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Background: Pathology reports serve as an auditable trial of a patient’s clinical narrative, containing text pertaining to
diagnosis, prognosis, and specimen processing. Recent works have utilized natural language processing (NLP) pipe-
lines, which include rule-based or machine-learning analytics, to uncover textual patterns that inform clinical end-
points and biomarker information. Although deep learning methods have come to the forefront of NLP, there have
been limited comparisons with the performance of other machine-learning methods in extracting key insights for
the prediction of medical procedure information, which is used to inform reimbursement for pathology departments.
In addition, the utility of combining and ranking information from multiple report subfields as compared with exclu-
sively using the diagnostic field for the prediction of Current Procedural Terminology (CPT) codes and signing pathol-
ogists remains unclear.
Methods: After preprocessing pathology reports, we utilized advanced topic modeling to identify topics that character-
ize a cohort of 93,039 pathology reports at the Dartmouth-Hitchcock Department of Pathology and Laboratory Med-
icine (DPLM). We separately compared XGBoost, SVM, and BERT (Bidirectional Encoder Representation from
Transformers) methodologies for the prediction of primary CPT codes (CPT 88302, 88304, 88305, 88307, 88309)
aswell as 38 ancillary CPT codes, using both the diagnostic text alone and text from all subfields.We performed similar
analyses for characterizing text from a group of the 20 pathologists with the most pathology report sign-outs. Finally,
we uncovered important report subcomponents by using model explanation techniques.
Results:We identified 20 topics that pertained to diagnostic and procedural information. Operating on diagnostic text
alone, BERT outperformed XGBoost for the prediction of primary CPT codes. When utilizing all report subfields,
XGBoost outperformed BERT for the prediction of primary CPT codes. Utilizing additional subfields of the pathology
report increased prediction accuracy across ancillary CPT codes, and performance gains for using additional report
subfields were high for the XGBoost model for primary CPT codes. Misclassifications of CPT codes were between
codes of a similar complexity, and misclassifications between pathologists were subspecialty related.
Conclusions:Our approach generated CPT code predictions with an accuracy that was higher than previously reported.
Although diagnostic text is an important source of information, additional insights may be extracted from other report
subfields. Although BERT approaches performed comparably to the XGBoost approaches, they may lend valuable in-
formation to pipelines that combine image, text, and -omics information. Future resource-saving opportunities exist to
help hospitals detect mis-billing, standardize report text, and estimate productivity metrics that pertain to pathologist
compensation (RVUs).
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1. Background and significance

Electronic Health Records (EHR)1 refer to both the structured and un-
structured components of patients’ health records/information (PHI), syn-
thesized from a myriad of data sources and modalities. Such data,
particularly clinical text reports, are increasingly relevant to “Big Data” in
the biomedical domain. Structured components of EHR, such as clinical
procedural and diagnostic codes, are able to effectively store the patient’s
history,2–4 whereas unstructured clinical notes reflect an amalgamation of
more nuanced clinical narratives. Such documentationmay serve to refresh
the clinician on the patient’s history, highlight key aspects of the patient’s
health, and facilitate patient handoff among providers. Further, analysis
of clinical free text may reveal physician bias or inform an audit trail of
the patient’s clinical outcomes for purposes of quality improvement. As
such, utilizing sophisticated algorithmic techniques to assess text data in
pathology reports may improve decision making and hospital processes/
efficiency, possibly saving hospital resources while prioritizing patient
health.

NLP3,5–8 is an analytic technique that is used to extract semantic and
syntactic information from textual data. Traditionally, rule-based ap-
proaches cross-reference and tabulate domain-specific key words or
phrases with large biomedical ontologies and standardized vocabularies,
such as the Unified Medical Language System (UMLS).9,10 However, al-
though these approaches provide an accurate means of assessing a narrow
range of specified patterns, they are neither flexible nor generalizable since
they require extensive annotation and development from a specialist.
Machine-learning approaches (e.g. support vector machine (SVM), random
forest)11,12 employ a set of computational heuristics to circumvent manual
specification of search criteria to reveal patterns and trends in the data. Bag-
of-word approaches13,14 study the frequency counts of words (unigrams)
and phrases (bigrams, etc.) to compare the content of multiple documents
for recurrent themes, whereas deep learning approaches15–17 simulta-
neously capture syntax and semantics with artificial neural network
(ANN) techniques. Recent deep learning NLP approaches have demon-
strated the ability to capture meaningful nuances that are lost in
frequency-based approaches; for instance, these approaches can effectively
contextualize short- and long-range dependencies between words.18,19

Despite potential advantages conferred from less structured approaches,
the analysis of text across any domain usually necessitates balancing
domain-specific customization (e.g. a medical term/abbreviation corpora)
with generalized NLP techniques.

The analysis of pathology reports using NLP has been particularly im-
pactful in recent years, particularly in the areas of information extraction,
summarization, and categorization. Noteworthy developments include in-
formation extraction pipelines that utilize regular expressions (regex), to
highlight key report findings (e.g., extraction of molecular test results),20–23

as well as topicmodeling approaches that summarize a document corpus by
common themes and wording.24 In addition to extraction methods,
machine-learning techniques have been applied to classify pathologist
reports25; notable examples include the prediction of ICD-Omorphological
diagnostic codes26,27 and the prediction of CPT codes based only on diag-
nostic text.28,29 Widespread misspelling of words and jargon specific to in-
dividual physicians have made it difficult to reliably utilize the rule-based
and even machine-learning approaches for report prediction in a clinical
workflow. In addition, hedging and uncertainty in text reports may further
obfuscate findings.30

The CPT codes are assigned to report reimbursable medical procedures
for diagnosis, surgery, and ordering of additional ancillary tests.31,32

Assignments of CPT codes are informed by guidelines and are typically
integrated into the Pathology Information System. As such, the degree to
which new technologies and practices are implemented and disseminated
are often informed by their impact on CPT coding practices. Reimburse-
ments from CPT codes can represent tens to hundreds of millions of dollars
of revenue at mid-sized medical centers, and thus systematic underbilling
of codes could lead to lost hospital revenue, whereas overbilling patterns
may lead to the identification of areas of redundant or unnecessary testing
2

(e.g., duplication of codes, ordering of unnecessary tests, or assignment of
codes representing more complex cases, etc.).

