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Abstract
Despite being an important component of the marine ecosystem and posing health risks to human seafood consumers, fish 
parasites in Indonesia have yet to be adequately described. Here, we analyzed the diet and metazoan parasite fauna of seven 
commercial fish species (Alectis indica, Carangoides chrysophrys, Johnius borneensis, Mene maculata, Trichiurus  
lepturus, Upeneus asymmetricus, U. moluccensis) landed in Java, Indonesia. We isolated 11 endoparasite species, established 
22 new host and 14 new locality records, and extended parasitological records of A. indica by 24%, C. chrysophrys by 25%, 
J. borneensis by 40%, M. maculata by 44%, U. asymmetricus by 100%, and U. moluccensis by 17%. We genetically identified 
the trematode Stephanostomum cf. uku (of Bray et al. 2005) from Alecta indica for the first time in Indonesia and provided 
the sequence of its 28S marker. Stomach content analysis revealed seven different prey items, and the examined fish species 
were grouped into four feeding categories, which differed significantly in their respective endoparasite fauna. All but two 
examined fish species hosted potentially zoonotic nematodes, which reveal a risk for parasite-borne diseases in Indonesian 
food fishes and call for more consequent monitoring with regard to seafood safety in this region. With this study, we were 
able to establish an association between the feeding ecology and the endoparasite fauna of marine fishes which will help to 
better understand the transmission pathways of (potentially zoonotic) parasites in food fishes in tropical waters.

Keywords  Parasite diversity · Stomach content analysis · Molecular analysis · Fish health · Seafood health risks · Anisakis · 
Stephanostomum cf. uku

Introduction

Endoparasites have a diverse range of effects on their hosts. 
In fishes, they can impair host growth, survival, repro-
duction, and mortality, transmit diseases, and affect the 

marketability of aquaculture and fisheries products (Far-
rell et al. 1964; van Banning and Haenen 1990; Yuasa et al. 
2007; Barson 2008; Bouwmeester et al. 2020). Endopara-
sites, mainly anisakid and raphidascarid nematode larvae, 
can cause diseases in humans when accidentally ingested 
along with raw or undercooked fish. Known zoonotic gen-
era are Anisakis spp., Contracaecum spp., Hysterothylacium 
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spp., and Terranova spp. (Shamsi et al. 2018; Rahmati et al. 
2020). For example, anisakiasis is a disease caused by third-
stage Anisakis spp. larvae, and symptoms can range from 
intestinal pain to allergic reactions (Sakanari and McKerrow 
1989; Slifko et al. 2000; Klimpel and Palm 2011; Mattiucci 
et al. 2018). Many zoonotic nematode species are found in 
tropical waters; for example, Palm et al. (2017) reported A. 
berlandi and A. pegreffii from Auxis rochei for the first time 
from Bali, Indonesia. Despite the implications for seafood 
health, the distribution patterns, transmissions, and epide-
miology of zoonotic parasites in Indonesia remain largely 
unknown. As host migrations and marine food webs may 
change due to climate change (Palm et al. 2011; Worm and 
Lotze 2021), this research area should be a focus of the 
investigation.

Their complex life cycles involving multiple intermediate 
hosts and their sensibility to specific environmental condi-
tions allow many endoparasites to be used as environmental 
indicators (Palm 2011; Kleinertz et al. 2016; Neubert et al. 
2016; Vidal-Martínez et al. 2019). Marine parasitology is 
still a globally underrepresented field in aquatic biodiversity 
and ecological research, although it is an essential tool in 
aquatic health studies and to get insights into fish diet, fish 
stocks, migration, and trophic positions (Marcogliese and 
Scholz 1999; Marcogliese 2003; Kleinertz et al. 2012).

Stomach content analyses can reveal important informa-
tion on the trophic interactions and the feeding ecology of 
fishes (Cox et al. 2002; Graham et al. 2007). Endoparasites 
are usually transmitted along the food web when intermedi-
ate, transport, or sometimes accidental fish hosts feed on 
parasitized prey (Poulin and Valtonen 2002). It is assumed 
that the diet of the fish host strongly influences its parasite 
abundance and richness (Cirtwill et al. 2015). Including host 
diet data in endoparasite studies can put a new perspective 
on parasite transmissions and infection patterns and give 
additional insights into the host’s ecology (e.g., Klimpel 
et al. 2006; Kleinertz et al. 2012).

