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Abstract 
Alternatively activated macrophages (M2 polarization) play an important role in asthma. Short-chain fatty acids (SCFAs) possessed immune-
regulatory functions, but their effects on M2 polarization of alveolar macrophages and its underlying mechanisms are still unclear. In our study, 
murine alveolar macrophage MH-S cell line and human monocyte-derived macrophages were used to polarize to M2 subset with interleukin-4 
(IL-4) treatment. The underlying mechanisms involved were investigated using molecule inhibitors/agonists. In vivo, female C57BL/6 mice were 
divided into five groups: CON group, ovalbumin (OVA) asthma group, OVA+Acetate group, OVA+Butyrate group, and OVA+Propionate group. 
Mice were fed with or without SCFAs (Acetate, Butyrate, Propionate) in drinking water for 20 days before developing OVA-induced asthma 
model. In MH-S, SCFAs inhibited IL-4-incuced protein or mRNA expressions of M2-associated genes in a dose-dependent manner. G-protein-
coupled receptor 43 (GPR43) agonist 4-CMTB and histone deacetylase (HDAC) inhibitor (trichostatin A, TSA), but not GPR41 agonist AR420626 
could inhibit the protein or mRNA expressions M2-associated genes. 4-CMTB, but not TSA, had no synergistic role in the inhibitory effect of 
SCFAs on M2 polarization. In vivo study indicated Butyrate and Propionate, but not Acetate, attenuated OVA-induced M2 polarization in the lung 
and airway inflammation. We also found the inhibitory effect of SCFAs on M2 polarization in human-derived macrophages. Therefore, SCFAs 
inhibited M2 polarization in MH-S likely through GPR43 activation and/or HDAC inhibition. Butyrate and Propionate but not Acetate could inhibit 
M2 polarization and airway inflammation in asthma model. SCFAs also abrogated M2 polarization in human-derived macrophages.
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Introduction
Asthma is characterized by airway hyper-responsiveness 
(AHR) and chronic airway inflammation, the immuno-
logic dysfunction in asthma can be attributed to destruc-
tion of lung homeostasis in network of various immune 
cells, including eosinophil, mast cells, Th1, Th17, innate 
lymphoid type 2 (ILC2), regulatory T (Treg) cells and 
macrophages, and so on [1, 2]. As the most abundant im-
mune cell in the lung, macrophages are thought to be senti-
nels of pulmonary immune responses and play an essential 
role in asthma through being triggered to release a series of 
inflammatory cytokines upon stimulus [3, 4]. The plasticity 
of macrophages enabled it to exhibit different phenotypes 

when encountering allergens or threats. Macrophages could 
be classically activated and alternatively activated to po-
larize into M1 and M2 cells, respectively. The M1 macro-
phages participated in the removal of pathogens, mediated 
reactive oxygen species (ROS)-induced tissue damage, and 
impaired tissue regeneration. M2 macrophages promoted 
tissue repair and wound healing, cleared debris and apop-
totic cells, and possessed potent phagocytosis capacity and 
pro-angiogenic properties [5]. M2 macrophages also played 
an important role in triggering allergic airway inflammation 
[6]. Unlike M1, which was frequently triggered by Th1 cyto-
kines such as tumor necrosis factor α (TNFα), lipopolysac-
charide (LPS), and interferon γ (IFN γ), M2 differentiation 
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was associated with IL-4 or IL-13 exposure which can bind 
to IL-4R or IL-4R/IL-13R, activating phosphorylation of 
signal transducer and activator of transcription 6 (p-Stat6) 
and triggering gene transcriptions related to M2 [7, 8]. 
Mannose receptor (MRC1) was highly expressed both in 
human and mouse M2, while arginase 1 (Arg1), chitinase-
3-like protein-3 (Chi3l3/YM1), resistin-like molecule-α/
found in inflammatory zone 1 (FIZZ1/Retnla) were only 
highly expressed in mouse [9–11]. Activity of Stat-1 was 
essential for M1 macrophage polarization, while, several 
genes associated with M2 macrophage profile, such as Arg1 
and MRC1 were regulated by p-Stat6 activity in the pres-
ence of IL-4/IL-13 [12]. Increased p-Stat6 could promote 
M2 differentiation, while downregulation of p-Stat6 was 
associated with inhibition of M2-associated genes [13, 14]. 
Previous studies demonstrated the imbalance of M1/M2 in 
immunopathogenesis of asthma and M2 dichotomous clas-
sification was indicated in lung tissues or peripheral blood of 
asthma patients [15–17]. This was also supported in animal 
models by Moreira et al. who confirmed aggravated allergic 
airway inflammation in mice received adoptive transfer of 
M2 compared with their counterparts received M0 [6]. The 
expression of M2-associated genes, such as YM1, FIZZ1, 
and human YKL-40, can also act as chemokine of eosino-
phils, enhance pulmonary vascular smooth muscle cell 
proliferation and correlated with airway remodeling, re-
spectively [18–20].