Ancillary CPT codes represent procedural codes that are automatically
assigned when ancillary tests are ordered (e.g., immunohistochemical
stains; e.g., CPT 88341, 88342, 88313, 88360, etc.). In contrast, primary
CPT codes (e.g., CPT 88300, 88302, 88304, 88305, 88307, and 88309)
are assigned based on the pathologist examination of the specimen,
where CPT 88300 represents an examination without requiring the use of
a microscope (gross examination), whereas CPT 88302-88309 include
gross and microscopic examination of the specimen and are ordered by
the case’s complexity level (as specified by the CPT codebook; an ordinal
outcome; e.g., CPT 88305: Pathology examination of tissue using a microscope,
intermediate complexity), which determines reimbursement. The assignment
of such codes is not devoid of controversy. Although it is expected that
raters will not report a specimen with a higher/lower code level, some
may argue that such measures may not reflect the degree of difficulty for
a particular case or there may not be a specific language that denotes pri-
mary CPT code placement of the phenomena (i.e., unlisted specimen,
where it is at the pathologist’s discretion to determine placement). For
these codes, case complexity may ultimately be traced back to the clinical
narrative reported in the pathology report text.33

Since the assignment of case complexity is sometimes unclear to the
practicing pathologist as guidelines evolve, the prediction of these CPT
codes from the diagnostic text using NLP algorithms can be used to inform
whether a code was assigned that matches the case complexity. Recently
developed approaches to predict CPT codes demonstrate remarkable per-
formance; however, they only rely on the first 100 words from the report
text, do not compare across multiple state-of-the-art NLP prediction algo-
rithms, and do not consider report text outside of the diagnosis section.28

Further, report lexicon is hardly standardized, as itmay be litteredwith lan-
guage and jargon that is specific to the sign-out pathologist and may vary
widely in length for the same diagnosis, which can make it difficult to
build an objective understanding of the report text.

Comparisons of different algorithmic techniques and relevant reporting
text to use for the prediction of primary CPT codes are essential to further
understand their utility for curbing under/overbilling issues. In addition,
contextualizing primary code findings by ancillary findings and building a
greater understanding of how pathologists differ in their lexical patterns
may provide further motivation for the standardization of reporting prac-
tices and how report text can optimize the ordering of ancillary tests.34

1.1. Objective

The primary objective of this study is to compare the capacity to delin-
eate primary CPT procedural codes (CPT 88302, 88304, 88305, 88307,
88309) corresponding to case complexity across state-of-the-art machine-
learning models over a large corpus of more than 93,039 pathology reports
from the Dartmouth-Hitchcock Department of Pathology and Laboratory
Medicine (DPLM), a midsized academic medical center. Using XGBoost,
SVM, and BERT techniques, we hope to gain a better understanding of
which algorithms are useful for predicting primary CPT codes representing
case complexity, which will prove helpful for the detection of under/
overbilling.

1.2. Secondary objectives

We have formulated various secondary objectives that are focused on
capturing additional components of reporting variation:

1. Expanded reporting subfields: Exploration of methods that incor-
porate other document subfields outside of the diagnostic text into the
modeling approaches, which may contain additional information.

2. Ancillary Testing Codes: Predicting the assignment of 38 different
CPT procedure codes, largely comprising secondary CPT codes, under the
hypothesis that nondiagnostic text provides additional predictive accuracy
as compared with primary CPT codes, which may rely more heavily on the
diagnostic text. Although the prediction of whether an ancillary test was
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ordered via secondary CPT codes has limited potential for incorporation
into the Pathology Information System, as these codes are automatically
assigned after test ordering, prediction of the ancillary tests can provide
an additional context for the prediction of primary codes.

3. Pathologist-Specific Language: Investigate whether the sign-out
pathologist can be predicted based on word choice. Although the sign-out
pathologist can be found through an SQL query in the Pathology Informa-
tion System, we are interested in translating sign-outs to a unified language
that is consistent across sign-outs (i.e., a similar lexicon across pathologists,
given diagnosis, code assignments, and subspecialty). As an example, some
pathologistsmaymore verbosely describe a phenomenon that could be suc-
cinctly summarized tomatch a colleague’s description, though this could be
difficult to disentangle without a quantitative understanding of lexical dif-
ferences. To do this, we need to identify several components of variation
(i.e., within a subspecialty, where reports from pathologists may vary
widely); we want to further understand this heterogeneity to standardize
communications within our department.

Although the final two objectives (ancillary testing and pathologist pre-
diction) can be resolved by using an SQL query, we emphasize that these
secondary objectives were selected to better identify the potential sources
of reporting inconsistency with the aim of informing optimal reporting
standards rather than imputing information that can be readily queried
through the Pathology Information System.

