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Abstract 

Background:  During the second wave of the COVID-19 pandemic, an unusual increase in cases of mucormycosis 
was observed in India, owing to immunological dysregulation caused by the SARS-CoV-2 and the use of broad-spec-
trum antibiotics, particularly in patients with poorly controlled diabetes with ketoacidosis to have contributed to the 
rise, and it has been declared an epidemic in several states of India. Because of the black colouring of dead and dying 
tissue caused by the fungus, it was dubbed "black fungus" by several Indian media outlets. In this study, attempts 
were taken to unmask novel therapeutic options to treat mucormycosis disease. Rhizopus species is the primary fungi 
responsible for 70% of mucormycosis cases.

Results:  We chose three important proteins from the Rhizopus delemar such as CotH3, Lanosterol 14 alpha-demeth-
ylase and Mucoricin which plays a crucial role in the virulence of Mucorales. Initially, we explored the physiochemical, 
structural and functional insights of proteins and later using AutoDock Vina, we applied computational protein–ligand 
binding modelling to perform a virtual screening around 300 selected compounds against these three proteins, 
including FDA-approved drugs, FDA-unapproved drugs, investigational-only drugs and natural bioactive com-
pounds. ADME parameters, toxicity risk and biological activity of those compounds were approximated via in silico 
methods. Our computational studies identified six ligands as potential inhibitors against Rhizopus delemar, including 
12,28-Oxamanzamine A, vialinin B and deoxytopsentin for CotH3; pramiconazole and saperconazole for Lanosterol 
14 alpha-demethylase; and Hesperidin for Mucoricin. Interestingly, 12,28-Oxamanzamine A showed a maximum 
binding affinity with all three proteins (CotH3: − 10.2 kcal/mol Lanosterol 14 alpha-demethylase: − 10.9 kcal/mol 
Mucoricin: − 8.6 kcal/mol).

Conclusions:  In summary, our investigation identified 12,28-Oxamanzamine A, vialinin B, deoxytopsentin, pramicon-
azole, saperconazole and hesperidin as potent bioactive compounds for treating mucormycosis that may be consid-
ered for further optimisation techniques and in vitro and in vivo studies.
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Background
Mucormycosis, a particularly vicious disease currently 
gaining popularity due to the rising number of cases, is 
a disease whose ferocity which humanity has not fully 
understood (Nicolás et  al. 2020). Mucorales is one of 
the most densely studied orders of fungi, and the fungal 
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infections or mycoses caused by this order are referred 
to as mucormycosis. Many in this order were classified 
as harmless. Still, later after they caused certain inva-
sive diseases, humans were able to conclude that this 
is a perilous group of species and that the taxonomy of 
this fungi is so mixed up that many cannot comprehend. 
Phycomycosis, zygomycosis, entomophthoramycosis 
were used interchangeably to describe mucormycosis, 
regarding which species were studied at that particular 
period (Sugar 1992; Reid et  al. 2020; Lehrer et  al. 1980; 
Ibrahim et  al. 2012). Mucorales have always been noto-
rious amongst other fungal orders, and identification 
of the causal organism is crucial in constructing a cure 
for the disease caused by it (Balajee et al. 2009; Walther 
et al. 2020). This complexity has invariably caused a back-
log in synthesising a particular drug that can cure the 
disease. But a cure isn’t child’s play, rather an arduous 
task. Rhizopus species are the most common fungi in the 
order of Mucorales responsible for over 70% of mucor-
mycosis cases (Gebremariam et al. 2014). The occurrence 
of mucormycosis has been about 0.005–1.7 per million 
population. Still, in countries like India, the prevalence 
is as high as 0.14 per 1000 people, about 80 times higher 
than the world incidence rate (Singh et al. 2021). Mucor-
mycosis can occur as three variants: rhinocerebral (sinus 
and brain) mucormycosis, pulmonary (lung) mucormy-
cosis, gastrointestinal or cutaneous (skin) mucormycosis 
(Additional file 1: Table S1).

Mucormycosis has specific comorbidities, making it 
even riskier to contract the disease, leading to a higher 
mortality rate. These factors are neutropenia, excessive 
iron, protein-calorie malnutrition (PCM) and diabetic 
ketoacidosis. SARS-Cov-2, in addition to mucormy-
cosis, is a fatal combination that has caused a consid-
erable number of deaths, particularly in India (Singh 
et al. 2021; Agrawal et al. 2020; Hong et al. 2013; Afroze 
et  al. 2017; Gangadharan et  al. 2017; Kubin et  al. 2019; 

Chander et  al. 2018). Doctors discovered that this fun-
gus only infects people with highly impaired immune 
systems, such as COVID-19 patients with diabetes or 
high uncontrolled blood sugar levels following recovery 
(Garg et al. 2021). It was observed that the possible rea-
son for this infection is the indiscriminate use of steroids 
for the treatment of COVID-19 patients. It was cited that 
when the body’s system fights against a virus, the use of 
steroids in COVID-19 patients reduced inflammation 
within the lungs. Still, uncontrolled use of steroids doses 
also reduced immunity and elevated blood sugar levels 
because of less physical activity in diabetic and non-dia-
betic people, thus increasing the chance of infecting with 
mucormycosis (BBC News 2021).

Currently, few drugs like amphotericin B, posacona-
zole and rarely isavuconazole or triazole are suggested for 
treatment (Naqvi et al. 2020). However, there is no spe-
cific therapeutics that is available for mucormycosis and 
thus, further exploration into existing drugs (drug repur-
posing), as well as natural compounds against mucor-
mycosis, is required. Even in today’s scientific world, 
creating a new drug is an intricate process requiring a 
vast number of resources and workforce, and so, the use 
of in silico techniques has become an important aspect of 
the drug development process. This is mostly due to their 
ability to influence the entire drug development process, 
finding and discovering new prospective medications 
while reducing cost and time (Brogi et al. 2020).

This study attempts structure-based computational 
screening of the bioactive compounds against potential 
protein targets of Rhizopus delemar (Table 1). we worked 
on three proteins that were found to be very important 
when it comes to the virulence of mucormycosis disease. 
These three proteins are discussed below:

1.	 CotH3: CotH3 proteins were widely present in Muc-
orales and absent in non-invasive pathogens. This 

Table 1  Predicted gene ontology (GO) terms by CI-TASSER

Proteins Molecular function (MF) Biological process (BP) Cellular component (CC)

CotH3 Phosphatidylinositol kinase activity 
(GO:0,052,742)
Purine ribonucleoside triphosphate binding 
(GO:0,035,639)
Hydrolase activity, hydrolysing O-glycosyl 
compounds (GO:0,004,553)

Single-organism process (GO:0,044,699)
Asexual sporulation (GO:0,030,436)

Cell part (GO:0,044,464)

Lanosterol 14 
alpha-demeth-
ylase

Oxidoreductase activity (GO:0,016,491)
Monooxygenase activity (GO:0,004,497)
Heme binding (GO:0,020,037)
Sterol 14-demethylase activity (GO:0,008,398)
Iron ion binding (GO:0,005,506)

Single-organism metabolic process (GO:0,044,710)
Biosynthetic process (GO:0,009,058)
Lipid metabolic process (GO:0,006,629)
Oxidation–reduction process (GO:0,055,114)

Membrane (GO:0,016,020)

Mucoricin Catalytic activity (GO:0,003,824)
Carbohydrate binding (GO:0,030,246)

Carbohydrate metabolic process (GO:0,005,975)
Cellular process (GO:0,009,987)

Cell part (GO:0,044,464)
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spore coat protein homolog (CotH3) acts as a fun-
gal ligand for host cell GRP78 and mediates patho-
genic host-cell interactions. The presence of CotH3 
in Mucorales also explained why DKA patients with 
high GRP78 levels are more susceptible to mucormy-
cosis (Gebremariam et al. 2014).