Indonesia is the world’s largest island state (Harris 2001), 
and its population and economy largely depend on fishery 
and aquaculture (Tran et al. 2017). The fishing industry 
has been growing over the past decades, securing income 
and employment for the public (Jermsittiparsert et  al. 
2019). Now, Indonesia is the second biggest seafood pro-
ducer and exporter after China (Hakimah et al. 2019; FAO 
2020), demanding control mechanisms and ongoing stud-
ies concerning the reliable food safety of fisheries products. 
Located in the Coral Triangle, Indonesia’s high biodiversity 
is also reflected in the associated parasite fauna as parasite 
distribution is linked directly to the presence of their hosts 
(Allen et al. 2003; Palm and Rueckert 2009). In recent years, 
research on parasites of commercial fishes increased, but 
it is estimated that approximately 95% of species are yet 
unknown from Indonesian waters (Jakob and Palm 2006; 

Theisen 2020). Closing this knowledge gap is important to 
understand parasite-related health risks and to secure sea-
food safety, especially in climate-changing times, where spe-
cies distributions are likely going to shift, potentially leading 
to altered zoonotic parasite loads in food fishes (Marques 
et al. 2010; Klimpel and Palm 2011; Ullah et al. 2018).

The present study identified the endoparasite fauna and 
the stomach contents of seven commercially important fish 
species from West Java (Alectis indica (Indian threadfish), 
Carangoides chrysophrys (longnose trevally), Johnius 
borneensis (sharpnose hammer croaker), Mene maculata 
(moonfish), Trichiurus lepturus (largehead hairtail), Upe-
neus asymmetricus (asymmetrical goatfish), and U. moluc-
censis (goldband goatfish)). This study aims to analyze their 
endoparasite community that, depending on the trophic level 
of each species, should differ. For that, we categorized the 
fish species based on their examined diet and compared the 
endoparasites community among these feeding categories: 
mainly fish feeder as a top predator, mainly fish feeder as 
smaller sized or schooling fish, mainly fish and decapod 
feeder, and mainly cephalopod feeder. Furthermore, we dis-
cuss the importance of the identified prey items as parasite 
transmitters and potential health risks to consumers through 
the consumption of the above seven species.

Materials and methods

Sample collection

A total of 140 fishes of seven species (20 per species, a suf-
ficient sampling size to estimate prevalence according to 
Jovani and Tella (2006)) were collected from April to June 
2018 from fish markets in Pelabuhan Ratu and Tangerang 
in West Java, Indonesia (Fig. 1, Table 1). After purchase, 
the samples were deep-frozen in single plastic bags, usually 
for 2 to 5 days, until the day of analysis when they were 
defrosted in lukewarm water. Any fluids within the plastic 
bag were later examined under a stereomicroscope (Zeiss, 
Stemi DV4). Morphometric data of each fish was taken (total 
length, standard length, total weight, and slaughter weight) 
according to Palm and Bray (2014).

Parasitological examination

The body cavity of the fish was opened, and intestinal 
organs and the fillets were removed and checked for 
metazoan endoparasites following standard protocols by 
Palm (2004) and Palm and Bray (2014). Cleaned from 
host tissue, parasites were collected in 70% ethanol and 
later preserved in glycerin following Riemann (1988) and 
fixed on microscopic slides. Parasites identification was 
done according to keys and to original descriptions in 
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the current literature (Malakhov 1986; Khalil et al. 1994; 
Gibson et al. 2002; Jones et al. 2005; Bray et al. 2008). 
After taxonomic and molecular identification, the endo-
parasite specimens and specimen vouchers (molecular 
analyses) were deposited at LIPI, Science Centre, Jakarta-
Bogor, Indonesia (Accession numbers: CR1-9, 157–172, 
540–541, 1436–1481). The calculation of parasitological 
terms such as prevalence (P), intensity (I), mean intensity 
(mI), mean abundance (mA) followed Bush et al. (1997).