1.3. Approach and procedure

1.3.1. Data acquisition
We obtained Institutional Review Board approval and accessed more

than 96,418 pathologist reports from DPLM, collected between June
2015 and June 2020. We removed a total of 3,379 reports that did not con-
tain any diagnostic text associatedwith CPT codes, retaining 93,039 reports
(Supplementary Table 1). Each report was appended with metadata, in-
cluding corresponding EPIC (EPIC systems, Verona, WI),35 Charge Descrip-
tionMaster (CDM), and CPT procedural codes, the sign-out pathologist, the
amount of time to sign out the document, and other details. Fuzzy string
matching using the fuzzywuzzy package was used to identify whether any
pathologists’ names were misspelled (or resolve potential last name
changes) between documents.36 First, all unique pathologist names were
identified. Then, for each pair of names, the token sort ratio was calculated,
thresholded by whether the ratio exceeded 0.7 to establish a unipartite
graph of pathologist names connected to their candidate duplicates. Finally,
clusters of similar names were identified by using connected component
analysis. In most cases, unique names were assigned to each cluster of
names, though in select cases, names were kept separate.37 The documents
were deidentified by stripping all PHI-containing fields and numerals from
the text and replacing with holder characters (e.g. 87560 becomes
#####). As a final check, we used regular expressions (regex) to remove
mentions of patient names in the report text. This was accomplished by
first compiling and storing several publicly available databases of
552,428 first and last names (SupplementaryMaterials, section “Additional
Information on Deidentification Approach”). Then, using regex, we
searched for the presence of each first and last name in the report subsec-
tions and replaced names at matched positions with white spaces.
However, we did not remove mention of the physicians and consulting
pathologist. The information on the physicians and consulting pathologist
were identified in the “ordered by,” “reports to,” and “verified by” fields
of the pathology report using known personal identifiers. The
deidentification protocol was approved by the Institutional Review Board,
Office of Research Operations and Data Governance. A total of 17,744
first and last names were stripped from the in-house data.

1.3.2. Preprocessing
We used regular expressions (regex) to remove punctuation from the

text, and the text was preprocessed by using the Spacy package,38 to
tokenize the text. We utilized Spacy’s en_core_web_sm processing pipeline
(https://spacy.io/models/en#en_core_web_sm) to remove English stop
3

words and words shorter than three characters. Out of concern for remov-
ing pathologist lexicon germane to pathologist sign-out, for this preliminary
assessment, we did not attempt to prune additional words from the corpus
outside of the methods used to generate word frequencies for the bag of
words approaches. We also split up each pathology report into their struc-
tured sections: Diagnosis, Clinical Information, Specimen Processing,
Discussion, Additional Studies, Results, and Interpretation. This allowed
for an equal comparison between the machine-learning algorithms. The
deep learning algorithm BERT can only operate on 512 words at a time
due to computational constraints (See the “Limitations” and Supplementary
Materials section “Additional Information on BERT Pretraining”). Some-
times, the pathology reports exceeded this length when considering the
entire document (1.77% exceeded 512 words) and as such these reports
were limited to the diagnosis section (0.02%exceeded512words)when train-
ing a new BERT model (Supplementary Table 1; Supplementary Fig. 1). We
removed all pathology reports that did not contain a diagnosis section.

1.3.3. Characterization of the text corpus
After preprocessing, we encoded each report tabulating the occurrence

of all contiguous one- to two-word sequences (unigram and bigrams) to
form sparse countmatrices, where each column represents aword or phrase
and each row represents the document, and the value is the frequency of oc-
currence in the document. Although the term “frequency”may be represen-
tative of the distribution of words/phrases in a corpus, high-frequency
words that are featured across most of the document corpus are less likely
to yield an informative lexicon that is specific to a subset of the documents.
To account for less important but ubiquitous words, we transformed raw
word frequencies to term frequency inverse document frequency (tf-idf)
values, which up-weights the importance of the word based on its occur-
rence within a specific document (term frequency), but down-weights the
importance if the word is featured across the corpus (inverse document fre-
quency) (see the Supplementary Material section “Additional Description
of Topic Modeling and Report Characterization Techniques”). We summed
the tf-idf value of each word across the documents to capture the word’s
overall importance across the reports and utilized a word cloud algorithm
to display the relative importance of the top words.

After constructing count matrices, we sought to characterize and cluster
pathology documents as they relate to each other and ascribe themes to the
clusters. Uniform Manifold Approximation and Projection for Dimension
Reduction (UMAP)39 dimensionality reduction was used to project the
higher dimensional word frequency data into lower dimensions while pre-
serving important functional relationships. Each document could then be
represented by a 3D point in the Cartesian coordinate system; these points
were clustered by using a density-based clustering algorithm called
HDBSCAN40 to simultaneously estimate characteristic groupings of docu-
ments while filtering out noisy documents that did not explicitly fit in
these larger clusters. To understand which topics were generally present
in each cluster, we deployed Latent Dirichlet Allocation (LDA),13 which
identifies topics characterized by a set of words, and then derives the distri-
bution of topics over all clusters. This is accomplished via a generative
model that attempts to recapitulate the original count matrix, which is
further outlined in greater detail in the Supplementary Material section
“Additional Description of Topic Modeling and Report Characterization
Techniques.” The individual topics estimated using LDA may be conceptu-
alized as a Dirichlet/multinomial distribution (“weight” per each word/
phrase) over all unigrams and bigrams, where a higher weight indicates
membership in the topic. The characteristic words pertaining to each
topic were visualized by using a word cloud algorithm. Finally, we corre-
lated the CPT codes with clusters, topics, and select pathologists by using
Point-Biserial and Spearman correlation measures41 to further characterize
the overall cohort.