2.	 Lanosterol 14 alpha-demethylase: It plays a vital role 
in the biosynthesis of sterol in fungi and is an essen-
tial enzyme in the fungal life cycle (Sheng et al. 2009).

3.	 Mucoricin: It is a ricin-like toxin important in the 
pathogenesis of mucormycosis. Also, it is a Ribo-
some-inactivating protein that promotes vascular 
permeability and induces both necrosis and apopto-
sis of host cells (Soliman et al. 2021).

These crucial proteins (CotH3, Lanosterol 14 alpha-
demethylase and Mucoricin) require a thorough exami-
nation of their structure and function, which will bring 
unique insights into the development of an effective, 
low-cost medicine with minimal side effects. Therefore, 
the current study aims to collect 300 compounds [FDA 
approved, FDA unapproved, investigational-only, natural 
compounds] that exhibit antiviral, antifungal, antibacte-
rial and antimicrobial properties have been identified 
through different literature reviews, and it was screened 
against CotH3, Lanosterol 14 alpha-demethylase and 
Mucoricin by applying several in silico tools, viz., protein 
modelling, binding pocket prediction, molecular dock-
ing, ADME and drug-likeness screening, bioactivity pre-
diction and toxicity prediction (Fig. 1).

Methods
Proteins sequence retrieval
Proteins used in this study are the ones that are majorly 
involved in mucormycosis. The NCBI protein database 
(Home - Protein - NCBI (n.d.). 2021) was searched for 
the sequence retrieval of the Rhizopus delemar spore 
coat protein homologs CotH3 (ACCESSION: EIE87171 
region: CotH), cytochrome P450 enzyme Lanosterol 14 
alpha-demethylase (ACCESSION: EIE87079) and ricin-
like toxin Mucoricin (ACCESSION: EIE81863) (Ma et al. 
2009).

Analysis of physicochemical properties and subcellular 
localisation
Various physicochemical properties of the CotH3, Lanos-
terol 14 alpha-demethylase and Mucoricin were cal-
culated using ExPasy’s ProtParam tool (Gasteiger et  al. 
2005). Molecular weight, theoretical pI, grand average 
of hydropathy (GRAVY), half-life, aliphatic index (AI), 
instability index and amino acid composition were cal-
culated. For understanding protein function, it is essen-
tial to find out the subcellular localisation of proteins. 

CELLO2GO server was used for this purpose (Yu et  al. 
2014).

Secondary structure prediction
The secondary structure features of the protein such as 
α helix, 310 helix, Pi helix, Beta Bridge, Extended strand, 
Bend region, Beta turns, Random coil, Ambiguous states 
and other states were determined using a self-optimised 
prediction method (SOPMA) (NPS@ 2021).

Tertiary structure prediction
All three proteins (i.e. CotH3, Lanosterol 14 alpha-dem-
ethylase, Mucoricin) were subjected to 3D modelling. 
CotH3 was modelled via SWISS-MODEL (Waterhouse 
et  al. 2018), and Lanosterol 14 alpha-demethylase and 
Mucoricin were modelled via C-I-TASSER (Contact-
Guided Protein Structure Prediction) (Zheng et al. 2021). 
The SWISS-MODEL web server automatically calcu-
lates the QMEAN scoring function to estimate the local 
and the global model quality based on the geometry, 
the interactions and the solvent potential of the protein 
model. It also provides the z-score ranging from 0 to 1, 
compared with the expected value for any structure. 
C-I-TASSER uses highly accurate deep learning-based 
predicted contacts to guide its replica-exchange Monte 
Carlo (REMC) simulations to generate models.

Active site prediction and mobility analysis
The Computed Atlas of Surface Topography of proteins 
(CASTp) 3.0 was used to predict probable binding pock-
ets of the proteins (Tian et al. 2018). CASTp is an online 
server used to identify and determine the binding sites, 
surface structural pockets, area, shape and volume of 
every pocket and internal cavities of proteins. It could 
also be used to assess the number, boundary of mouth 
openings of every pocket, molecular reachable surface 
and area. The modelled 3D protein was submitted on the 
server, and the necessary amino acids for binding interac-
tions were predicted. iMODs server (López-Blanco et al. 
2014) was used to predict the extent and direction of the 
inherent motions of studied proteins. It represents the 
collective motion of proteins by evaluating the normal 
modes (NMA) in internal coordinates predicting proper-
ties such as deformability, mobility profiles, eigenvalues, 
variance and covariance map.

Protein preparation and ligand preparation
The target proteins were prepared before starting the 
docking processes. It was done with the help of Auto-
DockTools (ADT), part of MGLTools (Morris et al. 2009). 
Proteins were prepared by correcting bonds, removing 
unrelated chemical complexes, eliminating water mol-
ecules and HETATM groups, adding hydrogen bonds, 
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filling the missing side-chain atoms, adding the necessary 
charges and atom types, and saving in PDBQT format in 
preparation for molecular docking.

As already mentioned, about 300 compounds [FDA 
approved, FDA unapproved, investigational-only, nat-
ural compounds] that exhibit antiviral, antifungal, 

antibacterial and antimicrobial properties have been 
identified through different literature reviews (Par-
saeimehr and Lutzu 2016; Vila et  al. 2013; Vengurle-
kar et al. 2012). The compounds were selected based on 
experimental evidence of different enzymatic and assays. 
The SDF structures of those compounds were retrieved 

Fig. 1  Flowchart depicting the workflow of our structure-based virtual screening
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from the DrugBank (Wishart et al. 2008) and PubChem 
database (Kim et  al. 2016). The compounds were con-
verted to PDB chemical format using the Open Babel 
program (O’Boyle et al. 2011). Open Babel is a software 
mainly used to interconvert chemical file formats. Fur-
ther, compounds were prepared and converted to the 
dockable PDBQT format using Autodock tools.

Molecular docking
Molecular docking is a helpful tool for performing virtual 
screening on various compounds and inferring how the 
ligands bind to their targets. Docking of the ligands to the 
targeted proteins and determination of binding affinities 
were carried out using AutodockVina (Trott and Olson 
2010). In this study, proteins were kept rigid, and ligands 
were kept flexible. Intermediary steps, such as PDBQT 
files for proteins and ligands preparation and grid box 
creation, were completed using AutoDock Tools. The box 
type and grid box parameters are given in Table 2.

Visualisation and molecular interactions
The molecular interactions between the proteins and 
ligands with the least energy were viewed with Discov-
ery Studio Visualizer, BIOVIA, 2021(Biovia 2021) and 
PyMOL software (Schrödinger 2021).

ADME analysis and toxicity prediction
The drug-likeness properties of the final lead compounds 
were calculated by using SwissADME (Daina et al. 2017). 
Absorption, distribution, metabolism, excretion (ADME) 
properties were used to eliminate inappropriate com-
pounds. The predicted result from SwissADME consists 
of physiochemical properties, lipophilicity, water-solubil-
ity, pharmacokinetics, drug-likeness and bioavailability 
Score.