Stomach content analysis

The stomach content of the investigated fish was analyzed 
for ingested prey items. Prey identifiable to class or order 
level was counted and documented. The weights of the 
full stomach and the empty stomach and the weights of 
the individual prey items were taken (to 0.01 g). Percent-
age of frequency of occurrence (F%), numerical percent-
age of prey items (N%), and weight percentage of prey 
items (W%), as well as the index of relative importance 
(IRI) of each prey item, was calculated after Hyslop 
(1980). The four feeding categories were established 
based on the weight percentage of prey items in the stom-
achs: > 60%W teleostei = mainly fish feeder, > 60%W 
cephalopods = mainly cephalopod feeder, 50% teleostei, 
and 50% decapod = fish and decapod feeder. Furthermore, 
the fish feeders were divided into two groups based on 
their size (< 50 cm: smaller schooling fish, > 50 cm: top 
predator).

Molecular analyses

The molecular analyses focused only on digenean endo-
parasites due to primer availability at the time of the study. 
Hence, three specimens of Stephanostomum cf. uku (of 
Bray et al. 2005) from Alecta indica and Lecithochirium 
sp. from Trichiurus lepturus were used respectively for 
molecular analyses and further species identification. 
Molecular vouchers were prepared for sequenced digene-
ans prior to analysis and deposited in the Indonesian Bio-
diversity Collection at LIPI, Cibinong, Bogor, Indonesia. 
Genomic DNA was extracted by using the Blood & Tissue 
Kit by QIAGEN. The rDNA target regions were amplified 
with digenean specific primers: forward WormA (5′-GCG-
AAT-GGC-TCA-TTA-AAT-CAG-3′) and reverse WormB 
(5′-CTT-GTT-ACG-ACT-TTT-ACT-TCC-3′) for the 18S 
rDNA region (Littlewood and Olson 2001) and forward Zx-1 
(5′-ACC-CGC-TGA-ATT-TAA-GCA-TAT-3′) and reverse 
1500R (5′–GCT-ATC-CTG-AGG-GAA-ACT-TCG-3′) for 
the 28S rDNA region (Olson et al. 2003). PCR reactions 
included 5 µl extracted DNA, 25 µl Master-Mix (QIAGEN), 
15 µl pure water, 2.5 µl forward, and 2.5 µl reverse primer. 
PCR reactions were performed in a thermocycler (Gene-
Touch, BIOER®) with following settings: initial denatura-
tion at 94℃ (30 s); 40 cycles of 94℃ for 30 s, 56℃ for 30 s, 
and 72℃ for 2 min, and then followed by final extension 
for 7 min at 72℃ (Olson et al. 2003). PCR products were 
visualized on a 0.85% agarose gel. A 1 kb ladder was used 
to estimate PCR product size. PCR products were purified 

Table 1   Fish biological data of examined fish species, 140 specimens sampled in April 2018, with the sampling locations in brackets (PR, 
Pelabuhan Ratu; T, Tangerang)

a SL = TL
TL, total length; SL, standard length; TW, total weight; SW, slaughter weight; x ± SD, mean ± standard deviation; m, male; f, female; n.I., not 
identified. n = 20

Fish species TL (cm) SL (cm) TW (g) SW (g) f m n.I.

Alectis indica (T) 71.1 ± 7.8 61.2 ± 7.5 2886.1 ± 807.5 2745.1 ± 744.6 1 18 1
(54.3–82.3) (45.3–71.2) (1288.5–3969.3) (1231.0–3830.7)

Carangoides chrysophrys (T) 48.1 ± 2.7 41.9 ± 2.4 1477.4 ± 196.0 1349.2 ± 175.6 8 12 -
(43.4–52.6) (37.0–46.7) (1185.4–1750.5) (1103.0–1605.2)

Johnius borneenis (PR) 17.2 ± 1.3 14.8 ± 1.1 75.4 ± 17.6 68.0 ± 15.2 9 11 -
(15.2–19.1) (13.3–16.6) (48.8–105.6) (46.6–93.1)

Mene maculata (PR) 17.7 ± 1.1 14.8 ± 0.8 107.1 ± 15.5 99.1 ± 13.4 12 4 4
(15.0–19.3) (13.7–16.5) (80.4–138.9) (69.0–128.5)

