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Abstract

Objective: In the LVAD domain, the receiver operating characteristic (ROC) is a commonly 

applied metric of performance of classifiers. However, ROC can provide a distorted view of 

classifiers ability to predict short-term mortality due to the overwhelmingly greater proportion 

of patients who survive, i.e. imbalanced data. This study illustrates the ambiguity of ROC in 

evaluating two classifiers of 90-day LVAD mortality and introduces the precision recall curve 

(PRC) as a supplemental metric that is more representative of LVAD classifiers in predicting the 

minority class.

Methods: This study compared the ROC and PRC for two classifiers for 90-day LVAD mortality, 

HeartMate Risk Score (HMRS) and a Random Forest (RF), for 800 patients (test group) recorded 

in INTERMACS who received a continuous-flow LVAD between 2006 and 2016 (mean age of 59 

years; 146 females vs. 654 males) in which 90-day mortality rate is only 8%.

Results: The ROC indicates similar performance of RF and HMRS classifiers with respect to 

Area Under the Curve (AUC) of 0.77 vs. 0.63, respectively. This is in contrast with their PRC with 

AUC of 0.43 vs. 0.16 for RF and HMRS, respectively. The PRC for HMRS showed the precision 

rapidly dropped to only 10% with slightly increasing sensitivity.

Conclusion: The ROC can portray an overly-optimistic performance of a classifier or risk score 

when applied to imbalanced data. The PRC provides better insight about the performance of a 

classifier by focusing on the minority class.
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I. INTRODUCTION

No clinical classifier or risk score is ever perfect; therefore, it is essential to consider their 

limitations and predictive accuracy when used clinically. A common metric of performance 

is the receiver-operator characteristic, ROC [1]–[3]. However, in the context of Mechanical 

Circulatory Support (MCS) such as LVAD therapy, there is an important consideration that 

is often, if not always overlooked: namely the imbalanced distribution of outcomes. Due 

to the increasing success of LVAD therapy, 90-day survival exceeds 90% [4]. Thus, when 

developing a classifier for mortality, there will be a relative paucity of training data for the 

minority class. Therefore, additional scrutiny on the performance with the minority class 

in needed. Consequently, ROC which gives same weight to both majority and minority 

classes can portray an overly-optimistic performance of the model [5]–[8]. Such imbalanced 

data is common in real-world domains such as fraud detection [9] and diagnosis of rare 

diseases [10]–[13]. However, as recently reported by Ishwaran et al. [14]–[16], the issue 

has been relatively overlooked in the field of cardiothoracic surgery. This paper provides an 

elucidating explanation of the imbalance issue in the context of the MCS field, particularly 

classifiers for LVAD mortality. This paper also presents an alternative metric that is sensitive 

to the imbalance in the data and can better assess the model’s performance in predicting the 

minority class.

II. METHODS AND BACKGROUND

A. Comparison of Two Classifiers for 90-day Mortality

This study compares the performance of two classifiers for predicting 90-day mortality after 

LVAD implantation; the well-known HeartMate Risk Score (HMRS) and a Random Forest 

(RF) that was derived de novo from a large multi-center registry data. The HMRS, a logistic 

regression-based score, was derived from and validated within 1,122 patients with 13% 

90-day mortality who received a HeartMate II as a bridge to transplant or destination therapy 

and computes the 90-day risk scores for mortality based on five variables [1]. The RF is 

a popular ensemble algorithm constructed by combining multiple decision trees based on 

“bootstrap” samples from data with random feature selection [17]. Each tree in RF has a 

“vote” for the outcome, and the overall classifier is determined by majority of votes of the 

trees. For this study, RF was derived based on 235 pre-LVAD clinical variables, such as lab 

values, demographic information, clinical history, etc., from 11,967 patients with advanced 

heart failure who received a continuous-flow LVAD recorded in the Interagency Registry 

for Mechanically Assisted Circulatory Support (INTERMACS). This study was waived from 

Informed Written Consent. The data were randomly divided into a training (70%) and a 

test (30%) set. The HMRS score was computed for a subset of the test data set, censoring 

patients who received a heart transplant or had total recovery before 90 days, and for whom 

the data records did not contain all five variables required to compute HMRS. The resulting 

data set for computing HMRS included 800 patients (mean age of 59 years; 146 females vs. 
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654 males). A majority of these 800 survived to 90 days (SURV class = 92%) and only 8% 

of patients were dead at 90 days (DEAD class). Thus, there is a high imbalance between the 

SURV class (majority class) and DEAD class (minority class) in these data.