We also performed toxicity prediction of those final 
compounds to check and verify minor toxic drugs for 
human use. The analyses were performed using ProTox-
II (Banerjee et al. 2018) and STopTox (Borba et al. 2020). 
ProTox is a useful tool to identify any undesirable toxic 
properties of our molecules. The prediction was based on 
functional group similarity for the query molecules with 
the in vitro and in vivo contained in the database. Stop-
Tox is used to assess the potential of chemicals to cause 

acute toxicity, and it is done by implementing QSAR 
models. Toxic properties such as LD50 values in mg/kg, 
toxicity class, acute inhalation toxicity, acute oral toxic-
ity, acute dermal toxicity, eye irritation and corrosion, 
skin sensitisation, skin irritation and corrosion were 
determined.

Bioactivity prediction
The PASS (prediction of activity spectra for substances) 
program (Lagunin et al. 2000) is an online server to eval-
uate the overall biological potential of a compound based 
on its structure–activity relationship. It predicts the 
appropriate pharmacological effects by comparing the 
desired structure with a training set that includes more 
than 205,000 compounds, revealing more than 7200 bio-
logical activities. The results of PASS prediction were 
summarised as a list of probable biological activities, 
with a probability of being active (Pa) and a probability of 
being inactive (Pi). Also, the pharmacokinetic properties 
and bioactivity scores were calculated by the Molinspira-
tion tool (Molinspiration Cheminformatics 2021). Bioac-
tivity scores of the compounds were predicted for drug 
targets, including enzymes, nuclear receptors, kinase 
inhibitors, G-protein coupled receptor ligands and ion 
channel modulators.

Results
Analysis of physicochemical properties and subcellular 
localisation
The physicochemical characteristics and subcellular loca-
tion of our target proteins are presented in Table 3. The 
molecular weight of the proteins ranges from 17.1 to 
57.8 kDa. The isoelectric points were predicted between 
4.22 and 6.65, suggesting that the proteins are acidic. 
The aliphatic index is in the range of 70.04–88.9, indicat-
ing that these proteins are thermally stable and contain a 
high amount of hydrophobic amino acids. The negative 
GRAVY values suggesting that these proteins will have 
a good interaction with water. The localisation of the 
CotH3, Lanosterol 14 alpha-demethylase and Mucoricin 
were predicted as extracellular, plasma membrane and 
cytoplasmic, respectively.

Secondary structure prediction
Results showed that CotH3 had 40.31% (104 residues) 
alpha helix, 13.95% (36 residues) extended strand, 2.71% 
(7 residues) beta turn and 43.02% (111 residues) random 
coil, while Lanosterol 14 alpha-demethylase showed to 
have 49.80% (254 residues) alpha helix, 10.78% (55 resi-
dues) extended strand, 3.14% (16 residues) beta turn and 
36.27% (185 residues) random coil. Similarly, Mucoricin 
exhibited 5.44% (8 residues) alpha helix, 40.14% (59 

Table 2  AutoDock mediated docking parameters like box type 
and grid box information for our target proteins

Proteins Box type X Y Z

CotH3 Cube 27.51 47.54 31.08

Lanosterol 14 alpha-
demethylase

Cube 83.377 79.808 80.265

Mucoricin Cube 62.464 58.547 57.827
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residues) extended strand, 14.97% (22 residues) beta 
turns and 39.46% (58 residues) random coil.

Protein modelling and structure assessment
The protein modelling for the CotH3 protein was per-
formed using the SWISS-MODEL web server (Water-
house et  al. 2018) (Fig.  2). Crystal structure of Bacillus 
cereus CotH kinase (PDB ID: 5JD9) (Nguyen et al. 2016) 
was the template lead obtained with 91% sequence cov-
erage with Global Model Quality Estimation (GMQE) 
value 0.59. The GMQE values are usually between 0 
and 1, and higher the number, higher the reliability of 
the predicted structure. This was used as a template to 
build a three-dimensional model of the CotH3 protein 
of Rhizopus delemar. The protein structure of Lanosterol 
14 alpha-demethylase and Mucoricin were predicted by 
CI-TASSER (Fig.  2). For each protein, five models were 
generated, and the model with the highest C-score was 
selected as the best one and used for further analysis. 
The drug design process requires the target protein’s 
three-dimensional structure’s correctness, quality and 
reliability. That can be determined by using the ZLab 
server (Anderson et al. 2005) to develop a Ramachandran 
plot, which displays allowed, and the disallowed regions 
regarding backbone dihedrals of protein residues (Fig. 3). 

The essential condition of being a good quality model is 
having more than 85–90% of residues in allowed regions.

Active site prediction and mobility analysis
CASTp server (Tian et al. 2018) revealed 57, 207 and 17 
active sites for CotH3, Lanosterol 14 alpha-demethylase 
and Mucoricin, respectively. The best pockets showed 
an area and volume of 191.888 (SA) and 70.401 (SA) for 
CotH3; 1007.880 (SA) and 653.358 (SA) for Lanosterol 
14-alpha demethylase; 38.816 (SA) and 9.453 (SA) for 
Mucoricin protein (Fig. 4).

The deformability, eigenvalue and elastic network of 
the modelled structures were used to determine their 
stability. The main chain deformability of the Rhizo-
pus delemar proteins are a measure of the capability of 
a given molecule to deform at each of its residues. The 
chain ’hinges’ location can be derived from high deform-
ability regions (Fig. 5). The higher eigenvalues of CotH3 
(2.847563e−04), Lanosterol 14 alpha-demethylase 
(1.392349e−05) and Mucoricin (1.942981e−03) are rep-
resentatives of higher energy which is required to deform 
the protein structures (Fig.  5). As shown in Fig.  5, the 
elastic network models defined the pairs of atoms con-
nected by springs, where dots are coloured according to 
the degree of stiffness.

Table 3  Physicochemical property and subcellular location analysis of target proteins

Proteins Physiochemical parameters Localisation

Formula Number of 
amino acids

Molecular 
weight (g/mol)

Theoretical pI Aliphatic index GRAVY

CotH3 C1333H1953N337O403S9 258 29,435.73 4.35 70.04 − 0.409 Extracellular

Lanosterol 14 
alpha-demeth-
ylase

C2611H4043N681O737S21 510 57,439.2 6.65 88.9 − 0.109 Plasma membrane

Mucoricin C760H1149N199O242S6 147 17,138.03 4.22 79.59 − 0.547 Cytoplasmic

Fig. 2  Cartoon representation of structures of modelled Rhizopus delemar proteins CotH3 (a), Lanosterol 14 alpha-demethylase (b) and Mucoricin 
(c)
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Binding interactions of ligands With Rhizopus delemar 
CotH3
The binding energies of the selected ligands with the 
modelled CotH3 were studied. The docking results 
are given regarding the binding affinity, bond cat-
egories, bond length and interacting amino acid resi-
dues present at the protein’s binding pocket (Table  4). 
The top 10 ligands are mentioned in Table  4, namely, 