Trichiurus lepturus (T) 63.8 ± 4.1 63.8 ± 4.1a 250.4 ± 63.7 235.5 ± 55.5 5 15 -
(55.9–69.3) (55.9–69.3) (141.4–415.7) (134.3–379.3)

Upeneus asymmetricus (PR) 19.2 ± 1.7 15.9 ± 1.5 88.3 ± 21.5 81.7 ± 19.7 18 - 2
(15.7–21.7) (13.2–18.8) (45.8–124.1) (43.1–111.4)

Upeneus moluccensis (PR) 17.9 ± 1.4 14.7 ± 1.2 81.4 ± 15.8 76.2 ± 16.6 15 4 1
(15.6–20.1) (13.0–16.6) (57.0–114.30) (50.8–117.2)
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using the PCR Purification Kit by QIAGEN before being 
sequenced by Seqlab, Göttingen, Germany. The result-
ing 28S sequences of one digenean specimen were edited 
using the sequence alignment editor BioEdit© (version 
7.0.5.3.) identified by BLASTN and aligned with homolo-
gous sequences of Stephanostomum cf. uku from Bray et al. 
(2005) (see accession number DQ248219.1 (GenBank, 
NCBI)). The obtained sequence was deposited in Genbank 
under the accession number MW115577.

Statistical analyses

All parasitological and stomach content data were processed 
in Microsoft Excel (version 14.0), and statistical analyses 
were performed using Stata (Release 15.1, StataCorp 2017). 

To compare whether the endoparasites community differed 
among the four feeding categories, a two-way ANOVA with 
diet (four levels) and parasite groups (three levels) as fac-
tors was performed. The model assumptions were checked 
by residual diagnostics. Post-hoc pairwise comparisons 
(Bonferroni adjusted) were conducted to infer differences 
between the four feeding categories.

Results

Stomach contents

The diets of the seven investigated fish species con-
sisted of seven prey items (Table 2), namely bivalves and 

Table 2   Percentage of frequency of occurrence (F%), numerical percentage of prey items (N%), weight percentage of prey items (W%) all in 
percent, and index of relative importance (IRI) of the identified food items found in examined fish species

Fish species are listed according to their diet: (1) mainly fish feeder, as top predator, (2) mainly fish feeder, as smaller sized or schooling fish, (3) 
mainly fish and decapod feeder, and (4) mainly cephalopod feeder

Stomach content

Diet Fish species Bivalvia and 
gastropoda

Cephalopoda Decapoda Isopoda Brachyura Polychaeta Teleostei

1 Trichiurus lepturus F - 15.4 23.1 - 15.4 - 92.3
N - 9.5 14.3 - 9.5 - 66.7
W - 6.0 1.8 - 0.8 - 91.5
IRI - 238.2 370.2 - 158.5 - 14,601.0

2 Johnius coitor F - - 52.6 10.5 - 10.5 84.2
N - - 37.8 5.4 - 5.4 51.4
W - - 16.4 1.0 - 0.4 82.3
IRI - - 2852.2 67.5 - 60.9 11,252.2

Mene maculata F 14.3 - - - - - 100.0
N 10.0 - - - - - 90.0
W 36.9 - - - - - 63.1
IRI 670.7 - - - - - 15,305.4

Upeneus asymmetricus F - 5.6 38.9 5.6 - - 66.7
N - 3.6 28.6 3.6 - - 64.3
W - 23.9 23.5 1.8 - - 50.8
IRI - 152.6 2024.0 30.1 - - 7672.0

Upeneus moluccensis F 18.2 - 54.5 - - - 63.6
N 12.5 - 37.5 - - - 50.0
W 11.3 - 26.4 - - - 62.2
IRI 433.3 - 3487.4 - - - 7142.3

3 Carangoides chrysophrys F - - 50.0 - - - 50.0
N - - 50.0 - - - 50.0
W - - 50.0 - - - 50.0
IRI - - 5000.0 - - - 5000.0

4 Alectis indica F 10.0 10.0 10.0 - - 5.0 15.0
N 10.5 10.5 26.3 - - 5.3 47.4
W 1.1 95.2 3.6 - - 0.1 0.1
IRI 116.2 1057.7 299.1 - - 26.4 711.2
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gastropods (Mollusca), cephalopods (Mollusca), decapods 
(Crustacea), isopods (Crustacea), brachyurans (Crusta-
cea), polychaetes, and bony fishes (Teleostei). Bony fishes 
were the most frequent diet component and occurred in 
all examined fish species. The second-most-frequent prey 
items were decapods that were recorded in six fish spe-
cies. The least-frequent prey items were brachyurans, 
only recorded in Trichiurus lepturus (Table 2). Only in 
two fish species teleosts were not the most important diet 
component. Alectis indica fed mainly on cephalopods, and 
Carangoides chrysophrys fed in equal parts on bony fishes 
and decapods (Fig. 2).

