制多种炎症因子,有望开发成免疫性疾病和感染性疾病的治疗药物。
综上,除环氧酮肽类外,其他短肽类共价结合蛋白酶体抑制剂仍然是参考组成型蛋白酶体抑制剂的结构特征,但三个上市的组成型蛋白酶体抑制剂均有较大的不良反应,这与共价结合作用不无关系。共价结合选择性免疫蛋白酶体抑制剂若用于自身免疫性疾病患者,如何减少其不良反应仍然是一个重大挑战。
2 短肽类非共价结合选择性免疫蛋白酶体抑制剂
当短肽类化合物的羧基末端为非亲电基团时,这类化合物就不能与活性亚基末端苏氨酸残基共价结合,但只要肽骨架能保持合适的结构与蛋白酶体形成足够数量的氢键,化合物仍能保持良好的蛋白酶体抑制活性。Singh等 [ 24] 通过在短肽非共价结合蛋白酶体抑制剂的结构中引入β-氨基酸得到了系列化合物( 图 4)。这类化合物对组成型蛋白酶体β5c的抑制活性大大降低,但却保持了对免疫蛋白酶体β5i的强效抑制活性,从而大大提高了对β5i的选择性。其代表性化合物PKS2252和PKS2279对β5i的IC 50值分别为5.5和14 nmol/L,但对β5c的IC 50值均大于70 μmol/L,选择性分别达到了13 600和5600倍 [ 24] 。此外,该类化合物能抑制T细胞增殖,有治疗感染性疾病和自身免疫性疾病的潜力。在此工作基础上,研究人员又发现了一类非共价结合的天冬酰胺-乙二胺类衍生物,与免疫蛋白酶体的共晶结构显示,其与免疫蛋白酶体活性位点的主要结合方式是氢键和疏水作用力 [ 25] 。化合物PKS21221对β5i和β5c抑制的IC 50值分别为4和110 nmol/L,对β5i有28倍的选择性;另一化合物PKS21293(β5i: 15 nmol/L; β5c: 960 nmol/L)的选择性达到了64倍。研究结果显示,PKS21221能选择性地抑制骨髓瘤细胞和淋巴瘤细胞的增殖,对肝癌细胞和非活化的淋巴细胞影响较小 [ 25] 。
图4.

非共价结合肽类选择性免疫蛋白酶体抑制剂的结构式
非共价结合选择性免疫蛋白酶体抑制剂目前仍以短肽结构为主,虽然可能存在较低的不良反应,但需要更多地考虑短肽类化合物的成药性,拟肽类结构有可能可以解决该问题。此外,非肽类化合物能极大丰富此类抑制剂的结构类型,在结构改造及优化中能有更大空间,这对于发现新型选择性免疫蛋白酶体抑制剂有较大意义。
3 展望
目前,已报道的选择性免疫蛋白酶体抑制剂数量还不是很多,但随着人免疫蛋白酶体晶体结构的解析,基于结构的合理药物设计策略的使用将改变这一局面,相信未来会有大量该类抑制剂涌现。在选择性免疫蛋白酶体抑制剂的设计中,不仅要实现免疫蛋白酶体对组成型蛋白酶体的选择性,同时也要兼顾免疫蛋白酶体三个活性亚基的活性水平,单一抑制某个亚基很有可能不足以产生足够的抗感染或抗自身免疫性疾病的能力。除药物合理设计外,化合物库的高通量筛选、天然产物发现、有机合成方法学构建新骨架化合物也是发现新型免疫蛋白酶体选择性抑制剂的重要途径,这些工作的开展将极大地丰富此类抑制剂的结构类型,解决传统短肽类蛋白酶体抑制剂药代动力学性质差、体内代谢不稳定等缺点,为该类抑制剂用于疾病的治疗带来更大希望。总体来说,免疫蛋白酶体及其抑制剂的研究已经取得了长足的进步,相信不久的将来,多种与免疫蛋白酶体相关的疾病治疗会有更多选择。
Funding Statement
国家自然科学基金(81803432);浙江省基础公益研究计划(LGF18H300001)
References
- 1.ZHANG J, WU P, HU Y. Clinical and marketed proteasome inhibitors for cancer treatment. Curr Med Chem. 2013;20(20):2537–2551. doi: 10.2174/09298673113209990122. [ZHANG J, WU P, HU Y. Clinical and marketed proteasome inhibitors for cancer treatment[J]. Curr Med Chem, 2013, 20(20):2537-2551.] [DOI] [PubMed] [Google Scholar]
- 2.CIECHANOVER A. The ubiquitin-proteasome pathway:on protein death and cell life. EMBO J. 1998;17(24):7151–7160. doi: 10.1093/emboj/17.24.7151. [CIECHANOVER A. The ubiquitin-proteasome pathway:on protein death and cell life[J]. EMBO J, 1998, 17(24):7151-7160.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.SOAVE C L, GUERIN T, LIU J, et al. Targeting the ubiquitin-proteasome system for cancer treatment:discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev. 2017;36(4):717–736. doi: 10.1007/s10555-017-9705-x. [SOAVE C L, GUERIN T, LIU J, et al. Targeting the ubiquitin-proteasome system for cancer treatment:discovering novel inhibitors from nature and drug repurposing[J]. Cancer Metastasis Rev, 2017, 36(4):717-736.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.MEINERS S, EVANKOVICH J, MALLAMPALLI R K. The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis. Transl Res. 2018;198:17–28. doi: 10.1016/j.trsl.2018.03.003. [MEINERS S, EVANKOVICH J, MALLAMPALLI R K. The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis[J]. Transl Res, 2018, 198:17-28.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.CROMM P M, CREWS C M. The proteasome in modern drug discovery:second life of a highly valuable drug target. ACS Cent Sci. 2017;3(8):830–838. doi: 10.1021/acscentsci.7b00252. [CROMM P M, CREWS C M. The proteasome in modern drug discovery:second life of a highly valuable drug target[J]. ACS Cent Sci, 2017, 3(8):830-838.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.VERBRUGGE S E, SCHEPER R J, LEMS W F, et al. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res Ther. 2015;17:17. doi: 10.1186/s13075-015-0529-1. doi: 10.1186/s13075-015-0529-1. [VERBRUGGE S E, SCHEPER R J, LEMS W F, et al. Proteasome inhibitors as experimental therapeutics of autoimmune diseases[J]. Arthritis Res Ther, 2015, 17:17.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.ZHENG Q, HUANG T, ZHANG L, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=533cc16388b99a390d9b8c6796817a10. Front Aging Neurosci. 