B. The Problem of Imbalance (and Overlap)

Without loss of generality, a classifier is a means of assigning the predicted probability of an 

outcome to a specific class, also known as a label. For example, if the predicted probability 

of a hypothetical patient being dead (PPD) is 70%, then this patient can be assigned the 

label “DEAD” by prescribing a cutoff value of, say 50%. By the same token, if PPD is 

below the cutoff, say 30%, then the patient would be assigned to the survival class “SURV.” 

(See Figure 1A.) Then, to evaluate the performance of the classifier, the predicted label 

is compared to the actual outcome and summarized in the form of a confusion matrix, 

as shown in Figure 1A (inset) containing four elements: True DEAD, False DEAD, True 

SURV, False SURV. From these four elements, several evaluation metrics can be computed, 

including sensitivity, precision, and specificity.

Choosing the best threshold is a challenging task that can highly affect the perception of 

model’s performance. For example, Figure 1B shows the predicted probabilities of being 

dead for three patients based on two potential thresholds of 50% and 51%. In this example 

the labels for the two extreme cases (PPD = 0% and 100%) are unambiguous. However, the 

patient in the middle with the 50% predicted probability of being dead (hence 50% chance 

of being alive) can be classified with either label SURV or DEAD by merely altering the 

threshold by one percentage point. In this example, the performance of this classifier is 

achieved by assigning a threshold of 51% leading to the correct classification of all three 

patients. However, optimizing the threshold in real life is not as straightforward as this 

example.

When considering a larger population of patients, the distribution of PPD contains an 

ambiguous overlap in which an intermediate range of probabilities is associated with both 

classes. (See Figure 2A, plot B). This is in contradistinction to the “perfect” classifier 

that does not contain any such overlap. (See Figure 2A, plot A). Therefore, choosing the 

threshold involves a subjective trade off decision: Is incorrectly predicting a patient as being 

dead (False DEAD, type I error) worse, vs incorrectly predicting a patient as alive (False 

SURV, type II error)?

When the data are highly imbalanced, the unequal distribution of classes will compound 

the problem of overlap and make classification even more challenging. (See Figure 2A, plot 

C). The LVAD 90-day mortality study introduced in the previous section is an example. 

Figure 2B shows the histograms of HMRS score (left plot) and RF predicted probability of 

death, PPD, (right plot) categorized by their actual mortality outcome (DEAD vs SURV). 

The imbalance issue is clearly visible in Fig 2B inasmuch as the black bars (DEAD class) 

are much lower than the orange bars (SURV class) in both plots. The PPD generated by 

RF for all 800 patients in this study (total of both DEAD and SURV) ranges from 0.01 

to 0.52 with the mean of 0.15; while HMRS scores range between −1.80 to 6.50 with 

the mean of 1.71. The means of both distributions are closer to the lower part of their 

ranges because of the preponderance of SURV class (92%) in the test cohort. The RF was 
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more successful in separating the classes for two reasons: first, the distribution of SURV 

class in RF is right-skewed and clustered within a narrow band (approximately 0.0 to 0.3; 

median of approximately 10%). This is contrasted with HMRS whose distributions for both 

classes are completely overlapping and bell-shaped around the means. Secondly, although 

the distribution of the DEAD class in RF is relatively flat with no identifiable maximum, the 

band above 35% is dominated by the DEAD class. Nevertheless, for both plots in Figure 2B, 

optimizing a cutoff threshold that efficiently separates both classes is not straightforward. 

By default, any cutoff threshold for both plots in Figure 2B will result in a much larger 

number of True SURV and False SURV compared to True DEAD and False DEAD. On 

account of this dilemma (imbalance plus overlap), caution is needed when applying metrics 

of performance to these classifiers - such as the common ROC.

C. Evaluation tools

Figures 3 and 4 demonstrate the evaluation tools Receiver Operating Characteristic (ROC) 

and Precision Recall Curve (PRC), respectively. See supplementary appendix A for 

comprehensive explanation of these tools.