The seven fish species were categorized into four differ-
ent groups depending on the importance of the respective 
prey items and their position in the marine food web: (1) 
mainly fish feeder, as top predator (T. lepturus), (2) mainly 
fish feeder, as smaller sized or schooling fish (Johnius coitor, 
Mene maculata, Upeneus asymmetricus, U. moluccensis), 

(3) mainly fish and decapod feeder (C. chrysophrys), and (4) 
mainly cephalopod feeder (A. indica) (Fig. 2).

Parasite fauna

We isolated a total of 11 endoparasite species from three par-
asite taxa (Digenea, Cestoda, Nematoda) (Table 3). Caran-
goides chrysophrys and Upeneus moluccensis harbored five 
parasite species, and Alectis indica, Johnius borneensis, 
Mene maculata, Trichiurus lepturus, and U. asymmetricus 
harbored four species, respectively.

Nematodes were the parasite group with the highest 
number of species and also the most prevalent group as all 
examined fishes hosted at least two nematode species. The 
most abundant nematode was Anisakis typica s.l. in T. lep-
turus (mA = 24.9), Hysterothylacium sp. in Upeneus moluc-
censis (mA = 15.1), and Nematoda indet. 1 in Carangoides 
chrysophrys (mA = 114.7). Nematodes infected nearly all 

Fig. 1   Map of study area on 
Java, Indonesia. Samples were 
collected from fish markets 
in Pelabuan Ratu (PR) and 
Tangerang (T). Map according 
to Koepper et al. (2021)

Fig. 2   Proportion of diet items (IRI in percent) of each examined 
fish species. Bars indicate the four feeding categories: red: mainly 
fish feeder, as top predator; blue: mainly fish feeder, as smaller sized 
or schooling fish; gray: mainly fish and decapod feeder; and green: 
mainly cephalopod feeder

Fig. 3   Proportion (based on prevalence data, given in percent) of par-
asite taxa in each examined fish species. Bars indicate the four feed-
ing categories: red: mainly fish feeder, as top predator; blue: mainly 
fish feeder, as smaller sized or schooling fish; gray: mainly fish and 
decapod feeder; and green: mainly cephalopod feeder
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inner organs (body cavity, gonads, heart, intestine, liver, 
mesentery, pyloric caeca, stomach, swim bladder) as well 
as the gill cavity, but no nematodes were found in the fil-
let (Table 3). The second-largest parasite group were dige-
neans, with six documented species. Only two fish species 
(C. chrysophrys and Johnius borneensis) harbored no dige-
neans, and Mene maculata harbored only one species. The 
trypanorhynch Callitetrarhynchus gracilis was the only 
documented cestode and infected four different hosts (C. 
chrysophrys, J. borneensis, M. maculata, and T. lepturus) 
in the final larval (plerocercus) stage (Fig. 3).

The data supported a significant association between the 
four feeding categories and the endoparasite composition 
(ANOVA, F = 194.59, p = 0.000, Table 4). The pairwise 
comparisons (Bonferroni adjusted) showed that Trichiurus 
lepturus (feeding category one, predatory fish feeder) had a 
different endoparasite composition compared to fishes in the 
other three feeding categories (p = 0.000). T. lepturus had the 
evenest distribution of parasite groups with 52% nematodes, 
30% digeneans, and 19% cestodes, while smaller-sized fish 
feeders (feeding category harbored a higher proportion of 
nematodes (> 70%). Carangoides chrysophrys (feeding 
category three, fish and decapod feeder) and Alectis indica 
(feeding category four, cephalopod feeder) also had a sig-
nificantly different endoparasite composition (p = 0.007). 
C. chrysophrys was highly infected with nematodes (86%) 
but hosted no digeneans but cestodes, while A. indica har-
bored the highest proportion of digeneans (32%) and no 
cestodes. The endoparasite composition in smaller-sized 
fish feeders (feeding category two) did not differ from C. 
chrysophrys or A. indica.