12,28-Oxamanzamine A, Parsiguine, Haliclonacy-
clamine B, Vialinin B, 6-Deoxymanzamine X, Nata-
mycin, Olorofim, Deoxytopsentin, Manzamine E 
and Fascioquinol A with binding affinities ranging 
from −8.2 to −10.2  kcal/mol. Of the top 10 lead com-
pounds, 12,28-Oxamanzamine A displayed the best 
binding affinity (−10.2  kcal/mol) with the Rhizopus 
delemar CotH3. The detailed interaction analysis data 

Fig. 3  Ramachandran plot of CotH3 protein structure showing the percentage of residues in the highly Preferred observations shown as GREEN 
Crosses: 217 (95.595%), preferred observations shown as BROWN Triangles: 10 (4.405%) and questionable observations shown as RED Circles: 
0 (0.000%) (a). Ramachandran plot of Lanosterol 14 alpha-demethylase protein structure showing the percentage of residues in the highly 
preferred observations shown as GREEN Crosses: 418 (93.933%), preferred observations shown as BROWN triangles: 21 (4.719%) and questionable 
observations shown as RED circles: 6 (1.348%) (b). Ramachandran plot of Mucoricin protein structure showing the percentage of residues in 
the highly preferred observations shown as GREEN crosses: 113 (85.606%), preferred observations shown as BROWN triangles: 14 (10.606%) and 
questionable observations shown as RED Circles: 5 (3.788%) (c)
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Fig. 4  Predicted ligand-binding pockets of CotH3 (a), lanosterol 14 alpha-demethylase (b), mucoricin (c) via CASTp server

Fig. 5  Deformability (a), eigen value (b) and elastic network (c) of Rhizopus delemar proteins CotH3, Lanosterol 14 alpha-demethylase and 
Mucoricin
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Table 4  The binding affinity and interaction pattern analysis of top 10 ligands docked with CotH3

S.
no Compounds Structure PubChem 

CID

Binding 
affinity 

(kcal/mol)
Interacting 

residues No. 
of H 

bonds

No. of 
hydrophobic 

bonds

No. of 
electrostatic 

bonds
AutoDock 

Vina

1
12,28-
Oxamanzamine A 11272782 − 10.2

ASN190, 
TYR142, 
ASP199, 
PHE180, 
PHE235, 
ALA145, 
VAL231 3 5 0

2 Parsiguine 153274516 − 9.2

PHE235, 
ASN190, 
TYR197
(Unfavorable 
bond) 2 0 0

3
Haliclonacyclamine 
B 102124134 − 9.2 PHE235 0 1 0

4 Vialinin B 16049791 − 8.9

SER196, 
ASN237, 
GLY189, 
TYR197, 
PHE235, 
PRO201, 
VAL195, 
ALA145 3 5 0

5

6-
Deoxymanzamine 
X 44445400 − 8.8

THR115, 
TYR78, 
ASP118, 
TYR116, 
LEU77, 
PHE76 2 4 1

6 Natamycin 5284447 − 8.7

GLY181, 
LEU143, 
VAL231, 
ALA145 3 1 0

7 Olorofim 91885568 − 8.6

GLN215, 
ASN212, 
GLU113, 
THR115, 
TYR204, 
ASN112 3 3 0

8 Deoxytopsentin 183527 − 8.5

GLY181, 
VAL182, 
ASP199, 
ALA145, 
TYR197, 
LYS198 2 6 1

9 Manzamine E 44445401 − 8.3 THR115 3 0 0

10 Fascioquinol A 53233477 − 8.2

TYR197, 
TYR142, 
ASP199, 
PHE200, 
VAL195 3 4 0s
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of the Top 10 ligands are also provided in Table  4. 
Further, 3D structural views and 2D depiction of the 
ligand-binding site interactions are provided in Fig.  6 
and Additional file 2: Fig. S1.

Binding interactions of ligands with Rhizopus delemar 
Lanosterol 14 alpha‑demethylase
The docking results of the top 10 ligands with Rhizopus 
delemar Lanosterol 14 alpha-demethylase are provided 
in Table 5; binding affinities range from −9.9 to −11 kcal/
mol. Pramiconazole showed the highest binding affin-
ity (-11  kcal/mol) with Lanosterol 14 alpha-demethyl-
ase. The detailed interaction analysis data of the Top 10 
ligands are also provided in Table  5. Further, 3D struc-
tural views and 2D depiction of the ligand-binding site 
interactions are provided in Fig. 7 and Additional file 2: 
Fig. S2.

Binding interactions of ligands With Rhizopus delemar 
Mucoricin
The binding affinities of the top 10 ligands with Rhizo-
pus delemar Mucoricin are provided in Table  6; bind-
ing affinities were ranged from −7.8 to −8.6  kcal/mol. 

12,28-Oxamanzamine A showed the highest binding 
affinity (−8.6  kcal/mol) with Mucoricin. The detailed 
interaction analysis data of the Top 10 ligands are also 
provided in Table 6. Further, 3D structural views and 2D 
depiction of the ligand-binding site interactions are pro-
vided in Fig. 8 and Additional file 2: Fig. S3.

Drug profile analysis of top lead compounds, toxicity 
pattern analysis and in silico bioactivity prediction
Several ADME features of top ligands, including physico-
chemical parameters, lipophilicity, water-solubility, phar-
macokinetics, drug-likeness and medicinal chemistry, are 
presented to assess their druggability potential (Table 7). 
The oral bioavailability of the possible active compounds 
was calculated through Lipinski’s rule of five and Veber’s 
rule, while Muegge’s rule determined the possibility of a 
compound to become a successful drug molecule by the 
pharmacophore point calculation (Muegge et  al. 2001). 
But several drugs do not always follow the drug-likeness 
rule. There are undoubtedly many notable examples of 
successful drugs that violate at least two of Lipinski’s rules: 
HMG-CoA reductase inhibitor atorvastatin and leukot-
riene receptor antagonist montelukast (Beyond the Rule 

Fig. 6  3D visualisation of docking analysis of CotH3 binding with 12,28-oxamanzamine A (a), parsiguine (b), haliclonacyclamine B (c), vialinin B (d), 
6-deoxymanzamine X (e), natamycin (f), olorofim (g), deoxytopsentin (h), manzamine E (i), fascioquinol A (j)
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Table 5  The binding affinity and interaction pattern analysis of top 10 ligands docked with Lanosterol 14 alpha-demethylase

S.
no Compounds Structure PubChem 

CID

Binding 
affinity 

(kcal/mol)
Interacting 

residues No. 
of H 

bonds

No. of 
hydrophobic 

bonds

No. of 
electrostatic 

bonds
AutoDock 

Vina

1 Pramiconazole 3013050 − 11

GLN362, 
GLY60, 
PHE59, 
TYR491, 
TYR113, 
MET494, 
PRO63, 
PRO219 5 5 0

2
12,28-
Oxamanzamine A 11272782 − 10.9

GLU183, 
TYR211, 
ILE186, 
ALA207 2 5 0

3 Fascioquinol D 53328565 − 10.8

PHE134, 
VAL126, 
LYS138, 
ILE141, 
VAL291 0 5 0

4 Saperconazole 457278 − 10.8

GLN362, 
THR492, 
MET494, 
PHE134, 
VAL126, 
LYS138, 
ILE141, 
TYR113, 
ALA290, 
PRO63, 
PRO219 1 11 0

5 Nakadomarin A 152772052 − 10.6

VAL126, 
LYS138, 
ILE141, 
VAL291 0 4 0

6 Plakinamine A 21606893 − 10.4

VAL126, 
LYS138, 
ALA290, 
ILE141, 
ILE360, 
TYR127, 
PHE134 0 8 0

7 Fascioquinol C 53328564 − 10.4

GLY294, 
GLY295, 
VAL291 0 3 0

8 Parsiguine 153274516 − 10.1
ASN443, 
PRO444 3 0 0

9 Hesperidin 10621 − 10

HIS297, 
ARG500, 
ASP203. 
ASP214, 
HIS179, 
PHE164, 
ILE186, 
ALA207, 
CYS187 7 4 0

10 Epoxyazadiradione 49863985 − 9.9 GLY295 1 0 0
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of Five 2021). In a study conducted in 2021(Protti et  al. 
2021), researchers stated that the selection of drug-like 
compounds is no longer driven by fixed parameters but by 
a balance between their physicochemical properties.