Short-chain fatty acids (SCFAs) were produced by gut bac-
teria metabolizing indigestible carbohydrates or fiber-rich 
diet. SCFAs gain increasing focus because of their benefi-
cial roles in different organ systems and their crucial role 
in bridging intestinal microbiota and the host. Of particular 
interest are Acetate, Butyrate, and Propionate, which are the 
most abundant SCFAs in the gut. They have been shown 
to relieve intestinal inflammation, inhibit proliferations 
of cancer cells and eosinophils, enhance insulin sensi-
tivity of islet β cells, restrain inflammatory cell infiltration 
through activating G-protein-coupled cell surface recep-
tors (GPRs) (GPR41, GPR43, and GPR109a), or suppress 
histone deacetylases (HDAC) activity, therefore they exhib-
ited regulatory role in glucose homeostasis [21, 22](p3) and 
appetite regulation [23], alleviating inflammatory bowel 
disease [24] and liver injury [25]. Emerging evidence turn 
SCFAs into the limelight due to their profound functions 
in regulating immune responses and inflammation process. 
For instance, Butyrate promoted differentiation of Treg cells 
while inhibited differentiation of IFNγ-producing cells [26]. 
Propionate impaired the capability of dendritic cells (DCs) to 
trigger Th2 immune response [27]. In recent studies, SCFAs 
were found to ameliorate allergic airway inflammation, 
AHR, serum IgE, eosinophils in bronchoalveolar lavage fluid 
(BALF) total cells and in OVA-induced asthma animal model 
[28] (p2). However, the role of SCFAs in M2 polarization of 
human-derived macrophages and murine alveolar macro-
phages, along with the underlying mechanisms are still not 
fully understood, moreover, whether SCFAs could regulate 
the M2 polarization in vivo remains to be elucidated.

Herein, we investigated potential role of SCFAs in M2 
polarization of human macrophages and murine alveolar 
macrophages (MH-S) in vitro, and the effect of SCFAs on 
M2 polarization in the context of allergic airway inflam-
mation.

Materials and methods
Cell culture
Murine alveolar macrophages (MH-S) and human monocytic 
THP1 cells were obtained from ATCC. Monocyte-derived 
macrophages obtained and induced from peripheral blood 
mononuclear cells (PBMCs) in asthma patients. These cells 
were cultured in 1640 RPMI supplemented with 10% fetal bo-
vine serum (FBS) in a humidified 5% CO2 atmosphere at 37°C.

Subjects
Eight asthma patients were recruited for the study. Asthma 
was defined based on physician diagnosis and by the 12% or 
200 ml decrease of FEV1 after bronchial dilation test using β2 
agonist. Sputum was produced after induction by hypertonic 
saline nebulization as previously described [29], cell differen-
tial counts were performed. The demographic data, including 
age, sex, body mass index, history of rhinosinusitis, ICS dose, 
percentage of eosinophils in induced sputum (EOS%), and 
Asthma Control Questionnaire score (ACQ) score, FEV1 per-
cent predicted (FEV1% pre), FEV1/forced vital capacity per-
centage (FEV1/FVC), and blood IgE levels were also recorded.

The study was approved by the Ruijin Hospital Ethics 
Committee, Shanghai Jiao Tong University School of 
Medicine. The study abides by principles in declaration of 
Helsinki for the use of human samples. Signed informed con-
sent was obtained from all patients.

PBMC isolation and monocyte-derived 
macrophages
Fifteen milliliters of peripheral blood were collected and di-
luted with equal volumes of sterile PBS. PBMCs were isolated 
by Ficoll-Hypaque density and gradient centrifugation at 
3000 rpm for 20 min at 20°C, then the cells were obtained 
for monocytes selection using Human CD14 Selection Kit 
(Biolegend, USA). CD14+ monocytes were cultured for 
7 days in 1640 RPMI supplemented with 10% FBS and 
Macrophage-colony stimulating factor (M-CSF, 50  ng/ml, 
PeproTech, USA).

M2 polarization
Primary monocyte-derived macrophages were cultured with 
human IL-4 (20 ng/ml) on day 8 for 24 h for M2 differen-
tiation, then total RNA was harvested. THP-1 cells were 
cultured in 1640 RPMI supplemented with 10% FBS and 
phorbol myristate acetate (PMA, 50  ng/ml, Sigma Aldrich, 
USA) for 24 h, then human IL-4 (20 ng/ml, PeproTech, USA) 
were added for 24  h to induce M2 differentiation before 
harvesting RNA. MH-S was exposed to mouse IL-4 (20 ng/
ml, PeproTech, USA) for 48 h to induce M2 polarization.

Immunoblotting
Equal amounts of proteins (30 μg) were separated on SDS-
PAGE gel electrophoresis and transferred onto polyvinylidene 
fluoride membranes, then the membranes were blocked using 
5% non-fat milk for 1 h at room temperature. All the pri-
mary antibodies (Arg1, p-Stat6, β-tubulin, glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), total-Stat6, Cell 
Signaling Technology, USA; Acetyl-Histone K3, Beyotime 
Biotechnology, Shanghai; pan Acetyl H3, Merk, Austria) 
at 1:1000 dilution were incubated over night at 4°C. After 
washing three times, the membranes were incubated with 
horseradish peroxidase (HRP)-conjugated anti-mouse or 
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anti-rabbit secondary antibodies (1:2000, Cell Signaling 
Technology, USA) and detected with an enhanced chemilu-
minescence kit (Millipore). Β-tubulin or GAPDH was used 
for normalization.