Molecular analysis

Both the 18S DNA region and the 28S DNA region of 
six isolated digeneans were processed within the present 
study, and Stephanostomum cf. uku (of Bray et al. 2005) 
was identified through molecular analysis for the first time 
from Indonesian waters. The sequence from the 28S region 
of Stephanostomum sp. (by morphological determina-
tion) from A. indica (see accession number MW115577) 
matched a reference sequence of Stephanostomum cf. uku 
from Aprion virescens in Lizard Island, Australia, reported 
by Bray et al. (2005) (see accession number DQ248219.1) Ta
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Table 4   Results of analysis of variance (ANOVA) comparing parasite 
groups by feeding category (diet)

DF, degrees of freedom

Source DF Sum of squares Mean of squares F-test p-value

Diet 3 169.30 56.43 194.5 0.0000
Residual 3961 1148.79 0.29
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in Genbank NCBI via BlastN 2.8.1 (100% percent identity). 
For the remainder of the manuscript, we will refer to the 
here-identified species as Stephanostomum cf. uku (of Bray 
et al. 2005).

Discussion

The present study was the first parasitological investigation 
of U. asymmetricus worldwide and of C. chrysophrys in 
Indonesia. In total, the fishes hosted 11 endoparasite species 
and fed on seven different prey items. We established 22 new 
host and 14 new locality records and extended the knowl-
edge of endoparasites in Indonesia by 24% in A. indica, 25% 
in C. chrysophrys, 40% in J. borneensis, 44% in M. macu-
lata, 100% in U. asymmetricus, and 17% in U. moluccensis.

Endoparasite fauna

We found that nematodes were the most predominant para-
site group. They were represented with six taxa, infected 
hosts with the highest prevalence (up to 100%), and showed 
the highest intensities (Table 3).

Due to their complex life cycles and many intermedi-
ate hosts, nematodes infect a wide range of phyla (Køie 
2001; Shamsi 2014) and their zoonotic potential has been 
discussed in recent years in Indonesia (Palm et al. 2008; 
Klimpel and Palm 2011; Dewi and Palm 2017). We isolated 
two nematode taxa of potentially zoonotic genera: Anisakis 
typica s.l. and Hysterothylacium sp. (Ishikura 1989; Shamsi 
et al. 2018). The here-reported A. typica s.l. is likely identi-
cal to A. typica var. indonesiensis which is the predominant 
genotype in Indonesia (Palm et al. 2017). Larval stages of 
Anisakis spp. can cause anisakiasis and allergic reactions 
in humans when ingested along with raw or undercooked 
fish (Sakanari and McKerrow 1989; Audicana and Kennedy 
2008; Aibinu et al. 2019). A recent review on anisakiasis by 
Aibinu et al. (2019) suggested its worldwide occurrence, 
and a seroepidemiological survey done on a Javanese popu-
lation reported Anisakis antibodies in 11% of the 244 study 
subjects. This indicates that anisakid-borne zoonoses are a 
risk in Indonesia. Although A. typica has not been associ-
ated with human infections and this species mainly infects 
the gastrointestinal tract of the host, post mortem migration 
of helminth larvae into the fillet – from which transmis-
sion to humans can take place – has been recorded in ani-
sakid worms and is a potential threat to consumer health 
(Bao et al. 2017; Shamsi et al. 2018). With regards to the 
zoonotic potential, similar patterns have also been recorded 
for Hysterothylacium spp., where larvae can cause disease 
in consumers after originally infecting the intestine but 
subsequently migrating to the fillet (Shamsi et al. 2018). 

Therefore, zoonoses could still be a health risk to fish con-
sumers in Indonesia, requiring more thorough investigation.