The ligands were then tested for toxicity using an 
online tool called ProTox-II and StopTox, machine learn-
ing tools (Banerjee et  al. 2018; Borba et  al. 2020). In 
ProTox-II, there are six toxicity classes (1–6) based on a 
globally harmonised system of classification of labelling 
of chemicals (GHS). LD50 values are given in mg/kg and 
the classes are described as: Class I: death if swallowed 
(LD50 ≤ 5); Class 2: fatal if swallowed (5 < LD50 ≤ 50); 
Class 3: toxic if swallowed (50 < LD50 ≤ 300); Class 4: 
harmful if swallowed (300 < LD50 ≤ 2000); Class 5: may 
be harmful if swallowed (2000 < LD50 ≤ 5000); Class 6: 
non-toxic (LD50 > 5000) (Abel et  al. 2020). LD50 stands 
for Lethal Dose 50 which is a measure the amount of a 
substance needed to kill half of a test population of ani-
mals (What is LD50 2021). This study demonstrated how 
likely and successful a medicine might be with a minimal 
number of adverse effects and provided us with a pre-
diction score. On the other hand, StopTox was used for 
assessing the potential of chemicals to cause acute toxic-
ity. Toxicity predicted by ProTox‑II and StopTox is sum-
marised in Table 8.

Analysis of the structure–activity relationship for a 
complete training set involving drug compounds, drug 
candidates in numerous clinical and preclinical study 
steps, and pharmaceutical agents are the basis of pre-
diction in the PASS program (Lagunin et  al. 2000). The 
mechanisms of action and pharmacological activities, 
calculated probabilities for the exhibition of activity 
exceeding the probability verge (Pa > Pi), existed in the 
default list of predicted effects. The Pa and Pi values vary 
in the range of 0.000–1.000, and, in general, the summa-
tion of Pa and Pi should not equal one. For a compound, 
the chance to achieve the desired experimental activ-
ity is high when Pa > 0.7. Suppose a compound is likely 
to exhibit the activity in the experiment. In that case, 
the chance to find the experimental activity will be less, 
and the compound is probably not so similar to a known 
pharmaceutical agent (0.5 < Pa < 0.7). A compound is 
unlikely to display the activity recognised in the experi-
ment when Pa < 0.5, and this compound might be a new 
chemical entity. The top compounds which have satisfac-
tory ADME and toxicity properties are subjected to bio-
activity prediction in which activities that have Pa ≥ 0.7 
is selected and summarised in Table  9. The bioactivity 
scores (ion channel modulation (ICM), G protein-cou-
pled receptor (GPCR), nuclear receptor ligand (NRL) and 

Fig. 7  3D visualisation of docking analysis of Lanosterol 14 alpha-demethylase binding with pramiconazole (a), 12,28-oxamanzamine A (b), 
fascioquinol D (c), saperconazole (d), nakadomarin A (e), plakinamine A (f), fascioquinol C (g), parsiguine (h), hesperidin (i), epoxyazadiradione (j)
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Table 6  The binding affinity and interaction pattern analysis of top 10 ligands docked with Mucoricin

S. no Compounds Structure PubChem 
CID

Binding 
affinity 

(kcal/mol)

Interacting 
residues

No. of 
H 

bonds

No. of 
hydrophobic 

bonds

No. of 
electrostatic 

bonds
AutoDock 

Vina

1 12,28-Oxamanzamine A 11272782 − 8.6

GLU87, 
ALA88, 
ALA81, 
TYR80 0 4 2

2 Manzamine A 6509753 − 8.3 VAL143 0 1 0

3 Parsiguine 153274516 − 8.2

TYR80, 
ALA88, 
ALA89 3 0 0

4 Halicyclamine A 10479489 − 8.2 PHE145 0 1 0

5 Tetrahydrohaliclonacyclamine A 46894059 − 8.2
LYS39, 
PHE10 1 1 0

6 Phaeosphenone 24970762 − 8.2

ARG67, 
GLY68, 
ARG106,
GLU87, 
ASP65, 
ILE66,
ALA88, 
TYR80 8 6 0

7 6-Deoxymanzamine X 44445400 − 8.1

GLN38, 
LYS12, 
PHE10, 
TYR40, 
PHE145 2 3 0

8 Goniodomin A 6440832 − 8
TYR100
(Unfavorable) 0 0 0

9 Hesperidin 10621 − 8

ARG129, 
GLU97, 
ASP108, 
GLU133, 
MET1, 
ALA105, 
ASP96, 
ALA94, 
CYS103 7 2 4

10 Stelletin A 5352083 − 7.8 ARG106 1 0 0
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enzyme inhibitors: protease, kinase) of the top ligands 
were predicted by using Molinspiration Cheminformat-
ics online server (Table 9).

Discussion
According to recent observations, individuals who are in 
highly immune-compromised health circumstances fol-
lowing COVID-19 having diabetes or high uncontrolled 
sugar levels were infected with a disease produced by a 
"mucormycosis" (Sharma and Kaur 2021). The two agents 
currently approved by the FDA for the primary treatment 
of mucormycosis are amphotericin B and isavuconazole 
(Bhattacharya and Setia 2021). Previous research efforts 
to develop antifungal agents against the Mucorales dem-
onstrated that the inhibition of β-1,3-glucan biosynthesis 
by using inhibitor drugs like amphotericin/echinocan-
dins inhibited fungal growth, thus abolished replication 
(Sharma and Kaur 2021). In the study conducted in 2014, 
researchers suggested that CotH3 could be an emerging 

therapeutic target for mucormycosis as this functions as 
an invasin that interacts with host cell GRP78 to medi-
ate pathogenic host-cell interactions (Gebremariam 
et al. 2014). Similarly, inhibition of Lanosterol 14 alpha-
demethylase interrupts the conversion of lanosterol to 
ergosterol, which leads to the depletion of ergosterol in 
the fungal cell membrane and accumulation of aberrant 
14-α-methylsterols in fungal cells, thereby causing fungal 
death (Shoham et al. 2017). Further, they produce a toxin 
called mucoricin, which plays a central role in the viru-
lence of Mucorales (Soliman et al. 2021). Hence, targeting 
CotH3, Lanosterol 14 alpha-demethylase and Mucoricin 
may offer a new active antifungal approach to treat 
mucormycosis. Thus, in our study, we attempted to reveal 
a novel therapeutic option for treating mucormycosis by 
the screening of FDA approved drugs, FDA unapproved, 
investigational-only, natural compounds against our tar-
geted proteins using structure-based virtual screening. 
To date, no crystal structures were determined for our 

Fig. 8  3D visualisation of docking analysis of Mucoricin binding with 12,28-oxamanzamine A (a), manzamine A (b), parsiguine (c), halicyclamine A 
(d), tetrahydrohaliclonacyclamine A (e), Phaeosphenone (f), 6-deoxymanzamine X (g), goniodomin A (h), hesperidin (i), stelletin A (j)
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Rhizopus delemar target proteins. Hence, protein model-
ling was performed for the prediction of protein structure 
based on the available sequence data. The 3D-modelled 
structures were thoroughly investigated and confirmed 
using the Ramachandran Plot analysis. Moreover, ascer-
tainment of stability can be done by comparing proteins 
essential dynamics to their normal modes. The protein 
models were stable and showed some deformability at the 
molecular level (Additional file 3).