Quantitative real-time polymerase chain reaction 
(qRT-PCR) analysis
Total RNA was extracted using TRIzol reagent and reverse 
transcribed into cDNA using PrimeScript RT Master Mix 
(Takara). Quantitative PCR was performed using SYBR 
green (Takara) on an ABI 7500 real-time PCR system, 
reaction conditions were: 95°C for 30 s, 40 cycles (95°C 
for 5 s, 60°C for 34 s). β-actin was used for normaliza-
tion. The primer sets are listed as follows: mouse Arg1, 
5ʹ-GCCAGGGACTGACTACCTTAA-3ʹ  
and 5ʹ-AGTTCTGTCTGCTTTGCTGTG-3ʹ;  
mouse MRC1, 5ʹ-AGGGAAGAGAAGAAGATCCAG-3ʹ  
and 5ʹ-TGGGAGAAGATGAAGTCAAAC-3ʹ;  
mouse FIZZ1, 5ʹ-TGCCAACTGTCCTAAGAATGA-3ʹ  
and 5ʹ-GCACATGAGTCAGATTTCCAA-3ʹ;  
mouse YM1, 5ʹ-TGAGGAAGAATCTGTGGAGAA-3ʹ  
and 5ʹ-TGAGACAGTTCAGGGATCTTG-3ʹ;  
mouse β-actin, 5ʹ-CCTCTATGCCAACACAGT-3ʹ  
and 5ʹ-AGCCACCAATCCACACAG-3ʹ;  
human MRC1, 5ʹ-GCAGTCCTTTCCGATATTTGA-3ʹ  
and 5ʹ-CCCAGTTTCTGAACACATTCC-3ʹ;  
human Clec10a, 5ʹ-AGAATAAGGTGAAAGTCCAGGGG-3ʹ 
and 5ʹ-GCTAAAATCTGTTCTCAGGGTCAC-3ʹ;  
human CCL2, 5ʹ-TAGAAGAATCACCAGCAGCAAG-3ʹ  
and 5ʹ-CAAGTCTTCGGAGTTTGGGTTT-3ʹ;  
human CCL17, 5ʹ-CCTTAGAAAGCTGAAGACGTGGTA-3ʹ 
and 5’-TCTTCACTCTCTTGTTGTTGGGG-3ʹ;  
human CCL22, 5ʹ-CGTGGTGAAACACTTCTACTGGAC-3ʹ 
and 5ʹ-ATCATCTTCACCCAGGGCACT-3ʹ.

Flow cytometry
For MH-S, cells were harvested and washed with PBS and 
stained with zombie viability dye (Biolegend, USA) for 15 min 
at room temperature before washing and fixation with 4% 
paraformaldehyde for 15  min at room temperature. After 
washing three times, cells were permeated with intracellular 
staining permeabilization wash buffer (Biolegend, USA), fol-
lowed by three washes and incubation with anti-mouse MRC1 
antibody (Biolegend, USA) for 30 min at 4°C. The cells were 
acquired using Beckman cell coulter (BD, USA), analysis of 
the flow cytometry data was performed using Flowjo soft-
ware.

For pulmonary cells, lung tissues were minced, digested 
with DNAse I and collagenase A in Hanks buffer for 1 h at 
37°C and then filtered with 70 μm nylon strainer. Cells were 
centrifugated and suspended with red blood cell lysis buffer 
for 10 min at room temperature, followed by centrifugation at 
2000 rpm for5 min at 4°C. After washing with PBS, cells were 
incubated with zombie, fixed with 4% paraformaldehyde, 
and incubated with surface-associated genes (CD45, F4/80, 
CD11c, Biolegend, USA) for 30 min at 4°C. All the cells were 
subsequentially permeated with intracellular staining perme-
abilization wash buffer and incubated with BV421-labeled 
anti-mouse MRC1 (Biolegend, USA) antibody for 30 min at 
4°C. The cells were acquired using Beckman cell coulter (BD, 
USA), analysis of the flow cytometry data was performed 
using Flowjo software.

Immunofluorescence staining
MH-S were fixed with 4% paraformaldehyde (PFA) for 20 min, 
permeated by 0.3% TritonX-100 for 10 min and blocked with 
5% BSA for 40 min at room temperature. Then, cells were in-
cubated with anti-Arg1 (1:200) overnight at 4°C, after three 
washes, the cells were exposed to Alexa Fluor 594-conju-
gated goat anti-rabbit IgG (1:150) for 1 h at room tempera-
ture in the dark. 2-(4-Amidinophenyl)-6-indolecarbamidine 
dihydrochloride (DAPI) was used to stain the nuclei, and images 
were captured using a fluorescence microscope (CarlZeiss, Inc).

Animal models
Female C57BL/6 mice (6–8 weeks) were purchased from Shanghai 
SLAC laboratory (Shanghai, China) and housed in the specific 
pathogen free facility. All of the experiments followed protocols 
approved by the Institutional Animal Care and Use Committee 
in Ruijin Hospital, Shanghai Jiao Tong University School of 
Medicine. All mice were randomly divided into five groups: CON 
group, OVA asthma group, OVA+Acetate group, OVA+Butyrate 
group, and OVA+Propinoate group. Mice in OVA+Acetate group,  
OVA+Butyrate group, and OVA+Propionate groups were ad-
ministered with Acetate (50  mM), Butyrate (50  mM), and 
Propionate (80  mM) in drinking water for 20 days before 
developing asthma animal model.