III. RESULT

A. Limitations of ROC due to imbalanced LVAD mortality rate

Figure 5A shows the ROC curves for the two classifiers, HMRS and RF, for prediction of 

90-day mortality after LVAD implantation. The color of the curves corresponds to the values 

of cutoff thresholds for each classifier, shown in their corresponding legends (from 0.01 to 

0.52 for RF vs −1.8 to 6.50 for HMRS). The dominant color in the ROC curve for HMRS 

is green corresponding to the compact (tall and narrow) distribution of scores around the 

mean of 1.71 as shown in Figure 2B. Therefore, a small change in cutoff threshold above or 

below the mean may dramatically change the classifier’s performance. On the other hand, 

the ROC curve for RF illustrates its performance over a more uniformly distributed range 

of thresholds, especially for the lower part of the range (less than 30%), corresponding to 

the right-skewed distribution of predicted probabilities shown in RF’s histogram for SURV 

class (orange bars) in Figure 2B. The area under the curve (AUC) for these two ROC curves 

are comparable, although RF is slightly greater (0.77) vs. 0.63 for HMRS, indicating better 

overall performance of RF in separating DEAD vs. SURV.

The two dark blue points on the curves indicates the optimized thresholds where the 

values of sensitivity and specificity are effectively equalized (1.86 and 0.21 for HMRS and 

RF, respectively). Although the values of sensitivity for HMRS and RF at the optimized 

threshold are similar, 0.60 and 0.66, respectively, the corresponding specificity of RF, 

0.77, is notably greater than for HMRS, 0.62. Translating these optimized thresholds to 

histograms of Figure 2B illustrates the efficacy of each classifier in separating the two 

classes. (See Figure 5B.) Comparison of the two types of errors: False SURV (dead patients 

incorrectly classified as alive) and False DEAD (alive patients incorrectly classified as 

dead) reveals that the proportion of False DEAD is much greater than the proportion of 

False SURV for both classifiers. This is due to a combination of the imbalance of the data 

(about 92% alive patients) and relatively poor performance of the classifiers. However, the 
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False DEAD is visibly larger for HMRS compared to RF due to the huge overlap between 

distributions of HMRS scores for DEAD and SURV classes.

The stark differences revealed by the histograms in Figure 5B are not discernible from 

comparison of the corresponding ROC curves. For example, a small change in the threshold 

of the ROC curves in Figure 5A corresponds to a small change in both Sensitivity and 

FPR. However, Figure 5B reveals that shifting the cutoff from the optimal point (left 

or right) will result in a much greater change in False DEAD vs False SURV. This is 

because the denominator of FPR in the ROC curve plots the total number of SURV which 

is a huge number, thus attenuating the effect of changes in the numerator, False DEAD. 

In terms of the confusion matrix, this can be restated as the number of False DEAD 

is being overwhelmed by the much larger number of True SURV – considering that the 

total observed SURV is the sum of True SURV and False DEAD. (See Figure 2A plot 

C). Consequently, the ROC curves in Figure 5A do not reveal the dramatic difference 

in performance between RF and HMRS. Figure 5B clearly shows that RF suffers much 

less from error of False DEAD than HMRS. In addition, it can be seen that choosing the 

threshold only based on the ROC curve may cause unintentional effects in the perception 

of model performance with respect to the minority class. In conclusion, when the ROC is 

dominated by the majority class (the large proportion of patients that survive), it poorly 

reflects the performance of the model with respect to the minority class (dead patients), 

and thus may be a deceptively optimistic evaluation tool in the case of imbalanced data. 

Therefore, there is clearly a need for a supplemental evaluation tool that is sensitive to 

skewness in the data and emphasizes the classifier’s performance for the minority class. One 

such evaluation tool is the Precision-Recall Curve (PRC) [7,8,18].