Approaches such as virtual screening and de 
novo drug creation are powerful tools for identify-
ing lead compounds with targeted biological activ-
ity. Analysing the interactions of macromolecules 
and small ligands is an efficient approach to simplify 
the path of current drug discovery while also reduc-
ing the time and expense of the drug development 
process. Molecular docking using AutoDock Vina 

results showed that 12,28-Oxamanzamine A, Parsi-
guine, Haliclonacyclamine B, Vialinin B, 6-Deoxy-
manzamine X, Natamycin, Olorofim, Deoxytopsentin, 
Manzamine E and Fascioquinol A were the top leads 
for CotH3; Pramiconazole, 12,28-Oxamanzamine A, 
Fascioquinol D, Saperconazole, Nakadomarin A, Plak-
inamine A, Fascioquinol C, Parsiguine, Hesperidin 
and Epoxyazadiradione were the top leads for Lanos-
terol 14 alpha-demethylase; 12,28-Oxamanzamine A, 
Manzamine A, Parsiguine, Halicyclamine A, Tetrahy-
drohaliclonacyclamine A, Phaeosphenone 6-Deoxy-
manzamine X, Goniodomin A, Hesperidin and Stelletin 
A were the top leads for Mucoricin; and the top leads 
regarding minimum global binding energy (Tables  4, 
5, 6). Notably, 12,28-Oxamanzamine A was seen in 
all three proteins as a lead compound. Further ADME 
profiling and toxicity analysis were performed to 

Table 7  ADME analysis of top ligands docked against our 3 target proteins

S.no Compounds SwissADME

Lipophilicity Water Solubility Pharmacokinetics Druglikeness Medicinal 
Chemistry

Consensus Log 
Po/w

Class GI absorption Lipinski 
violations

Veber 
violations

Muegge 
violations

Bioavailability 
Score

1 12,28-Oxaman-
zamine A

5.3 Poorly soluble High 2 0 2 0.17

2 Parsiguine 0.74 Soluble Low 2 1 3 0.17

3 Haliclonacyclamine 
B

6.58 Moderately soluble Low 1 0 1 0.55

4 Vialinin B 5.08 Insoluble Low 1 1 1 0.55

5 6-Deoxyman-
zamine X

4.7 Poorly soluble High 1 0 2 0.55

6 Natamycin  − 0.49 Soluble Low 3 1 4 0.17

7 Olorofim 3.45 Poorly soluble High 0 0 0 0.55

8 Deoxytopsentin 3.24 Poorly soluble High 0 0 0 0.55

9 Manzamine E 4.42 Poorly soluble High 1 0 1 0.55

10 Fascioquinol A 5.33 Poorly soluble Low 1 0 1 0.56

11 Pramiconazole 4.06 Poorly soluble High 2 0 1 0.17

12 Fascioquinol D 5.99 Poorly soluble Low 1 0 1 0.55

13 Saperconazole 4.28 Poorly soluble High 2 1 1 0.17

14 Nakadomarin A 4.16 Moderately soluble High 0 0 0 0.55

15 Plakinamine A 5.99 Poorly soluble High 1 0 1 0.55

16 Fascioquinol C 6.02 Poorly soluble Low 1 0 1 0.55

17 Hesperidin  − 0.72 Soluble Low 3 1 4 0.17

18 Epoxyazadiradione 3.93 Poorly soluble High 0 0 0 0.55

19 Manzamine A 4.98 Poorly soluble High 2 0 2 0.17

20 Halicyclamine A 6.13 Moderately soluble Low 1 0 1 0.55

21 Tetrahydrohaliclon-
acyclamine A

7.26 Poorly soluble Low 1 0 1 0.55

22 Phaeosphenone 1.31 Moderately soluble Low 2 1 2 0.17

23 Goniodomin A 3.29 Soluble Low 2 1 3 0.17

24 Stelletin A 5.97 Poorly soluble High 1 0 1 0.55
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investigate how our lead compounds are processed by 
a living organism (Tables 7, 8). It revealed that most of 
the lead compounds are highly toxic in nature and pos-
sess satisfactory ADME properties. The 12,28-Oxaman-
zamine and five other compounds were further filtered 
using these properties for each protein and subjected 
to bioactivity prediction (Pa > 0.7) (Table  9). In addi-
tion, we compared the binding affinities of currently 
prescribed mucormycosis drugs to our shortlisted 
candidates for the three target proteins (Table  10). 
Posaconazole and isavuconazole had a high affinity for 
Lanosterol 14 alpha-demethylase, but not for other 
protein targets. However, there are also other selected 
compounds such 12,28-Oxamanzamine A, pramicona-
zole, and saperconazole that exhibited a higher affinity 
for Lanosterol 14 alpha-demethylase than posaconazole 
and isavuconazole. Overall, our shortlisted compounds 
have good binding affinities with all three protein tar-
gets than the currently prescribed drugs.

The detailed elucidation on the molecular properties 
and the interaction profiles of the shortlisted six bioac-
tive compounds against Rhizopus delemar proteins are 
as follows:

28‑Oxamanzamine A
It is isolated from a common Indonesian sponge of the 
genus Acanthostrongylophora. It has potent anti-inflam-
matory, antifungal and anti-HIV-1 activity (Yousaf et al. 
2004). It showed a high binding affinity with all our three 
targeted proteins, CotH3 (−10.2  kcal/mol), Lanosterol 
14 alpha-demethylase (− 10.9  kcal/mol) and Mucoricin 
(− 8.6  kcal/mol). The molecule has a molecular weight 
of 546.7  g/mol, 4 H-bond acceptors and 1 H-bond 
donor, formed three H-bonds with ASN190, TYR142 
and ASP199 amino acid residues and five Hydropho-
bic bonds with PHE180, PHE235, PHE235, ALA145 and 
VAL231 amino acid residues of CotH3. In contrast, for 
Lanosterol 14 alpha-demethylase it formed two H-bonds 

Table 8  Toxicity report carried out using ProTox-II and STopTox server for top ligand compounds

S. no Ligand name ProTox-II STopTox

predicted 
LD50 (mg/
kg)