To develop asthma animal model, mice were 
intraperitoneally injected with 100 µl 1  mg/ml ovalbumin 
(OVA, Sigma Aldrich, USA) in PBS mixed with alum or PBS 
on day 0 and day 7. Seven days later, the mice were chal-
lenged with aerosolized 1% OVA in PBS for 50  min for 3 
days (day 14, day 15, and day 16). Twenty-four hours later, 
bronchoalveolar lavage was performed; bronchoalveolar 
lavage fluid (BALF), lung tissue, and blood were harvested 
for differential cell count, analysis of percentages of MRC1+ 
cells, measurement of cytokines IL-4, IL-5, IL-13, and IgE 
(ELISA). Lung tissues were also fixed in paraformaldehyde 
4% overnight at 4°C, 5 μm paraffin-embedded sections were 
prepared and stained with periodic acid–Schiff (PAS) and 
hematoxylin (HE) for analysis of mucus production and cel-
lular inflammation.

ELISA
Lungs and 0.6 ml blood were harvested 24 h after the last 
OVA challenge. Concentrations of IL-4, IL-5, and IL-13 per 
gram lung tissue were measured by ELISA kits (Raybiotech, 
USA and Anogen, Canada). The level of each cytokine in the 
supernatant of the lung homogenate was standardized with 
the protein concentration. Serum IgE was also measured by 
ELISA (Biolegend, USA).

Statistical analysis
Statistical analyses were performed using GraphPad Prism. 
All data represent means ± SD. P values were calculated with 
one-way analysis of variance, and between conditions com-
parisons were made by Tukey test. A P value less than 0.05 
was considered as statistical significance.

Results
Acetate, Butyrate and Propionate inhibit M2 
polarization in AMs
To investigate the effect of SCFAs on M2 polarization, al-
veolar macrophages (MH-S) were pretreated with various 
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concentrations of Acetate (8, 16, 32, and 64mM), Butyrate 
(0.5, 1, 1.5, and 2mM), and Propionate (4, 6, 12, and 
16 mM) for 45 min, and then stimulated with IL-4 for 48 h, 
mRNA or protein expressions of M2-associated genes, 
Arg1, MRC1, Fizz1, and Ym1 were evaluated. IL-4 could 
induce M2 polarization as evidenced by increased gene ex-
pressions of Arg1, MRC1, Fizz1, and Ym1, and protein ex-
pressions of Arg1 and p-Stat6, compared with CON group. 
Acetate clearly decreased the protein expression of Arg1 
with concentration increasing, while the p-Stat6 protein ex-
pression was significantly inhibited by 32 mM and 64 mM 
Acetate. Acetate remarkably inhibited the gene expression 
of M2-associated genes (Arg1, MRC1, Fizz1, and Ym1) 
with the presence of IL-4 (Fig. 1A and B). Similarly, MH-S 
pretreated with increasing concentrations of Butyrate (0.5, 
1, 1.5, and 2 mM) showed a significant decline of gene or 
protein expression of Arg1, p-Stat6, MRC1, Fizz1, and 
Ym1 (Fig. 1C and D). Meanwhile, Propionate (4, 6, 12, and 
16 mM) showed an enhanced inhibition of M2-associated 
genes induced by IL-4, as demonstrated by rapidly des-
cent in levels of Arg1, MRC1, Fizz1, and Ym1 gene expres-
sion, Arg1 and p-Stat6 protein expression (Fig. 1E and F). 
Based on these experiments, we determined 16 mM Acetate, 
1.5 mM Butyrate, and 6 mM Propionate in some of the sub-
sequent experiments.

We also detected MRC1 and Arg1 protein expressions by 
flow cytometry and immunofluorescence, respectively. The 
results showed that IL-4-induced increased MRC1 expres-
sion was abrogated by Acetate (Fig. 2A). Moreover, results 
from immunofluorescence labeling for Arg1 performed 
in parallel with previous results, which revealed that the 
expression of Arg1 were significantly reduced in cells 
pretreated with Acetate, Butyrate, or Propionate compared 

to those without pretreatment, namely IL-4 treated only 
(Fig. 2B).

GPR43, but not GPR41 activation may be 
responsible for the inhibitory effects of Acetate, 
Butyrate, and Propionate in AMs
GPR41 and GPR43 activation have been demonstrated to 
be one of the main mechanisms underlying the profound 
functions of SCFAs in regulating immune system. We found 
the mRNA levels of GPR41 and GPR43 were upregulated 
with the treatment of IL-4 compared with CON group, how-
ever, both receptors’ expression levels were abrogated by 
coincubation with Acetate or Butyrate or Propionate (Fig. 
3A).

To further investigate the role of GPR41 and GPR43 in-
volvement in IL-4-induced macrophage polarization, GPR41 
and GPR43 agonists (AR420626 and 4-CMTB) were used. 
MH-S cells were pretreated with AR420626 or 4-CMTB be-
fore stimulation with SCFAs and IL-4 alone or in combin-
ation.

The results showed 4-CMTB (5 µM, 10 µM) decreased the 
protein expressions of Arg1 and p-Stat6, and mRNA levels 
of M2-associated genes, including Arg1, MRC1, FIZZ1, and 
YM1 (Fig. 3B and D). 4-CMTB (5 µM) also significantly 
reduced MRC1 expression, although, a less extent than all 
SCFAs (Fig. 3E and F). To ascertain that 4-CMTB and SCFAs 
act as inhibitors M2 polarization through GPR43 activa-
tion and not through distinct independent mechanisms, we 
treated MH-S with the combination of SCFAs and 4-CMTB 
in presence of IL-4. Interestingly, SCFAs cotreatment with 
4-CMTB is ineffective to affect suppression of MRC1 expres-
sion by SCFAs. Compared with IL-4+Acetate, IL-4+Butyrate 

Fig. 1 Acetate, Butyrate, and Propionate inhibit M2 polarization in AMs. MH-S were pretreated with Acetate, Butyrate, and Propionate 30 min at the 
indicated concentrations before IL-4 (20 ng/ml) exposure for 48 h. (A, C, E). Protein expressions of Arg1 and p-Stat6 were evaluated. Β-tubulin was 
used for normalization. (B, D, F) mRNA expressions of M2-associated genes, Arg1, MRC1, Fizz1, and Ym1 were evaluated. Β-actin was used for 
normalization. Data are shown as means ± SD from three independent experiments. ∗P < 0.05 vs. CON group. #P < 0.05 vs. IL-4 group.