Each fish species hosted digeneans except for C. chrys-
ophrys and J. borneensis (Table 3). With four different spe-
cies, digeneans were the second-most diverse parasite group 
but were found with a lower prevalence than Nematoda. 
However, when we compare our study to previous parasi-
tological investigations in Indonesia, there is no noticeable 
decrease in digenean abundance (e.g., Palm and Rueckert 
2009; Rueckert et al. 2009a; Kleinertz et al. 2014). Steph-
anostomum uku has been previously reported only from 
Aprion virescens (family: Lutjanidae), a large benthope-
lagic predator (Froese and Pauly 2021) in Hawaii (Yama-
guti 1970), New Caledonia (Bray and Justine 2011), and 
Australia (Bray et al. 2005), the latter providing the refer-
ence sequence used in this study. Finding Stephanostomum 
cf. uku (of Bray et al. 2005) for the first time in Indone-
sia from a carangid fish highlights the importance of using 
molecular techniques to better understand the complex and 
diverse parasite fauna in tropical regions, especially under 
consideration of the potentially wide range of distributions.

It was suggested by Palm (2004) that Indonesia is a hot-
spot for the cestode order Trypanorhyncha. In Pelabuhan 
Ratu, more than 50 trypanorhynch species were recorded 
(Palm 2004; Haseli et al. 2010), and Jakob and Palm (2006) 
reported five species from Trichiurus lepturus alone, includ-
ing Callitetrarhynchus gracilis. Here, only one species, C. 
gracilis, was identified. Trypanorhynch abundance relates to 
the relative abundance and species richness of their elasmo-
branch final host, meaning that if the number of final hosts 
decreases so will the parasite (Haseli et al. 2010). Indonesia 
is the world’s largest shark-fishing nation (Dent and Clarke 
2015), and elasmobranchs do not recover easily from over-
fishing (Myers et al. 2007), so the low-observed abundance 
and diversity of cestodes could indicate a low elasmobranch 
abundance in the region. Tetraphyllideans (order: Cestoda) 
commonly infect Trichiurus lepturus (Jakob and Palm 2006; 
Theisen 2020) and larger-predatory ocean fishes. A reduc-
tion in the elasmobranch population as the final hosts may 
also explain the absence of tetraphyllideans in the present 
study.

(Rueckert et al. 2009a) isolated 14 endoparasite spe-
cies from Upeneus moluccensis (n = 30) in Lampung Bay, 
southern Sumatra, Indonesia. A higher number of parasite 
species might correlate with a higher number of analyzed 
fishes, but it also indicates variability in parasite distribu-
tion. Another study from the same year in Segara Anakan, 
southern Java, Indonesia, isolated five endoparasites from 
Johnius coitor (n = 20), a congener of Johnius borneensis 
and one endoparasites species (Anisakis sp.) from the caran-
gid Caranx sexfasciatus (n = 8) (Rueckert et al. 2009b). In 
terms of parasite richness, these results are more similar 
to what was observed in the present study. For conclusive 
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results on potential decreases in endoparasites richness and 
shifts in their host’s distribution, consistent parasitological 
surveys are necessary, which would benefit the monitoring 
of intermediate and final host species as well as enhance 
seafood consumer safety with regards to zoonotic species.

With numerous new host and new locality records, we 
show the large potential of endoparasite research in highly 
diverse Indonesian waters. Finding endoparasites which are 
a potential risk to seafood consumers and can also negatively 
impact fish health in every fish species (A. typica s.l., Hys-
terothylacium sp.) stresses the importance of closing knowl-
edge gaps in the marine parasite fauna. Many here-isolated 
endoparasites infect a wide range of fish hosts and can be 
transmitted along with the food web (Rigaud et al. 2010) 
which poses transmission risks into other wild and maricul-
ture fish species. Parasitological research on food fishes in 
Indonesia is essential to assess food safety to consumers and 
to predict and prevent disease outbreaks.

We would like to address that, although the standard-
ized parasitological protocols used here should describe the 
endoparasite community as best as possible (Palm 2011), 
no overnight incubation of the gastrointestinal tract has 
been done because frozen fish were used for which this 
method does not apply (Shamsi and Suthar 2016). Incuba-
tion is especially useful for nematode detection, so it can 
be assumed that parasitological parameters (mean intensity, 
intensity, mean abundance) for this group may be higher 
than reported in this study. This means that the risk of par-
asite-borne zoonoses in food fish in Indonesia may be even 
higher than reported here.