Toxicity class Acute inhalation 
Toxicity

Acute dermal toxicity Eye irritation 
and 
corrosion

Skin sensitisation

1 12,28-Oxamanzamine A 4 1 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

2 Parsiguine 850 4 Non-toxic (−) Non-toxic (−) Toxic (+) Sensitizer (+)

3 Haliclonacyclamine B 652 4 Toxic (+) Toxic (+) Toxic (+) Sensitizer (+)

4 Vialinin B 5000 5 Non-toxic (−) Toxic (+) Non-toxic (−) Sensitizer (+)

5 6-Deoxymanzamine X 4 1 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

6 Natamycin 1500 4 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

7 Olorofim 1420 4 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

8 Deoxytopsentin 1264 4 Non-toxic (−) Non-toxic (−) Non-toxic (−) Non-sensitizer (−)

9 Manzamine E 9 2 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

10 Fascioquinol A 2000 4 Toxic (+) Non-toxic (−) Non-toxic (−) Non-sensitizer (−)

11 Pramiconazole 320 4 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

12 Fascioquinol D 5000 5 Non-toxic (−) Non-toxic (−) Non-toxic (−) Sensitizer (+)

13 Saperconazole 4000 5 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

14 Nakadomarin A 1000 4 Toxic (+) Non-toxic (−) Toxic (+) Non-sensitizer (−)

15 Plakinamine A 1000 4 Toxic (+) Toxic (+) Non-toxic (−) Non-sensitizer (−)

16 Fascioquinol C 1743 4 Non-toxic (−) Non-toxic (−) Non-toxic (−) Sensitizer (+)

17 Hesperidin 12,000 6 Non-toxic (−) Toxic (+) Non-toxic (−) Non- Sensitizer (−)

18 Epoxyazadiradione 555 5 Non-toxic (−) Non-toxic (−) Non-toxic (−) Non- Sensitizer (−)

19 Manzamine A 4 1 Non-toxic (−) Non-toxic (−) Toxic (+) Non-sensitizer (−)

20 Halicyclamine A 460 4 Toxic (+) Toxic (+) Toxic (+) Sensitizer (+)

21 Tetrahydrohaliclonacy-
clamine A

194 3 Toxic (+) Toxic (+) Toxic (+) Sensitizer (+)

22 Phaeosphenone 221 3 Non-toxic (−) Non-toxic (−) Non-toxic (−) Non-sensitizer (−)

23 Goniodomin A 500 4 Non-toxic (−) Non-toxic (−) Non-toxic (−) Non-sensitizer (−)

24 Stelletin A 800 4 Non-toxic (−) Non-toxic (−) Non-toxic (−) Sensitizer (+)
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with GLU183 amino acid residues and five hydropho-
bic interactions with TYR211, ILE186 ALA207 amino 
acid residues. Similarly, for Mucoricin it formed two 
electrostatic bonds with GLU87 amino acid residue and 
four hydrophobic interactions with ALA88, ALA81 and 
TYR80. ADME analysis revealed that this molecule has 
poor water solubility and consensus Log Po/w value of 
5.3 with high GI absorption while having a poor bioavail-
ability score of 0.17. Toxicity results showed that this 
molecule was toxic with the predicted LD50 of 4  mg/
kg. Although it was fatal, its bioactivity score by molin-
sipiration revealed that it could probably act as a suitable 
kinase inhibitor (0.36) and an antineoplastic alkaloid. 
Since CotH3 is a protein kinase, there might be a chance 
that 12,28-Oxamanzamine A could act as a CotH3 inhib-
itor. Also, it displayed a high binding affinity for all our 
target proteins. So, further ADME and toxicity optimisa-
tion are needed to evaluate its performance in vitro and 
in vivo studies.

Vialinin B
It is a novel dibenzofuran compound isolated from dry 
fruiting bodies of an edible mushroom, Thelephora via-
lis, which potently inhibits TNF-alpha production in 
RBL-2H3 cells (IC (50) = 0.02  nM) and acts as a prom-
ising anti-allergic agent (X. C et al. 2006). It displayed a 
binding affinity of −8.9  kcal/mol with CotH3. The mol-
ecule has a molecular weight of 576.5  g/mol, 9 H-bond 
acceptors and 4 H-bond donors, formed 3 H-bonds with 
SER196, ASN237 and GLY189 amino acid residues and 
five hydrophobic interactions with TYR197, PHE235, 
PRO201, VAL195 and ALA145. ADME analysis revealed 
that this molecule is insoluble in water with the consen-
sus Log Po/w value of 5.08 with low GI absorption and a 
good bioavailability score of 0.55. Toxicity results showed 
that this molecule was less toxic with the predicted LD50 
of 5000  mg/kg. Bioactivity prediction revealed that this 
molecule could act as a Histidine kinase inhibitor, Chlor-
decone reductase inhibitor and HIF1A expression inhib-
itor. Since it can act as a kinase inhibitor, it might be a 
possibility to inhibit the CotH3 protein.

Deoxytopsentin
It is a naturally occurring sponge metabolite that acts 
as a bisindole alkaloid inhibitor against the evolutionary 
conserved MRSA pyruvate kinase (PK). The compound 
displayed potent low nanomolar inhibitory activity 
against MRSA PK with significant concomitant selec-
tivity over human PK orthologues (Veale et  al. 2015). It 
showed a binding affinity of −8.5  kcal/mol with CotH3. 
The molecule has a molecular weight of 326.4  g/mol, 
2 H-bond acceptors and 3 H-bond donors, formed 2 
H-bonds with GLY181 and VAL182 amino acid residues, 

one electrostatic bond with ASP199 and six hydrophobic 
interactions with ASP199, TYR197, ALA145 and LYS198 
amino acid residues. ADME analysis revealed that this 
molecule was poorly soluble in water with the con-
sensus Log Po/w value of 3.24 with high GI absorption 
and a good bioavailability score of 0.55. Toxicity results 
showed that this molecule has a toxicity class of 4 with 
the predicted LD50 of 1264  mg/kg. Its bioactivity score 
by molinsipiration revealed that it could probably act as 
a suitable kinase inhibitor (0.635) and an antineoplastic 
alkaloid. So, it might act as an antagonist for CotH3.

Pramiconazole
Pramiconazole from Barrier Therapeutics Inc is a new 
addition to the triazole antifungal agents that inhibit fun-
gal cell membrane ergosterol synthesis, thereby leading 
to increased cell permeability and destruction. In preclin-
ical studies, pramiconazole exhibited similar or superior 
antifungal activity to ketoconazole and itraconazole and 
selectively inhibited ergosterol synthesis with a broad-
spectrum activity (Wit et  al. 2010). It showed a binding 
affinity of −11.0 kcal/mol with Lanosterol 14 alpha-dem-
ethylase. The molecule has a molecular weight of 659.7 g/
mol, 8 H-bond acceptors and 0 H-bond donors, formed 
five H-bonds with GLN362, GLY60, PHE59, GLY60 and 
TYR491 amino acid residues and five hydrophobic inter-
actions with PHE59, TYR113, MET494, PRO63 and 
PRO219 amino acid residues. ADME analysis revealed 
that this molecule is poorly soluble in water with the con-
sensus Log Po/w value of 4.06 with high GI absorption 
and a poor bioavailability score of 0.17. Toxicity results 
showed that this molecule has a toxicity class of 4 with 
the predicted LD50 of 320 mg/kg. Its bioactivity predic-
tion revealed that this compound is antifungal, and it was 
experimentally verified by another study to inhibit the 
lanosterol 14 alpha-demethylase (Wit et al. 2010).