B. Solution: PRC for imbalanced LVAD mortality rate

A perfect PRC curve is L-shaped indicating that the classifier maintains high precision 

(Y-axis = 1) as recall or sensitivity (X-axis) increases by change of thresholds. Figure 

6shows the PRC curves for the two classifiers, HMRS and RF, for prediction of 90-day 

mortality after LVAD implant. The colored legends indicate the same threshold values as 

presented in the ROC curves above (Figure 5A). The PRC for HMRS reveals that the 

precision drops precipitously to approximately 10% (close to the random classifier: blue 

dotted line) as recall (sensitivity) increases from 0% to about 10%. This is the result of the 

severe overlap between the classes in the histogram of HMRS (Figure 2B). This is true even 

for the greatest scores, which leads to the huge proportion of False DEAD (alive patients 

incorrectly identified as DEAD). This is contrasted with the PRC of RF which decreases 

more gradually in precision with increasing recall. Also, it is noted that the PRC of RF 

remains at nearly 1.0 over a wider range of threshold, i.e. between 0.44 (44%) and 0.51 

(51%) corresponding to a range of recall (sensitivity) from 0% to 17%. Therefore, from 

the perspective of precision-recall it is clearly evident that RF classifier outperforms HMRS 

with AUC-PRC of 0.43 vs. 0.16.

The dark blue dots in Figure 6 correspond to optimized thresholds chosen based on the ROC 

curves in Figure 5A. It is readily seen that the precision of both classifiers at these thresholds 

is very low, although RF has a better precision, 38%, for achieving the sensitivity of 66% 
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than HMRS with precision less than 10% for sensitivity of 60%. Using these thresholds, the 

HMRS classifier will correctly identify only 38 out of 64 dead patients (60% sensitivity) in 

the 800-patient test data set, yet will incorrectly label 308 patients (90% of the 342 patients 

labeled as DEAD) who are actually alive!

On the other hand, if we assert that precision and recall are equally important, the 

corresponding optimal cutoff would be indicated by the red dots on PRC curves in Figure 

6 for which both precision and recall of HMRS and RF is 15% and approximately 38%, 

respectively. At these optimized points, the harmonic mean of precision and recall (F1-

Score) equals both precision and recall. These optimized points are not necessarily the 

best way of choosing the threshold since it results in very low levels of recall; however, 

it illustrates that the choice of threshold depends heavily on the comparative “importance” 

of sensitivity and precision; hence acceptance/consequence of errors (False DEAD vs False 

SURV).

IV. DISCUSSION

The clinical utility of a risk score or classifier for mortality following LVAD implantation 

depends greatly on the degree of separability between predicted probabilities of the two 

classes: DEAD vs SURV. (See Figure 2A). Overlap between the distributions of the two 

classes creates an intermediate range of probabilities that is associated with both classes. 

This results in two types of errors: False DEAD (alive patients who are incorrectly labeled 

as DEAD) and False SURV (dead patients who are incorrectly labeled as SURV). Therefore, 

the choice of a threshold is tantamount to choosing between these two types of error. This 

dilemma is accentuated when the data are highly imbalanced, as is the case of 90-day 

mortality post-LVAD. (See Figure 2B). The overwhelmingly large size of the majority class, 

SURV class, amplifies the False DEAD error much more than False SURV. (See Figure 5B). 

Thus, when choosing a threshold and evaluating the performance of these classifiers, it is 

very important to focus on the minority class (both True DEAD and False DEAD).

This study illustrated that the ROC, a well-known evaluation tool used for most LVAD 

risk scores, in the case of imbalanced data, leads to an overly-optimistic perception of 

the performance of the classifier. This is due to the intuitive but misleading interpretation 

of specificity: where the large number of False DEAD error is overwhelmed by the huge 

number of All observed SURV in its denominator. Neglecting the full magnitude of False 

DEAD generated by a classifier or risk model, i.e precision, could give the clinician false 

confidence in the prediction of DEAD by the classifier. Unfortunately, most of published 

pre-LVAD risk scores and classifiers have not reported their precision. Therefore, these 

scores should be used with extreme caution.

The Precision Recall Curve (PRC) was shown here to be a useful tool to reveal the 

performance of a classifier for minority class. The PRC plots the proportion of True DEAD 

to both errors: False DEAD and False SURV. This is in contradistinction with the ROC 

which has an equal emphasis on both minority and majority classes. PRC is not affected by 

the overwhelming number of True SURV (majority class), and thus it does not generate a 

misleadingly optimistic perception performance, as does the ROC. The utility of the PRC 
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was illustrated with two classifiers for 90-day mortality following LVAD implantation that 

both suffer from imbalanced data: the well-known HMRS and a de-novo RF classifier 

derived from INTERMACS’ much larger data.