Short-chain fatty acids inhibited M2 macrophages, 2022, Vol. 207, No. 1 57

or IL-4+Propionate group, there were no significant dif-
ferences in MRC1 expressions in IL-4+Acetate+4-CMTB, 
IL-4+Butyrate+4-CMTB, and IL-4+Propionate+4-CMTB 
groups (Fig. 3E and F), respectively, suggesting GPR43 ac-
tivation activity of SCFAs contributed to inhibition of M2 
polarization induced by IL-4.

Then, we aim to figure out the effect of GPR41 activation 
on IL-4-induced M2 polarization. GPR41 agonist AR420626 
(1 µM, 5 µM) did not affect Arg1 and p-Stat6 protein ex-
pressions, the gene expressions of Arg1, MRC1, FIZZ1, and 
YM1 (Fig. 3C and D). Similarly, AR420626 (5 µM) could 
not attenuate IL-4-induced MRC1 expression (Fig. 3E and F). 
To delineate probable involvement of GPR41 activation in 
SCFAs’ inhibitory effect, MH-S were treated with the combin-
ation of SCFAs and AR420626 in presence of IL-4. Compared 

with IL-4+Acetate, IL-4+Butyrate, IL-4+Propionate 
groups, co-incubation with AR420626 (5 µM), there 
were no significant differences in MRC1 expressions in 
IL-4+Acetate+AR420626, IL-4+Butyrate+AR420626 and 
IL-4+Propionate+AR420626 groups (Fig. 3E and F). These 
results indicated suppressive effect of SCFAs on M2 polariza-
tion is independent of GPR41 involvement.

Butyrate, and Propionate inhibit M2 polarization in 
AMs also partly through HDAC inhibition
Another possibility for the mechanism through which SCFAs 
play an important role in regulating immune systems can 
also be related to HDAC inhibition. Trichostatin A (TSA) 
was adopted to ascertain whether TSA and SCFAs could 
inhibit HDAC and induce histone acetylation in alveolar 

Fig. 2 Acetate, Butyrate, and Propionate inhibit MRC1 and Arg1 protein expression in AMs. MH-S were pretreated with Acetate, Butyrate, and 
Propionate 30 min at the indicated concentrations before IL-4 (20 ng/ml) exposure for 48 h. (A) Percentage of MRC1+ cells were determined by flow 
cytometry. (B) Immunofluorescence staining of the expression of Arg1. Data are shown as means ± SD from three independent experiments. ∗P < 0.05 
vs. CON group. #P < 0.05 vs. IL-4 group.
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macrophages. MH-S cells were pretreated with TSA or SCFAs 
before IL-4 stimulation. The results showed an inhibition of 
H3 acetylation level in cells treated with IL-4, while Butyrate 
(1.5 mM), Propionate (3 and 6 mM), and TSA (1, 10, and 
20 nM) significantly induced an increment of H3 acetylation 
levels relative to IL-4-treated cells; Acetate treatment had no 
effect on H3 acetylation level (Fig. 4A).

Then, we tested the role of HDAC suppression in M2 po-
larization. TSA (1 and 10 nM) impaired IL-4-induced M2 po-
larization, as evidenced by decreased protein expression of 
Arg1 and p-Stat6 (Fig. 4B), the mRNA levels of Arg1, MRC1, 
FIZZ1, and YM1 were also inhibited (Fig. 4C). Moreover, TSA 
attenuated MRC1 expression in a concentration-dependent 
manner. We also reported a synergistic effect on the inhibitory 
M2 polarization of Butyrate and Propionate. Compared with 
IL-4+Butyrate or IL-4+Propionate group, there are signifi-
cant reductions of MRC1 expressions in IL-4+Butyrate+TSA 
and IL-4+Propionate+TSA groups (Fig. 4D), suggesting 
that Butyrate and Propionate partly go through the HDAC 
inhibition-mediated pathway.

Butyrate and Propionate, but not Acetate 
ameliorate M2 polarization and allergic airway 
inflammation model.
To figure out the effect of SCFAs in regulating M2 polariza-
tion in OVA asthma model, every SCFA (Acetate, Butyrate, 
and Propionate) was administered in drinking water for 20 
days before OVA sensitization and challenge. In OVA asthma 
model, the mice showed augmented total cells and eosino-
phils in BALF, robust Th2 cytokines levels (IL-4, IL-5, and 
IL-13) in lung, as well as bronchial thickening and inflamma-
tion. Butyrate and Propionate, but not Acetate blunted the 
total cells and eosinophils in BALF, IL-5, and IL-13 levels in 
the lung, and airway inflammation (Fig. 5A–C). We further 
evaluated the percentage of M2 cells and mRNA expressions 
of M2-associated genes in the lung. In flow cytometry ana-
lysis, the gating strategy was performed according to pre-
vious studies [30–33], we demonstrated that the percentage 
of MRC1+ cells in the lung challenged by OVA was higher 
than mice in CON group, while this figure was statistically re-
duced in mice exposed to Butyrate and Propionate treatment 