1.3.4. Machine learning models
We implemented the following three machine-learning algorithms in

our study as a basis for our text classification pipeline [Fig. 1]:

https://spacy.io/models/en#en_core_web_sm


Fig. 1. Model Descriptions: Graphics depicting: (A) SVM, where hyperplane linearly separates pathology reports, which are represented by individual datapoints;
(B) XGBoost, which sequentially fits decision trees based on residuals from sum of conditional means of previous trees and outcomes; (C) All-Fields BERT model, where a
diagnosis-specific neural network extracts relevant features from the diagnostic field, whereas a neural network trained on a separate clinical corpus extracts features for
the remaining subfields; subfields are weighted and summed via the attention mechanism, indicated in red; subfields are combined with diagnostic features and fine-
tuned with a multilayer perceptron for the final prediction.
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1.3.4.1. SVM. We trained an SVM42,43 to make predictions by using the
UMAP embeddings formed from the tf-idf matrix. The SVM operates by
learning a hyperplane that obtainsmaximal distance (margin) to datapoints
of a particular class [Fig. 1A]. However, because datapoints/texts from dif-
ferent classes may not be separable in the original embedding space, the
SVM model projects data to a higher dimensional space where data can
be linearly separated. We utilized GPU resources via the ThunderSVM
package44 to train the model in reasonable compute time.

1.3.4.2. Bag of words with XGBoost. XGBoost algorithms45 operate on the en-
tire word by report count matrix and ensemble or average predictions
across individual Classification and Regression Tree (CART)models.46 Indi-
vidual CARTmodels devise splitting rules that partition instances of the pa-
thology notes based on whether the count of a particular word or phrase in
a pathology note exceeds an algorithmically derived threshold. Important
words and thresholds (i.e. partition rules) are selected from the corpus
based on their ability to partition the data, based on the purity of a decision
leaf through the calculation of an entropy measure. Each successive
splitting rule serves to further minimize the entropy or maximize the infor-
mation gained. Random Forest models47 bootstrap which subsets of predic-
tors/words and samples are selected for a given splitting rule of individual
trees and aggregate the predictions from many such trees; Extreme Gradi-
ent Boosting Trees (XGBoost) fit trees (structure and the conditional
means of the terminal nodes) sequentially based on the residual (in the bi-
nary classification setting, misclassification is estimated using a Bernoulli
likelihood) between the outcome and the sum of both the conditional
means of the previous trees (which are set) and the conditional means of
the current tree (which is optimized). This gradient-based optimization
technique prioritizes samples with a large residual/gradient from the previ-
ous model fit to account for the previous “weak learners” [Fig. 1B]. In both
scenarios, random forest (a bagging technique) and XGBoost (a boosting
technique), individual trees may exhibit bias but together cover a larger
predictor space. Our XGBoost classifier models were trained by using the
XGBoost library, which utilizes GPUs to speed up calculation.

1.3.4.3. BERT. ANN48 are a class of algorithms that use highly intercon-
nected computational nodes to capture relationships between predictors
in complex data. The information is passed from the nodes of an input
layer to the individual nodes of subsequent layers that capture additional
interactions and nonlinearities between predictors while forming abstrac-
tions of the data in the form of intermediate embeddings. The BERT18

model first maps each word in a sentence to its own embedding and posi-
tional vectors, which captures key semantic/syntactic and contextual infor-
mation that is largely absent from the bag of words approaches. These
word-level embeddings are passed to a series of self-attention layers (the
Transformer component of the BERT model), which contextualizes the in-
formation of a single word in a sentence based on short- and long-term de-
pendencies between all words from the sentence. The individual word
embeddings are combined with the positional/contextual information,
4

obtained via the self-attentionmechanism, to create embeddings that repre-
sent the totality of a sentence. Finally, this information is passed to a series
of fully connected layers that produce the final classification. With BERT,
we are also able to analyze the relative importance and dependency be-
tween words in a document by extracting “attention matrices.” We are
also able to retrieve sentence-level embeddings encoded by the network
by extracting vectors from the intermediate layers before they pass for the
final classification.

We trained the BERT models by using the HuggingFace Transformers
package,49 which utilizes GPU resources through the PyTorch framework.
We used a collection of models that have already been pretrained on a
large medical corpus50 in order to both improve the predictive accuracy
of our model and significantly reduce the computational load compared
with training a model from scratch. Because significant compute resources
are still required to train the model, most BERTmodels limit the document
characterization length to 512words. To address this, we split pathology re-
ports into document subsections when training BERT models.

In training a BERT model, we updated the word embeddings through
fine-tuning a pretrained model on our diagnostic corpus. This model,
which had been trained solely on diagnostic text, could be used to predict
the target of interest (Dx Model). However, we then used this fine-tuned
model to extracted embeddings that were specific to the diagnosis subfield
to serve as input for a model that could utilize text from other document
subfields. We separately utilized the original pretrained model to extract
embeddings from the other report subfields that are less biased by diagnos-
tic codes and thus more likely to provide contextual information (All Fields
Model). We developed a global/gating attention mechanism procedure that
serves to dynamically prune unimportant, missing, or low-quality docu-
ment subsections for classification [Fig. 1C]. Predictions may be obtained
when some/all report subfields are supplied via the following method:

y ¼ f all� fields x!
� �

¼ fMLP ∑
Z
!