2016;8:303. doi: 10.3389/fnagi.2016.00303. [ZHENG Q, HUANG T, ZHANG L, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases[J]. Front Aging Neurosci, 2016, 8:303.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.LIP P Z, DEMASI M, BONATTO D. The role of the ubiquitin proteasome system in the memory process. Neurochem Int. 2017;102:57–65. doi: 10.1016/j.neuint.2016.11.013. [LIP P Z, DEMASI M, BONATTO D. The role of the ubiquitin proteasome system in the memory process[J]. Neurochem Int, 2017, 102:57-65.] [DOI] [PubMed] [Google Scholar]
- 9.VISEKRUNA A, SLAVOVA N, DULLAT S, et al. Expression of catalytic proteasome subunits in the gut of patients with Crohn's disease. Int J Colorectal Dis. 2009;24(10):1133–1139. doi: 10.1007/s00384-009-0679-1. [VISEKRUNA A, SLAVOVA N, DULLAT S, et al. Expression of catalytic proteasome subunits in the gut of patients with Crohn's disease[J]. Int J Colorectal Dis, 2009, 24(10):1133-1139.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.BASLER M, DAJEE M, MOLL C, et al. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J Immunol. 2010;185(1):634–641. doi: 10.4049/jimmunol.0903182. [BASLER M, DAJEE M, MOLL C, et al. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome[J]. J Immunol, 2010, 185(1):634-641.] [DOI] [PubMed] [Google Scholar]
- 11.OH I S, TEXTORIS-TAUBE K, SUNG P S, et al. Immunoproteasome induction is suppressed in hepatitis C virus-infected cells in a protein kinase R-dependent manner[J/OL]. Exp Mol Med, 2016, 48(11): e270. [DOI] [PMC free article] [PubMed]
- 12.HUBER E M, BASLER M, SCHWAB R, et al. Immuno-and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell. 2012;148(4):727–738. doi: 10.1016/j.cell.2011.12.030. [HUBER E M, BASLER M, SCHWAB R, et al. Immuno-and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity[J]. Cell, 2012, 148(4):727-738.] [DOI] [PubMed] [Google Scholar]
- 13.GUIMARÃES G, GOMES M, CAMPOS P C, et al. Immunoproteasome subunits are required for CD8 + T Cell function and host resistance to brucella abortus infection in mice . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a7fdeaec7b4b1e8d9c62c055a8341e7. Infect Immun. 2018;86(3) doi: 10.1128/IAI.00615-17. [GUIMARÃES G, GOMES M, CAMPOS P C, et al. Immunoproteasome subunits are required for CD8 + T Cell function and host resistance to brucella abortus infection in mice[J]. Infect Immun, 2018, 86(3). ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.JOHNSON H, LOWE E, ANDERL J L, et al. Required immunoproteasome subunit inhibition profile for anti-inflammatory efficacy and clinical candidate KZR-616((2 S, 3 R)-N-((S)-3-(Cyclopent-1-en-1-yl)-1-((R)-2-methyloxiran-2-yl)-1-oxopropan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)-2-((S)-2-(2-morpholinoacetamido)propanamido)propenamide) J Med Chem. 2018;61(24):11127–11143. doi: 10.1021/acs.jmedchem.8b01201. [JOHNSON H, LOWE E, ANDERL J L, et al. Required immunoproteasome subunit inhibition profile for anti-inflammatory efficacy and clinical candidate KZR-616((2 S, 3 R)-N-((S)-3-(Cyclopent-1-en-1-yl)-1-((R)-2-methyloxiran-2-yl)-1-oxopropan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)-2-((S)-2-(2-morpholinoacetamido)propanamido)propenamide)[J]. J Med Chem, 2018, 61(24):11127-11143.] [DOI] [PubMed] [Google Scholar]