Fig. 3 GPR43, but not GPR41 activation may be responsible for the inhibitory effects of Acetate, Butyrate, and Propionate in AMs. MH-S were cultured 
with IL-4 (20 ng/ml) in the presence or absence of SCFAs (Acetate, Butyrate, and Propionate), GPR41 agonist (AR420626), and GPR43 agonists 
(4-CMTB) alone or in combination, at the indicated concentrations. (A) mRNA expressions of GPR43 and GPR41were evaluated. Β-actin was used 
for normalization. (B, C). Protein expressions of Arg1 and p-Stat6 were evaluated. Β-tubulin was used for normalization. (D) mRNA expressions of 
M2-associated genes, Arg1, MRC1, Fizz1, and Ym1 were evaluated. Β-actin was used for normalization. (E, F). Percentage of MRC1+ cells were 
determined by flow cytometry. Data are shown as means ± SD from three independent experiments. ∗P < 0.05.
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in advance (Fig. 5D). Butyrate and propionate also sup-
pressed mRNA expressions of Arg1, MRC1, and YM1 in the 
lung compared with OVA exposed mice (Fig. 5E). However, 
neither the percentage of MRC1+ cells nor mRNA expres-
sions of M2-associated genes could be attenuated by Acetate 
(Fig. 5D and E). Our in vivo results indicated Butyrate and 
Propionate, but not Acetate relieved M2 polarization and al-
lergic airway inflammation model.

Acetate, Butyrate, and Propionate inhibit M2 
polarization in human macrophages
To evaluate the effects of SCFAs on human macrophages, 
THP-1 and monocyte-derived macrophages from asthma pa-
tients were adopted, basic clinical information of asthma pa-
tients were given in Table 1. THP-1 and monocyte-derived 
macrophages were stimulated with PMA for 24  h to in-
duce macrophages, then the cells were preincubated with 
Acetate, Butyrate, and Propionate at indicated concentrations 

followed by human IL-4 (20 ng/ml) exposure for another 24 h. 
Previous study indicated that human monocytes derived- and 
murine macrophages showed different response to IL-4 and 
IL-13, hence, M2-associated genes in mice (Arg1, Ym1, etc.) 
is not applicable for human, moreover, MRC1, C-type lectin 
domain family 10 member A (Clec10a), Monocyte chemo-
attractant protein-1 (MCP-1/CCL2), CCL17, and CCL22 
may be used as indicators of M2 in human macrophages 
[10, 34](p1), [35–40]. As shown in Fig. 6, mRNA expressions 
of MRC1, Clec10a, CCL2, CCL17, and CCL22 were sig-
nificantly higher than that of the untreated group, whereas 
these Acetate, Butyrate, and Propionate markedly reduced ex-
pressions of those genes (Fig. 6A). Simultaneously, we also 
found that Acetate, Butyrate, and Propionate significantly 
down-regulated mRNA expressions of MRC1 and CCL22 in-
duced by IL-4 in monocyte-derived macrophages. Acetate and 
Butyrate also hindered Clec10a mRNA expression, however, 
Propionate caused an inhibitory action without statistical 

Fig. 4 Butyrate, and Propionate inhibit M2 polarization partly through HDAC inhibition in AMs. MH-S were cultured with IL-4 (20 ng/ml) in the 
presence or absence of SCFAs (Acetate, Butyrate, and Propionate), HDAC inhibitor (TSA) alone or in combination at the indicated concentrations. (A) 
Representative western blot image and relative expression of H3 acetylation level after 8 h of treatment. Data were normalized against GAPDH. (B) 
Protein expressions of Arg1 and p-Stat6 were evaluated. Β-tubulin was used for normalization. (C) mRNA expressions of M2-associated genes, Arg1, 
MRC1, Fizz1, and Ym1 were evaluated. Β-actin was used for normalization. (D) Percentage of MRC1+ cells were determined by flow cytometry. Data 
are shown as means ± SD from three independent experiments. ∗P < 0.05 vs. CON group. #P < 0.05 vs. IL-4 group. †P < 0.05 IL-4+Butyrate/Propionate 
vs. IL-4+Butyrate/Propionate +TSA.
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significance (Fig. 6B). Acetate, Butyrate, and Propionate has 
no effect on mRNA expressions of CCL2 and CCL17 in 
monocyte-derived macrophages treated with IL-4 (data not 
shown). Combined, these results may also suggest SCFAs as 
an impediment of M2 polarization in human macrophages.

Discussion
Recent work has brought to the forefront the pivotal role of 
gut microbial metabolites, SCFAs, in abrogating the cardinal 
features of asthma, such as ameliorate airway inflammation 
and AHR. However, the role of SCFAs in the regulation of al-
ternatively activated alveolar macrophages (M2) has yet to be 

elucidated. We showed that SCFAs downregulated M2 polar-
ization of human-derived and murine alveolar macrophages 
in vitro and they possibly act through activating GPR43, 
but not GPR41. Butyrate and Propionate, but not Acetate, 
increased H3 acetylation, and they exhibited the inhibitory 
effect on M2 polarization partly through HDAC inhibition. 
Furthermore, in vivo findings showed systemic application of 
Butyrate and Propionate decreased allergic airway inflamma-
tion in OVA-challenged mice, as well as the M2 polarization 
of alveolar macrophages.