fine � tuned bert, dx ,

section
αsectionZ

!
pretrained bert, section

2
4

3
5

0
@

1
A

α! ¼ softmax f gate zsection���!ð Þ∀sections
n o� �

∈ 0, 1½ �, α! ¼ 1

f gate zsection
���!ð Þ ¼ W2BatchNorm1d ReLU W1zsection���!ð Þð Þ

Where z! represents the embeddings extracted from the pretrained and

fine-tuned BERT embeddings on respective report subsections, and α! is a
vector of attention scores between 0 and 1 that dictates the importance of
particular subsections. These attention scores are determined by using a

separate gating neural network, fgate , which maps z!, a 768-dimensional
vector to a scalar for each document subsection through two projection
matrices: W1 a 768-dimension (dimensionality of BERT embeddings) by
100-dimensional matrix, and W2 a 100-dimension (dimensionality of
BERT embeddings) by 1-dimensional matrix that generates the attention
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scores. A softmax transformation is used to normalize the scores between
zero and one across the subsections. Finally, fMLP are a set of fully connected
layers that operate on the concatenation between the BERT embeddings
that were fine-tuned on the diagnosis-specific section and those extracted
by using the pre-trained BERT model on the other document subfields, as
weighted by using the gated attention mechanism (Supplementary
Section “Additional Description of Explanation Techniques”). To train this
model, we experimented with an ordinal loss function,51 based off of the
proportional odds cumulative link model specification, which respects the
ordering of the primary CPT codes by case complexity, though ultimately,
we opted for using a Cross-Entropy loss since ordinal loss functions
are not currently configured for the other machine-learning methods
(e.g., XGBoost).

1.4. Prediction of primary current procedural terminology codes

We developed machine-learning pipelines to delineate primary CPT
codes requiring examination with a microscope (CPT 88302, 88304,
88305, 88307, 88309) using BERT, XGBoost, and SVM, with reports
selected based on whether they contained only one of the five codes
(where the primary codes were present in the following proportions:
CPT 88302:0.67%, 88304:6.59%, 88305:85.97%, 88307:6.32%, and
88309:0.44%). The prevalence of most of the five codes did not change
over time (Supplementary Fig. 2; Supplementary Table 2). Given the char-
acterization of the aforementioned deep learning framework, we utilized a
BERT model that was pretrained first on a large corpus of biomedical re-
search articles fromPubMed, and thenpretrained by using amedical corpus
of free text notes from an intensive care unit (MIMIC3 database; Bio-
ClinicalBERT; Supplementary Materials section “Additional Information
on BERT Pretraining”).50,52,53 Finally, the model was fine-tuned on our
DHMC pathology report corpus (to capture institution-specific idiosyncra-
sies) for the task of classifying particular CPT codes from diagnostic text.
XGBoost was trained on the original count matrix, whereas SVM was
trained on a 6-dimensional UMAP projection; a UMAP projection was uti-
lized for computational considerations. The models were evaluated by
using five-fold cross-validation as a means to compare the model perfor-
mances. Internal to each fold is a validation set used for identifying optimal
hyperparameters (supplementary section “Additional Information on
Hyperparameter Scans”) through performance statistics and a held-out
test set. For each approach, we separately fit a model considering only the
Diagnosis text (DxModels) and all of the text (All FieldsModels) to provide
additional contextual information. We calculated the Area Under the
Receiver Operating Curve (AUC-Score; considers sensitivity/specificity of
the model at a variety of probability cutoffs; anything above a 0.5 AUC is
better than random), F1-Score (which considers the tradeoff between sensi-
tivity and specificity) and macro-averaged these scores across the five CPT
codes, which gives greater importance to rare codes. Since codes are also
ordered by complexity (ordinal variable), we also report a confusion
matrix, which tabulates the real versus predicted codes for each approach
and measures both a spearman correlation coefficient and linear-
weighted kappa between predicted and real CPT codes as a means to com-
municate how themodel preserves the relative ordering of codes (i.e., if the
model is incorrect, better to predict a code of a similar complexity).

1.5. Ancillary testing current procedural terminology codes and pathologist
prediction tasks

To contextualize findings for primary codes, these machine-learning
techniques were employed to predict each of 38 different CPT codes (38
codes remained after removing codes that occurred less than 150 times
across all sign-outs) (e.g., if the prediction of primary codes relies on the di-
agnostic section, do secondary codes rely on other document sections
more?). The primary code model predicted a categorical outcome, whereas
ancillary testing models were configured in the multitarget setting, where
each code represents a binary outcome. We compared cross-validated
AUC statistics between and across the 38 codes to further explore the
5

reasons that some codes yielded lower scores than others. We also com-
pared different algorithms via the sensitivity/specificity reported via their
Youden’s index (the optimal tradeoff possible between sensitivity and spec-
ificity from the receiver operating curve), averaged across validation folds.

We similarly trained all models to recognize the texts of the 20 pathol-
ogists with the most sign-outs to see whether the models could reveal
pathologist-specific text to inform future efforts to standardize text lexicon.
We retained reports from the 20 pathologists with the most sign-outs, re-
ducing our document corpus from93,039 documents to 64,583 documents,
and we utilized all three classification techniques to predict each sign-out
pathologist simultaneously. The selected pathologists represented a variety
of specialties. Choosing only the most prolific pathologists removed the
potential for biased associations by a rare outcome in the multiclass setting.

1.6. Model interpretations

Finally, we used shapley additive explanations (SHAP; amodel interpre-
tation technique that estimates the contributions of predictors to the predic-
tion through credit allocation)54 to estimate which words were important
for the classification of each of these codes, visualized by using a word
cloud. For the BERT model, we utilized the Captum55 framework to
visualize backpropagation from the outcome to predictors/words via
IntegratedGradients56 and attention matrices. Additional extraction of at-
tention weights also revealed not only which words and their relationships
contributed to the prediction of the CPT code (i.e. self-attention denotes
word-to-word relationships), but also which document subfields other
than the diagnosis field were important for assignment of the procedure
code (i.e. global/gating attention prunes document subfields by learning
to ignore irrelevant information; the degree of pruning can be extracted
during inference). Further description of these model interpretability tech-
niques (SHAP, Integrated Gradients, Self-Attention/“word-to-word”, Atten-
tion) may be found in the supplementary material (section “Additional
Description of Explanation Techniques: SHAP, Integrated Gradients,
Self-Attention, Attention Over Pathology Report Subfields”). Pathologist-
specific word choice was extracted by using SHAP/Captum from the result-
ing model fit and visualized by using word clouds and attention matrices.