- 15.JOHNSON H, ANDERL J L, BRADLEY E K, et al. Discovery of highly selective inhibitors of the immunoproteasome low molecular mass polypeptide 2(LMP2) subunit. ACS Med Chem Lett. 2017;8(4):413–417. doi: 10.1021/acsmedchemlett.6b00496. [JOHNSON H, ANDERL J L, BRADLEY E K, et al. Discovery of highly selective inhibitors of the immunoproteasome low molecular mass polypeptide 2(LMP2) subunit[J]. ACS Med Chem Lett, 2017, 8(4):413-417.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.HO Y K, BARGAGNA-MOHAN P, WEHENKEL M, et al. LMP2-specific inhibitors:chemical genetic tools for proteasome biology. Chem Biol. 2007;14(4):419–430. doi: 10.1016/j.chembiol.2007.03.008. [HO Y K, BARGAGNA-MOHAN P, WEHENKEL M, et al. LMP2-specific inhibitors:chemical genetic tools for proteasome biology[J]. Chem Biol, 2007, 14(4):419-430.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.MUCHAMUEL T, BASLER M, AUJAY M A, et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med. 2009;15(7):781–787. doi: 10.1038/nm.1978. [MUCHAMUEL T, BASLER M, AUJAY M A, et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis[J]. Nat Med, 2009, 15(7):781-787.] [DOI] [PubMed] [Google Scholar]
- 18.DE BRUIN G, HUBER E M, XIN B T, et al. Structure-based design of β1i or β5i specific inhibitors of human immunoproteasomes. J Med Chem. 2014;57(14):6197–6209. doi: 10.1021/jm500716s. [DE BRUIN G, HUBER E M, XIN B T, et al. Structure-based design of β1i or β5i specific inhibitors of human immunoproteasomes[J]. J Med Chem, 2014, 57(14):6197-6209.] [DOI] [PubMed] [Google Scholar]
- 19.MYUNG J, KIM K B, LINDSTEN K, et al. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol Cell. 2001;7(2):411–420. doi: 10.1016/S1097-2765(01)00188-5. [MYUNG J, KIM K B, LINDSTEN K, et al. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors[J]. Mol Cell, 2001, 7(2):411-420.] [DOI] [PubMed] [Google Scholar]
- 20.BASLER M, LAUER C, MOEBIUS J, et al. Why the structure but not the activity of the immunoproteasome subunit low molecular mass polypeptide 2 rescues antigen presentation. J Immunol. 2012;189(4):1868–1877. doi: 10.4049/jimmunol.1103592. [BASLER M, LAUER C, MOEBIUS J, et al. Why the structure but not the activity of the immunoproteasome subunit low molecular mass polypeptide 2 rescues antigen presentation[J]. J Immunol, 2012, 189(4):1868-1877.] [DOI] [PubMed] [Google Scholar]
- 21.KUHN D J, HUNSUCKER S A, CHEN Q, et al. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood. 2009;113(19):4667–4676. doi: 10.1182/blood-2008-07-171637. [KUHN D J, HUNSUCKER S A, CHEN Q, et al. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors[J]. Blood, 2009, 113(19):4667-4676.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.DUBIELLA C, CUI H, GERSCH M, et al. Selective inhibition of the immunoproteasome by ligand-induced crosslinking of the active site. Angew Chem Int Ed Engl. 2014;53(44):11969–11973. doi: 10.1002/anie.201406964. [DUBIELLA C, CUI H, GERSCH M, et al. Selective inhibition of the immunoproteasome by ligand-induced crosslinking of the active site[J]. Angew Chem Int Ed Engl, 2014, 53(44):11969-11973.] [DOI] [PubMed] [Google Scholar]
- 23.DUBIELLA C, BAUR R, CUI H, et al. Selective inhibition of the immunoproteasome by structure-based targeting of a non-catalytic cysteine. Angew Chem Int Ed Engl. 2015;54(52):15888–15891. doi: 10.1002/anie.201506631. [DUBIELLA C, BAUR R, CUI H, et al. Selective inhibition of the immunoproteasome by structure-based targeting of a non-catalytic cysteine[J]. Angew Chem Int Ed Engl, 2015, 54(52):15888-15891.] [DOI] [PubMed] [Google Scholar]
- 24.SINGH P K, FAN H, JIANG X, et al. Immunoproteasome β5i-selective dipeptidomimetic inhibitors. Chem Med Chem. 2016;11(19):2127–2131. doi: 10.1002/cmdc.201600384. [SINGH P K, FAN H, JIANG X, et al. Immunoproteasome β5i-selective dipeptidomimetic inhibitors[J]. Chem Med Chem, 2016, 11(19):2127-2131.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.SANTOS R, BAI L, SINGH P K, et al. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Nat Commun. 2017;8(1):1692. doi: 10.1038/s41467-017-01760-5. [SANTOS R, BAI L, SINGH P K, et al. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes[J]. Nat Commun, 2017, 8(1):1692.] [DOI] [PMC free article] [PubMed] [Google Scholar]