Saperconazole
The N-1-substituted triazole antifungal, sapercona-
zole, is a potent inhibitor of ergosterol synthesis in 
Candida albicans, Aspergillus fumigatus and Tricho-
phyton mentagrophytes. Fifty % inhibition is already 
achieved at nanomolar concentrations. The sapercona-
zole induced inhibition of ergosterol synthesis coin-
cides with an accumulation of 14-methylated sterols, 
such as 24-methylene-dihydro lanosterol, lanosterol, 
obtusifoliol, 14α-methylfecosterol, 14α-methylergosta-
8,24(28)-dien-3, β-6α-diol and 14α-methylergosta-
5,7,22,24(28)-tetraenol (Vanden Bossche et  al. 1990). It 
showed a binding affinity of −10.8 kcal/mol with Lanos-
terol 14 alpha-methylase. The molecule has a molecular 
weight of 672.7 g/mol, 9 H-bond acceptors and 0 H-bond 
donors, formed one H-bond with GLN362 amino acid 
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residue, one halogen bond with THR492 and ten hydro-
phobic interactions with MET494, PHE134, VAL126, 
LYS138, ILE141, TYR113, PHE134, VAL126, ALA290, 
PRO63 and PRO219 amino acid residues. ADME analysis 
revealed that this molecule was poorly soluble in water 
with the consensus Log Po/w value of 4.28 with high GI 
absorption and a poor bioavailability score of 0.17. Toxic-
ity results showed that this molecule has a toxicity class 
of 5 with the predicted LD50 of 4000 mg/kg, and it was 
experimentally verified by Bossche H Vanden to inhibit 
the lanosterol 14 alpha-demethylase (Vanden Bossche 
et al. 1990).

Hesperidin
Hesperidin is a flavanone glycoside found in citrus 
fruits. Its name is derived from "hesperidium", which 
stands for "fruit from citrus trees". It exhibits vari-
ous biological properties, including antioxidant, anti-
inflammatory and anti-cancer effects. Recent studies 
indicated that it possesses antimicrobial activity (Iran-
shahi et  al. 2015). It displayed a − 10.0  kcal/mol bind-
ing affinity with Lanosterol 14 alpha-demethylase 
and −8  kcal/mol with Mucoricin. The molecule has 
a molecular weight of 610.6  g/mol, 15 H-bond accep-
tors and 8 H-bond donors, formed seven H-bonds with 
HIS297, ASP203, ASP214, ARG500 and HIS179 amino 
acid residues and four hydrophobic interactions with 
PHE164, ILE186, ALA207 and CYS187 amino acid resi-
dues of Lanosterol 14 alpha-demethylase. In contrast, 
for Mucoricin it formed seven H-bonds with ARG129, 
GLU97, ASP108, GLU133, MET1 and ALA105 amino 
acid residues, four electrostatic bonds with ARG129, 
ASP96, GLU97 and ASP108 amino acid residues and 
two hydrophobic interactions with ALA94 and CYS103 
amino acid residues. ADME analysis revealed that this 
molecule is soluble in water with the consensus Log 
Po/w value of − 0.72 with low GI absorption and a poor 

bioavailability score of 0.17. Toxicity results showed 
that this molecule has a toxicity class of 6 with the 
predicted LD50 of 12,000  mg/kg. Its bioactivity pre-
diction revealed that it could act as a beta-glucuroni-
dase inhibitor and alpha-glucosidase inhibitor. Since 
Mucoricin comes under the glycosylases, there could be 
a high chance that hesperidin can inhibit the Mucoricin 
protein.

Conclusions
Mucormycosis emerged as an epidemic in India. In this 
present study, the possible medications using exist-
ing drugs and natural compounds were screened using 
molecular docking techniques. This research was aimed 
to identify potent bioactive compounds that could effec-
tively inhibit the potential targets of Rhizopus delemar. 
Our study suggests that 12,28-Oxamanzamine A, vial-
inin B, deoxytopsentin, pramiconazole, saperconazole 
and hesperidin could be potent bioactive compounds for 
the treatment of mucormycosis. Of these, 12,28-Oxam-
anzamine A has the potential to act as a multi-targeted 
agent, as it has the highest binding affinity toward the 
three crucial proteins i.e. CotH3, Lanosterol 14 alpha-
demethylase and Mucoricin. However, ADME proper-
ties and Toxicity prediction are not favourable for human 
consumption. So, it needs further ADME and toxic-
ity optimisation to bring out its true potential against 
mucormycosis. However, the results are solely based 
on in silico studies. Due to the encouraging results, we 
highly recommend further in vitro and in vivo trials using 
animal models for the experimental validation of the 
findings.

Abbreviations
COVID-19: COrona VIrus Disease 2019; SARS-CoV-2: Severe Acute Respiratory 
Syndrome-Corona Virus-2; FDA: Food and Drug Administration.

Table 10  Comparison of docking results between currently prescribed drugs and selected bioactive compounds against three target 
proteins

Compounds Binding affinity (kcal/
mol) with CotH3

Binding affinity (kcal/mol) with 
Lanosterol 14 alpha-demethylase

Binding affinity 
(kcal/mol) with 
mucoricin

Selected candidates 12,28-Oxamanzamine A  − 10.2  − 10.9  − 8.6

Vialinin B  − 8.9  − 7.8  − 6.5

Deoxytopsentin  − 8.5  − 9.5  − 7.2

Pramiconazole  − 7.6  − 11  − 7.1

Saperconazole  − 7.8  − 10.8  − 7

Hesperidin  − 8  − 10  − 8

Currently prescribed drugs 
for mucormycosis

Posaconazole  − 7.8  − 9.8  − 6.4

Isavuconazole  − 6.5  − 9.2  − 5.9
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Additional file 1:  Figure S1. 2D visualisation of docking analysis of 
CotH3 binding with 12,28-Oxamanzamine A (A), Parsiguine (B), Haliclona-
cyclamine B (C), Vialinin B (D), 6-Deoxymanzamine X (E), Natamycin (F), 
Olorofim (G), Deoxytopsentin (H), Manzamine E (I), Fascioquinol A (J). 
Figure S2. 2D visualisation of docking analysis of Lanosterol 14 alpha-
demethylase binding with Pramiconazole (A), 12,28-Oxamanzamine A (B), 
Fascioquinol D (C), Saperconazole (D), Nakadomarin A (E), Plakinamine A 
(F), Fascioquinol C (G), Parsiguine (H), Hesperidin (I), Epoxyazadiradione (J). 
Figure S3. 2D visualisation of docking analysis of Mucoricin binding with 
12,28-Oxamanzamine A (A), Manzamine A (B), Parsiguine (C), Halicy-
clamine A (D), Tetrahydrohaliclonacyclamine A (E), Phaeosphenone (F), 
6-Deoxymanzamine X (G), Goniodomin A (H), Hesperidin (I), Stelletin A (J).

Additional file 2: Table S1. The variants of mucormycosis and the symp-
toms associated with the disease (Kontoyiannis & Lewis, 2011; Ribes et al., 
2000; Sheng, 2020; Spellberg et al., 2005; Symptoms of Mucormycosis | 
Mucormycosis | CDC, n.d.).

Additional file 3: Data 1. Binding affinities of all bioactive compunds 
with our three target proteins.
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