2. Results

2.1. Corpus preprocessing and Uniform Manifold Approximation and Projection
for Dimension Reduction results

After initial filtering, we amassed a total of 93,039 pathology reports,
whichwere broken into the following subsections: Diagnosis, Clinical Infor-
mation, Specimen Processing, Discussion, Additional Studies, Results, and
Interpretation. The median word length per document was 119 words
(Interquartile Range; IQR=90). Very few reports contained subfields that
exceeded the length acceptable by the BERT algorithm (2% of reports con-
taining a Results section exceeded this threshold; Supplementary Table 1;
Supplementary Fig. 1).

Displayed first are word clouds of the top 25 words in only the diagnos-
tic document subsection [Fig. 2A] and across all document subsections
[Fig. 2B], with their size reflecting their tf-idf scores [Fig. 2A and B]. As ex-
pected, the diagnostic-field cloud contains words that are pertinent to the
main diagnosis, whereas the all-field cloud contains words that are more
procedural, suggesting that other pathology document subfields yield dis-
tinct and specific clinical information that may lend complementary infor-
mation versus analysis solely on diagnostic fields. We clustered and
visualized the diagnostic subsection and also all document subsections
after running UMAP, which yielded 8 and 15 distinct clusters, respectively
[Fig. 2C and D]. The number of words per report correlated poorly with the
number of total procedural codes assigned (Spearman r=0.066,p<0.01 ).
However, when these correlations were assessed within the HDBSCAN
report clusters (subset to reports within a particular cluster for cluster-
specific trends), 33% of the all-fields report clusters reportedmoderate cor-
relations (Supplementary Table 3). Interestingly, one of the eight report



Fig. 2. Pathology report corpus characterization: (A and B)Word cloud depicting words with the highest aggregated tf-idf scores across the corpus of: (A) diagnostic text only,
(B) all report subfields (all-fields); important words across the corpus indicated by relative size of the word in the word cloud; (C and D) UMAP projection of the tf-idf matrix,
clustered and noise removal via HDBSCAN for: (C) diagnostic texts only, and (D) all report subfields (all-fields).
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clusters from the diagnostic fields experienced amoderate negative correla-
tion with the number of codes assigned.

2.2. Topic modeling with Latent Dirichlet Allocation and additional topic
associations

From our LDA analysis on all document subsections, we discovered 10
topics [Fig. 3; Supplementary Table 4]. Correlations between these topics
with clusters, pathologists, and CPT codes are displayed in the supplemen-
tary material (Supplementary Figs 3-6). We discovered additional associa-
tions between CPT codes, clusters, and pathologists (Supplementary
Fig. 7A), suggesting a specialty bias in document characterization. We clus-
tered pathologists using co-occurrence of procedural code assignments in
order to establish “subspecialties” (e.g., pathologist who signs out multiple
specialties) that could be used to help interpret sources of bias in an evalu-
ation of downstream modeling approaches.

2.3. Primary current procedural terminology code classification results

The XGBoost and BERT models significantly outperformed the SVM
model for the prediction of primary CPT codes [Table 1; Fig. 4A and B; Sup-
plementary Table 5]. The BERTmodel made more effective use of the diag-
nostic text (macro-f1=0.825; κ = 0.852) as compared with the XGBoost
model (macro-f1=0.807; κ= 0.835). Incorporating the text from other re-
port subfields provided only amarginal performance gain for BERT (macro-
f1=0.829; κ = 0.855) and both a large and significant performance gain
for XGBoost (macro-f1=0.831; κ = 0.863) [Fig. 4A and B]. Across the
6

BERT and XGBoost models, codes were likely to be misclassified if they
were of a similar complexity [Table 1; Supplementary Table 5]. Plots of
low-dimensional text embeddings extracted from the BERT All-Fields
model demonstrated clustering by code complexity and relative preserva-
tion of the ordering of code complexity (i.e., reports pertaining to codes
of lower/higher complexity clustered together) [Fig. 4C].

2.4. Ancillary current procedural terminology code and pathologist classification
results

We were able to accurately assign ancillary CPT codes to each docu-
ment, regardless of whichmachine learning algorithmwas utilized (Supple-
mentary Fig. 8; Supplementary Table 6). Across all ancillary codes, we
found that XGBoost (median AUC=0.985) performed comparably to
BERT (median AUC=0.990; P = 0.64) when predicting CPT codes based
on the diagnostic subfield alone, whereas SVM performed worse (median
AUC=0.966) than both approaches, per cross-validated AUC statistics
(Supplementary Tables 6-10; Supplementary Fig. 9). In contrast to results
obtained for the primary codes, we discovered that classifying by including
all of the report subelements (All Fields) performed better than just classify-
ing based on the diagnostic subsection (P < 0.001 for both BERT and
XGBoost approaches; Supplementary Tables 6, 8-10; Supplementary Figs
9 and 10), suggesting that these other more procedural/descriptive ele-
ments contribute meaningful contextual information for the assignment
of ancillary CPT codes (Supplementary Materials section “Supplementary
Ancillary CPT Code Prediction Results”). We also report that the sign-out
pathologist can also be accurately identified from the report text, with



Fig. 3. LDA Topic Words: Important words found for three select LDA Topics from: (A) diagnostic text only and (B) all report subfields (all-fields); important words across the
corpus indicated by relative size of the word in the word cloud.