Asthma is one of the most common chronic airway dis-
eases mostly driven by dysfunction of Th2 immune response. 
Macrophages were once called ‘forgotten cell in asthma’ and 

Fig. 5 Butyrate and Propionate, but not Acetate ameliorate M2 polarization and allergic airway inflammation model. Mice were treated with Acetate, 
Butyrate, and Propionate in drinking water for 20 days before developing OVA-induced animal model. (A) Number of total cells and eosinophils in BALF. 
(B) IL-4, IL-5, and IL-13 levels in lung homogenates of mice. (C) Representative images of HE- and PAS-stained histologic sections of the lungs. Scale 
bars = 100μm. (D) Upper: gating strategy. Lower: Percentage of M2 population (MRC1+ cells) in the lung gated from viable CD45+F4/80+CD11c+ cells. 
(E) RT-qPCR was performed to evaluate mRNA levels of Arg1, MRC1, Fizz1, and Ym1 in the lung. Β-actin was used for normalization. Data are shown as 
means ± SD from three independent experiments. ∗P < 0.05.
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now catch more and more attention given the plasticity of 
macrophages [41]. Alternative activation of macrophage 
(M2) can promote production of Th2 cytokines, accumula-
tion of inflammatory cells, mucus secretion and AHR. It has 
been addressed that adoptive transfer of M2 enhanced airway 
inflammation and airway remodeling in Aspergillus fumigatus 
induced asthma animal model, reciprocally, inhibition of M2 
subtype exert a protective effect against the development of 
airway inflammation and AHR, key players in the pathogen-
esis of allergic asthma [6].

The beneficial effects of SCFAs in modulating inflam-
matory bowel disease, liver injury, tumor growth, appetite 
can be attributed to regulation of innate and adaptive im-
mune systems. Previous study provided insights into the de-
velopment of IL-17 or IFN-γ producing T cells and IL-10+ 
producing Treg cells induced by SCFAs depending on cyto-
kine milieu and immunological context [42]. Butyrate pro-
moted the differentiation of colonic regulatory T cells partly 

Table 1. Demographic and clinical characteristics of study subjects

Variables Asthma patients (n = 8) 

Age, years, mean ± SD 49.12 ± 16.63
Male, no. (%) 3 (37.5)
BMI, kg/m2, mean ± SD 21.92 ± 1.87
Rhinosinusitis, no. (%) 5 (62.5)
ICS dosea, μg.day-1, mean ± SD 407.5 ± 239.56
FEV1 (% predicted), mean ± SD 87.81 ± 15.39
FEV1/FVC (%), mean ± SD 73.66 ± 10.93
ACQ7 score, mean ± SD 0.625 ± 0.42
Percentage of eosinophils, mean ± SD 3.18 ± 1.57
Blood IgE (IU/ml) 166.56 ± 114.80
Duration of asthma, years, mean ± SD 9.82 ± 19.57
Atopic, no. (%) 4 (50)

aICS dose was expressed as beclomethasone propionate equivalent dose.

Fig. 6 Acetate, Butyrate, and Propionate inhibit M2 polarization in human macrophages. THP-1-derived macrophages were pretreated with Acetate 
(8, 16, and 32 mM), Butyrate (0.5, 1, and 1.5 mM), and Propionate (4, 6, 12 mM) for 30 min before IL-4 (20 ng/ml) treatment for 24 h. RT-qPCR was 
performed to evaluate mRNA levels of MRC1, Clec10a, CCL2, CCL17, CCL22 in THP-1. Data are shown as means ± SD from three independent 
experiments. (B) Monocyte-derived macrophages from eight asthma patients were pretreated with 16 mM Acetate, 1.5 mM Butyrate, and 6 mM 
Propionate for 30 min before IL-4 (20 ng/ml) treatment for 24 h. RT-qPCR was performed to evaluate mRNA levels of MRC1, Clec10a, and CCL22 in 
monocyte-derived macrophages P. ∗ < 0.05, vs. CON. #P < 0.05, vs. IL-4 group. β-actin was used for normalization.
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through enhancing histone H3 acetylation in the promoter 
and conserved non-coding sequence (CNS) regions of the 
forkhead box P3 (Foxp3) locus [43]. In asthma patients, 
SCFAs have a direct effect on human eosinophils in terms of 
adhesion to endothelial cells, trafficking and survival [44]. 
Recent evidence also suggested that both intranasal adminis-
tration of Butyrate and circulating Butyrate inhibited IL-13 
and IL-5 production by murine ILC2s and ameliorated both 
A. alternata-induced AHR and airway inflammation [28]. 
Propionate treatment impaired the ability of seeding DCs to 
promote Th2 cell effector function in the lung [27]. However, 
conflicting data were obtained about role of SCFAs in macro-
phage polarization. Jiang et al. found that Butyrate ameli-
orated cardiac function and ventricular arrhythmia (VA) 
following myocardial infarction partly through facilitating 
M2 macrophage polarization to inhibit inflammatory re-
sponses and sympathetic neural remodeling [45]. In alco-
holic liver disease (ALD) animal model, increased propionic 
acid and butyric acid after insulin treatment were negatively 
correlated with M1 and positively correlated with M2 [46]. 
In addition, the therapeutic function of microbial metabolite 
Butyrate in colitis was reported by facilitating M2 polariza-
tion to suppress inflammation [47]. However, in the present 
study, SCFAs, including Acetate, Butyrate, and Propionate, 
exhibited profound role in suppressing M2 polarization in 
murine alveolar macrophages, likewise, IL-4 induced alter-
natively activated human macrophages were also attenu-
ated by SCFAs, moreover, Butyrate and Propionate reduced 
M2 polarization in the lung in OVA-induced asthma animal 
models. The inconsistency between previous studies and our 
research may be explained by different cell types and varied 
main driver in different diseases. For instance, classical (M1) 
Kupffer cell polarization is a key driver initiating liver injury 
in ALD, polarized M2 with proapoptotic and anti-inflamma-
tory function could counterbalance M1-driven tissue injury 
[48]. However, increased M2 polarization in Th2 environ-
ment in asthma patients and animal models suggested M2 
as a motivator in allergic airway inflammation. Despite the 
discrepancy about the function of SCFAs on macrophage po-
larization, these results invited the speculation that SCFAs 
mostly regulate the immune system to decrease inflamma-
tion and tissue injury through modulating the main triggers 
of different diseases, it is also worthy of future research to 
elucidate.