Feeding ecology

The feeding categories in which the seven fish species were 
categorized based on the observed stomach contents that 
mainly corresponded to the previously recorded diet accord-
ing to the literature. Trichiurus lepturus (feeding category 
one) is a larger predator feeding mainly on fish and squid 
(Nakamura and Parin 1993; Abidin et al. 2013), and here, 
the diet consisted nearly exclusively of teleosts. The diet 
of Mene maculata and Upeneus asymmetricus has never 
been analyzed before, and here, we provide the first dietary 
data for these species. Johnius borneensis feeds mainly on 
fishes and crustaceans, which is compliant with the present 
study (Theisen 2009). As bottom dwellers, members of the 
genus Upeneus mainly feed on benthic invertebrates, fish, 
and polychaetes (Kaya et al. 1999; Campos-Dávila et al. 
2002; Prabha and Manjulatha 2008). Here, in both U. asym-
metricus and U. moluccensis, fish dominated the diet and 
crustaceans only played a minor role. Carangoides chrys-
ophrys (feeding category three) mainly feeds on teleosts and 
crustaceans, similar to what was observed here (Al Kamel 
and Kara 2019). Alectis indica (feeding category four) is 

reportedly a piscivorous species feeding also on squids and 
crustaceans (De Troch et al. 1998; Froese and Pauly 2021), 
which is similar to our findings.

Diet and the accumulation of parasites are closely linked 
in aquatic ecosystems (Marcogliese 2004, 2005). Therefore, 
it was of interest whether the isolated parasites can be attrib-
uted to the feeding ecology of the host. We showed that 
the endoparasite composition differs according to the four 
different feeding categories. This coincides with our hypoth-
eses that based on their ecology and diet, fishes are likely to 
accumulate certain endoparasites. Interestingly, the endo-
parasite composition of T. lepturus could be distinguished 
from fishes in the other feeding categories as it had the most 
evenly distributed parasite fauna, with all three parasite 
groups accounting for at least 19%. As a top predator, T. 
lepturus may be able to feed on a larger range of teleosts 
which in turn leads to a more diverse accumulation of endo-
parasites (Lile 1998; Yunrong et al. 2011). Smaller-sized 
piscivores (feeding category 2) seem to accumulate many 
nematodes, potentially because these parasites are transmit-
ted into their food source (small fish) via a large range of 
intermediate hosts such as shrimp, isopods, and amphipods 
(Klimpel and Rueckert 2005). Crustaceans are an impor-
tant food source for fishes and are known to be intermediate 
hosts for a wide range of marine endoparasites (Klimpel 
and Rueckert 2005; Koehler and Poulin 2010; Busch et al. 
2012). Here, C. chrysophrys (feeding category three) had 
a high nematode prevalence, potentially associated with 
higher consumption of decapods. Squid have been found to 
be paratenic hosts of especially anisakid worms and cestodes 
(Petrić et al. 2011), and although Alectis indica (feeding 
category four) hosted mainly nematodes, no cestodes were 
isolated from this species.

Although this study had a limited sample size and there-
fore limited statistical power, we show that an association 
between the feeding ecology and diet in food fishes in Indo-
nesia is possible. While stomach content analysis provides 
information about a short time span, parasite data reflects the 
fish ecology in a longer term: Food items remain in the fish 
stomach until digested while some long-lived parasites can 
remain in their hosts for several years (Marcogliese 2003; 
Palm and Rueckert 2009; Palm 2011). While more infor-
mation about the diet can provide important insights about 
predator–prey relationships (Al Kamel and Kara 2019), a 
combined approach of parasitological studies and stomach 
content analysis can be an efficient tool to fill knowledge 
gaps in Indonesian fish ecology and to work toward better 
ecosystem-based management plans. Climate change and 
anthropogenic activities have and likely will in the future 
impact marine biodiversity (Asch et al. 2018; Worm and 
Lotze 2021). Changes in marine food webs and zooge-
ographical distributions of intermediate and final hosts go 
along with changes in parasite abundance and infection 
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patterns (Shamsi 2021). This could introduce marine para-
sitic zoonoses or parasitic fish diseases to new regions and 
call for more parasitological research in affected regions.
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