Table 1
Predictive performances for primary CPT code algorithms

Approach Type Macro-F1 ± SE ± κ se AUC ± SE Spearman

BERT Diagnosis
All fields

0.825 ± 0.0064
0.828 ± 0.0062

0.852 ± 0.0033
0.855 ± 0.0032

0.99 ± 0.0008
0.99 ± 0.0006

0.84 ± 0.0044
0.843 ± 0.0044

XGBoost Diagnosis
All fields

0.807 ± 0.0069
0.832 ± 0.0069

0.835 ± 0.0034
0.863 ± 0.0032

0.99 ± 0.0007
0.994 ± 0.0004

0.824 ± 0.0045
0.855 ± 0.0042

SVM Diagnosis
All fields

0.497 ± 0.0047
0.518 ± 0.0048

0.644 ± 0.0043
0.668 ± 0.0044

0.554 ± 0.0021
0.554 ± 0.0014

0.637 ± 0.0056
0.652 ± 0.0058

Macro-Fl and AUC measures are agnostic to the ordering of the CPT code complexity; whereas Linear Kappa (κ) and Spearman correlation coefficients respect the CPT code
ordering (88302, 88304, 88305, 88307, and 88309).
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comparable performance between the BERT (macro-f1=0.72) and
XGBoost (macro-f1=0.71) models, and optimal performance when all
report subfields are used (macro-f1=0.77 and 0.78, respectively) (Supple-
mentary Materials section “Supplementary Pathologist Prediction Results”;
Supplementary Table 11; Supplementary Figure 11).
2.5. Model interpretation results

We also visualized which words were found to be important for a sub-
sample of primary and ancillary procedural codes by using the XGBoost al-
gorithm [Fig. 5; Supplementary Figure 12]. In the Supplementary
Materials, we have also included a table that denotes the relevance of the
top 30 words for the XGBoost All Fieldsmodel for the prediction of specific
primary CPT codes, as assessed through SHAP (Supplementary Table 12).
Reports that were assigned the same ancillary CPT code clustered together
in select low-dimensional representations learned by some of the All Fields
BERTmodels [Fig. 6A, C, and E].Model-based interpretations of a few sam-
ple sentences for CPT codes using theDiagnosisBERTapproach revealed im-
portant phrases that aligned with assignment of the respective CPT code
[Fig. 6C, D, and F]. Finally, we included a few examples of the attention
7

mechanism used in the BERT approach, which highlights some of the
many semantic/syntactic dependencies that the model finds within text
subsections [Fig. 7]. These attention matrices were plotted along with im-
portance assigned to subsections of pathology reports using the All-Fields
model [Fig. 8], all with their respective textual content. Additional interpre-
tation of reports for pathologists may be found in the Supplementary
Materials (Supplementary Figures 13 and 14).
3. Discussion

In this study, we characterized a large corpus of almost 100,000 pathol-
ogy reports at a mid-sized academic medical center. Our studies indicate
that the XGBoost and BERTmethodologies produce highly accurate predic-
tions of both primary and ancillary CPT codes, which has the potential to
save operating costs by first suggesting codes prior to manual inspection
and flagging potential manual coding errors for review. Further, both the
BERT and XGBoost models preserved the ordering of the code/case com-
plexity, where most of the misclassifications were made between codes of
a similar complexity. The model interpretations via SHAP suggest a termi-
nology that is consistent with code complexity. For instance, “vulva,”



Fig. 4.Primary CPT CodeModel Performance: (A and B)Grouped boxenplots demonstrating the performance ofmachine-learningmodels (BERT, XGBoost) for the prediction
of primary CPT codes (bootstrapped performance statistics; A) macro-averaged F1-Score, (B) Linear-Weighted Kappa for performance across different levels of complexity,
which takes into account the ordinal nature of the outcome; reported across five CPT code), given analysis of either the diagnostic text (blue) or all report subfields (orange);
(C) UMAPprojection ofAll-FieldsBERT embedding vectors after applying the attentionmechanismacross report subfields; each point is reportedwith information aggregated
fromall report subfields; individual points represent reports, colored by the CPT code; large thick circles represent the report centroids for eachCPT code; note how codes CPT
88302 and CPT 88304 cluster together and separately CPT 88307 and CPT 88309 cluster together, whereas CPT 88305 sits in between clustered reports of low and high
complexity.

Fig. 5. SHAP interpretation of XGBoost predictions: Word clouds demonstrating words found to be important using the XGBoost algorithm (All-Fields) for the prediction of
primary CPT codes, found via shapley attribution; important words pertinent to each CPT code indicated by the relative size of the word in the word cloud; word clouds
visualized for word importance (A) across all five primary CPT codes and (B-F) for the following CPT codes: (B) CPT code 88302; (C) CPT code 88304; (D) CPT code
88305; (E) CPT code 88307; and (F) CPT code 88309; note that the size of the word considers strength but not directionality of the relationship with the code, which
may be negatively associated in some cases.
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Fig. 6.Embedding and Interpretation of BERTPredictions: (A, C, and E)UMAP projection ofAll-Fields BERT embedding vectors after applying the attentionmechanism across
report subfields; each point is reported with information aggregated from all report subfields; (B, D, and F) Select diagnostic text from individual reports interpreted by
Integrated Gradients to elucidate words positively and negatively associated with calling the CPT code; Integrated Gradients was performed on the diagnostic text BERT
models; Utilized CPT codes: (A and B) CPT code 88307, (C and D) CPT code 88342, and (E and F) CPT code 88360.
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“uterus,” and “adenocarcinoma”were associatedwith CPT code 88309.We
noted associations between “endometriumdiagnosis” and “esophagus” and
CPT code 88305. “Biopsy” was associated with CPT codes 88305 and
88307, while “myocyte” was associated with CPT code 88307
(myocardium). In addition, we noticed a positive association between
“products of conception” and lower complexity codes (CPT code 88304)
and a negative association with higher complexity codes. The aforemen-
tioned associations uncovered using SHAP are consistent with reporting
standards for histological examination.31,32,57