The preceding is not an indictment of ROC, but a revelation that ROC fails to paint 

a complete picture of a classifier’s performance. Therefore, ROC provides a view of 

classifiers’ performance with both minority and majority classes while PRC provides a 

view of classifiers’ performance on minority class which becomes more important and 

informative when dealing with imbalanced data.

It would be valuable to mention that though ROC and PRC together can comprehensively 

evaluate the prediction power of a model, neither of ROC nor PRC are affected by 

calibration as they are ranking-based measurements. However, if desirable to calibrate the 

model, other evaluation measures, such as Brier Score, could be used.

Clinical Perspectives

Using any classifier for mortality following LVAD implantation inevitably involves choosing 

a threshold. From a clinical perspective this translates to a conscious decision between risk 

of inserting an LVAD in a patient who will die due to misplaced faith in the classifier (False 

SURV); versus denying a patient from a potentially life-saving LVAD because of a false 

presumption of death (False DEAD) by the classifier. This is an ethical dilemma. If the 

clinician chooses a conservative threshold, so as to avoid False SURV, he/she will mitigate 

the risk of accelerating a patient’s death by inserting an LVAD, however he/she is at a loss 

for a classifier to evaluate the alternatives. This situation begs for a more holistic approach 

to stratification of patients with severe heart failure, to provide comparison, or ranking of 

alternatives, such as the use of a temporary support device as a bridge to VAD. Because 

VADs are one of the most expensive therapies in medicine, overly optimistic projections of 

survival could adversely affect cost (per quality adjusted life years, QALY), and potentially 

return to haunt the field in the future if costs are much higher than had been predicted.

Another consideration that highly affects the tradeoff between False SURV (False Negative) 

and False DEAD (False Positive) is the intended role of classifier in the clinical assessment 

of pre-LVAD patients. For example, the initial screening test for HIV has a high sensitivity 

because of the importance of avoiding False Negative. But among those with positive initial 

screening test, there exist patients who do not actually have HIV (False Positive). Thus, 

patients with positive initial tests are reassessed with a much more precise diagnostic test 

with lower False Positive rate to confirm the HIV diagnosis. Therefore, as a screening tool, 

sensitivity is most important (avoiding False Negative); but as a diagnostic tool, precision 

is more important, to avoid False Positives. By analogy to the pre-LVAD classifier, the 

choice of threshold might be situation-specific: more conservative as a screening tool, and 

less so as a definitive diagnostic tool. In conclusion, there is a need for future studies to 

comprehensively investigate the role of pre-LVAD risk assessment in clinical decisions by 

considering all-inclusive aspects of their clinical settings.
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Limitations

The problem of classifier development with imbalanced data is well-known area of research 

in many disciplines, including medicine [10]–[13], and was most recently recognized by 

Ishwaran in the context of cardiovascular surgery [14]–[16]. Accordingly, there exists a 

variety of approaches to mitigate the effects of imbalance such as resampling methods, 

assigning weights to minority samples, one-class classifier, etc. [19]–[22]. In addition, there 

have been studies investigating optimization of threshold choice for imbalanced data such 

as the quantile-classifier proposed by Ishwaran et al. to optimize the G-mean [23]. This 

study did not attempt to employ any of these methods; however, it would be beneficial 

in future studies to explore various strategies to achieve the best performance of LVAD 

classifiers. We also acknowledge that there exist other evaluation metrics, such as G-mean, 

PRC, and relative PRC, recently recommended by Ishwaran [14] as well as cost curve [22] 

and concentrated ROC [24], which were not explored in this study, but worthy of future 

consideration.

V. CONCLUSION

ROC has become an entrenched evaluation tool for assessing the performance of classifiers 

and risk scores in the medical arena. However, when the data is highly imbalanced, ROC 

can provide a misleading optimistic view of the performance of the classifiers. In such 

circumstances, it is imperative to employ PRC to precisely evaluate the prediction of the 

minority class. Figure 7 depicts a summary of the study showing the effect of imbalanced 

data on the outcome of RF classifier.
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Glossary of Abbreviations:

ROC Receiver Operating Characteristic

PRC Precision Recall Curve

AUC Area Under Curves

LVAD Left Ventricular Assist Device

HMRS HeartMate Risk Score
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RF Random Forest

INTERMACS Interagency Registry for Mechanically Assisted Circulatory Support

PPD Predicted Probabilities of DEAD

PL Predicted Labels

TNR True Negative Rate

TPR True Positive Rate

FPR False Positive Rate

PPV Positive Predictive Value
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Central Message:

The ROC can portray an overly-optimistic performance of a classifier or risk score when 

applied to imbalanced data such as mortality risk scores after LVAD implant for patients 

with heart failures.
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Perspective Statement:

Using any classifier for mortality inevitably involves making a conscious decision 

between two type of errors, False SURV versus False DEAD, by the classifier. This 

study illustrated that the ROC, a well-known evaluation criterion used to choose between 

these two errors, leads to an optimistic perception of the performance of the classifier in 

the case of imbalanced data.
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Abbreviated legend for Central Picture:

Imbalanced issue when there is an unequal distribution of classes in the data.
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Figure 1A: 
Transition of the outcome of a classifier from Predicted Probabilities of Dead (PPD) to 

Predicted Label (PL)- (1) Threshold the PPDs: If the PPD for a patient is greater than 

the threshold then the PL would be DEAD otherwise PL would be SURV. (2) Compare 

generated PL against the observed class/label and form the confusion matrix.
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Figure 1B: 
An example shows the transition of the outcome of a classifier for three patients from PPDs 

to PLs using two slightly different thresholds- The PLs generated using the threshold of 

51% (with gray background) are all correctly classified vs the threshold of 50% caused one 

misclassified label.
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Figure 2A: 
A theoretical example of classifiers’ outcomes with overlap and imbalance issues: (A) Top 

plot in the left figure shows the outcome of a perfect classifier with no overlap between the 

distributions of PPD of DEAD class (colored in black) and SURV class (colored in orange). 

These distributions can be perfectly separated by a threshold, and thus there is no False 

DEAD or False SURV in its confusion matrix (See top right). (B) Left middle plot shows 

an imperfect but skillful classifier that generates PPDs with ambiguous overlap in which 

an intermediate range of probabilities is associated with both (either) class causing some 

False DEAD and False SURV as it is shown in its corresponding confusion matrix (See right 

middle plot). (C) Bottom left plot shows a classifier with both overlap and imbalance issues. 

Comparing with middle plot, the False DEAD is much greater than True DEAD indicating 

low precision of dead predictions. In addition, the large number of True SURV.
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Figure 2B: 
Overlap issue for the outcomes of 90-Day LVAD mortality classifiers- The underlying 

distributions of HMRS risk scores and RF predicted probabilities of DEAD for 800 patients 

in this study data are shown histogram plots. The histograms are categorized based on the 

observed labels for patients in this study.
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Figure 3: 
ROC- The example of ROC curves for a perfect classifier (L-shape dashed-curve), an 

imperfect classifier (solid curve), and a random classifier (diagonal dotted-line).
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Figure 4: 
PRC-The example of PRC curves for a perfect classifier (L-shape dashed-curve), an 

imperfect classifier (solid curve), and a random classifier (horizontal dotted-line).
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Figure 5A: 
The ROC for HMRS and RF- The dark blue points indicate the optimal cutoff thresholds, 

detailed in the inset tables.
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Figure 5B: 
The distributions of false predictions for HMRS and RF classifiers- These histograms are 

the same histograms in Figure 2B. The dashed lines are corresponding to optimized cutoff 

thresholds chosen based on ROC curves in Figure 5A. The two types of errors, False DEAD 

and False SURV associated with this threshold are reflected in black and orange regions 

with red outline, respectively.
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Figure 6: 
The PRC for HMRS and RF classifiers- The dark blue point on the PRC curves are 

corresponding to optimized thresholds chosen based on the ROC curves in Figure 5A. The 

red boxes are the corresponding specifications of red dot points on PRC curves presenting 

the optimized cutoff thresholds of PRC curves.
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Figure 7: 
Pictorial summary of the study demonstrating the effect of imbalanced data on the outcome 

of a Random Forest (RF) classifier. Method: 92% of the 800 patients used in this study to 

test the RF classifier survived to 90 days and only 8% of patients were dead at 90 days. 

Result: The plot of predicted probabilities by RF categorized by their real labels illustrates 

the issues of imbalance and overlap of the two classes. Evaluation of Results: While 

Receiver operating characteristic (ROC) indicated an acceptable performance for RF (AUC= 

0.77), the Precision Recall Curve (PRC) revealed moderate performance (AUC= 0.43).
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