SCFAs act through binding to endogenous receptors GPR41 
and GPR43, which have been reported to be expressed in 
the gut epithelium [49, 50], adipose tissues [51](p43),[52], im-
mune cells [53], and nervous system [54, 55]. For instance, 
Maslowski et al. reported that Acetate-induced suppression 
of colonic inflammation was reversed in GPR43-/- animals 
compared with wild-type animals, as demonstrated by higher 
neutrophil infiltration following dextran sulfate sodium (DSS) 
treatment [56]. Recently, it has been found that high levels 
of Butyrate and Propionate in early life are associated with 
protection against atopy [57]. Some studies implied the pro-
tective effect of SCFAs in allergic inflammation in the lung, 
high-fiber diet with increasing SCFAs levels shaped the im-
munological environment in the lung and elicited the severity 
of lung inflammation [27]. Zaiss et al. [58] showed the direct 
link between intestinal helminth-induced increases in SCFAs 
and the ability to attenuate allergic airway inflammation, and 
this was dependent on GPR41. In line with that, the essential 
role of GPR41 in asthma was supported by Trompette et al. 

who demonstrated that Propionate lightened HDM-induced 
allergic airway inflammation in wild type and GPR43-/- mice, 
but not GPR41-/- mice [27]. We noted that these results were 
based on the whole animal level. GPR41 and GPR43 mRNA 
can be expressed by peripheral blood mononuclear cells, 
blood vessel endothelial cells, ILC2, eosinophils and neutro-
phils, dendritic cells, and macrophages [28, 56, 59–61]. Some 
studies indicated neither GPR41 nor GPR43 were involved 
in SCFAs-induced inhibitory effect on eosinophils migra-
tion and adhesion, IL-13- and IL-5-producing ILC2. In our 
hand, we demonstrated GPR43, but not GPR41 was acti-
vated by SCFAs, and the inhibitory role was possibly GPR43-
dependent.

It is also known HDAC inhibition serves as the mechanism 
underlying immune-regulatory roles of SCFAs, of which 
Butyrate and Propionate are said to be solid HDAC inhibitor, 
while Acetate is a weak HDAC inhibitor or lack of this po-
tency [62, 63]. Histone acetylation has been proposed to 
enzymatic activity of histone deacetylase and promote gene 
transcription possibly by unwinding DNA and increasing 
the access for binding of transcription factors [64]. Butyrate 
and Propionate inhibited HDAC activity to boost histone 
H3 acetylation at enhancer elements and promoter region of 
the Foxp3 gene locus, which subsequently augmented Foxp3 
expression and remarkably potentiated peripheral Treg cells 
generation [43, 63]. Thio et al. demonstrated that Butyrate 
prohibited production of IL-13 and IL-5 from ILC2s and 
alleviated ILC2-induced airway inflammation, moreover, it 
functioned through downregulating HDAC activity. This is 
also delineated by in vitro and in vivo findings of Theiler 
et al. in the same manner. They highlighted Butyrate as a 
potential therapy in allergic inflammatory diseases through 
attenuating eosinophils function depending on inhibition of 
HDAC [44]. In the present study, Butyrate and Propionate, 
but not Acetate, reversed the decreased H3 acetylation in-
duced by IL-4. However, the inhibitory activity is not existed 
in Acetate, this is in accordance with its ineffective role in 
dendritic cells and ILC2 cells [28](p2),[63]. TSA also exhib-
ited a mock role of Butyrate and Propionate in abating M2 
polarization, this is contrast to previous study which demon-
strated Trichostatin A (TSA), a histone deacetylase (HDAC) 
inhibitor promoted peritoneal macrophage M2 phenotype 
to counteract excessive inflammation in a cecal ligation and 
puncture–induced sepsis mouse model [65]. The reason of 
this inconsistency may likely lie in the fact that the targets 
involved in the therapeutic effect of SCFAs were the main 
drivers which varied according to different pathological pro-
cesses.

Conclusion
We demonstrated that Acetate, Butyrate, and Propionate 
inhibited M2 polarization in human-derived macrophages 
and murine alveolar macrophages. Butyrate and Propionate 
inhibited M2 polarization in asthma animal model and at-
tenuated allergic airway inflammation. Mechanistically, we 
proved that Acetate, Butyrate, and Propionate acted partly 
through GPR43 activation and/or HDAC inhibition in MH-S.
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