Previous studies predicting CPT codes have largely been unable to char-
acterize the importance of different subsections of a pathology report.
Using the BERT and XGBoost methods, we were also able to show that
Fig. 7. BERT Diagnostic Model Self-Attention: Output of self-attention maps for select
layers of complex word-to-word relationships for the assessment of a select pathology r
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significant diagnostic/coding information is contained in nondiagnostic
subsections of the pathology report, particularly the Clinical Information
and Specimen Processing sections. Such information was more pertinent
when predicting ancillary CPT codes, as nondiagnostic subfields are more
likely to contain test ordering information, though performance gains
were observed for primary codes when employing the XGBoost model
over an entire pathology report. This is expected, as many of the CPT
codes are based on procedure type/specimen complexity and ancillary
CPT codes are expected to containmore informative text in the nondiagnos-
tic sections. Potentially, the variable presence/absence of different
reporting subfields may have made predicting primary codes using the
BERT model more difficult, as the extraction of information different
self-attention heads/layers from the BERT diagnostic text model visualizes various
eport that was found to report CPT code 88307.



Fig. 8. BERT All-Fields Model Interpretation: Visualization of importance scores assigned to pathology report subfields outside of the diagnostic section for three separate
pathology reports (A-C) that were assigned by raters CPT code 88360; information from report subfields that appear more red was utilized more by the model for the
final prediction of the code; attention scores listed below the text from the subfields and title of each subfield supplied.
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subsections was not optimized for aside from howmuch weight to apply to
each section.

Although our prediction accuracy is comparable to previous reports of
CPT prediction using machine-learning methods, our work covers a wider
range of codes than previously reported, compares the different algorithms
through rigorous cross-validation, reports a significantly higher sensitivity
and specificity, and demonstrates the importance of utilizing other parts
of the pathology report for procedural code prediction. Further, previous
works had only considered the first 100 words of the diagnostic section
and had failed to properly account for class-balancing, potentially leading
to inflated performance statistics; however, our study carefully considers
the ordinality of the response and reports macro-averaged measures that
take into account infrequently assigned codes.

We also demonstrated that the pathology report subfields contained
pertinent diagnostic and procedural information that could adequately sep-
arate our text corpus based on ancillary CPT codes and the signing pathol-
ogist. With regard to ancillary testing, it was interesting to note how some
of the clinical codes for acquisition and quantification of markers on spe-
cialized stains (CPT 88341, 88342, 88344, 88360) performed the worst
overall, which may potentially suggest inconsistent reporting patterns for
the ordering of specialized stains.34 The revision of CPT codes 88342 and
88360, and the addition of CPT codes 88341 and 88344 in 2015 lay just
outside of the range of the data collection period, which was from June
2015 to June 2020.58 Evolving coding/billing guidelines will always pres-
ent challenges when developing NLP guidelines for clinical tests, though
our models’ optimal performance and the fact that major coding changes
occurred outside of the data collection period suggest that temporal
changes in coding patterns did not likely impact the ability to predict CPT
codes. We did not find significant changes in the assignment of most of
the primary codes over the study period. Since major improvements were
obtained through incorporating the other report subfields for the codes,
nondiagnostic text may be more important for records of specialized stain
processing and should be utilized as such.

4. Limitations

There are a few limitations to our work. For instance, due to computa-
tional constraints, most BERT models can only take as input 512 words at
a time (Supplementary Section “Additional Information on BERT Pretrain-
ing”). We utilized a pretrained BERT model that inherited knowledge from
large existing biomedical data repositories at the expense of flexibility in se-
quence length size (i.e. we could not modify the word limit while utilizing
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this pretrained model). We noticed that in our text corpus, less than 2% of
reports were longer than this limitation and thus had to be truncated when
input into the deep learning model, which may impact results. Potentially,
longer pathology reports describe more complicated cases, which may uti-
lize additional procedures. From our cluster analysis, we demonstrated that
this appeared to be the case for a subset of report clusters, though for one
cluster, the opposite was true. However, a vast majority of pathology re-
ports fell within the BERT word limits, so we considered any word
length-based association with CPT code complexity to have negligible im-
pact on the model results. The XGBoost model, alternatively, is able to op-
erate on the entire report text. Thus, XGBoost may more directly capture
interactions between words spanning across document subsections
pertaining to complex cases, which may serve as one plausible explanation
of its apparent performance increase with respect to the BERT approaches.
Although we attempted to take into account the ordinality of case complex-
ity for the assignment of primary CPT codes, such work should be revisited
as ordinal loss functions for both deep learning and tree-based models be-
comemore readily available. Therewere also cases wheremultiple primary
codes were assigned; whereas the ancillary codes were predicted by using a
multitarget objective, and the primary code prediction can be configured
similarly though this was outside the scope of the study.32 Although we
conducted coarse hyperparameter scans, we note that generally such
methods are deemed both practical and acceptable. Although other ad-
vanced hyperparameter scanning techniques exist (e.g., Bayesian optimiza-
tion or genetic algorithm), in many cases, these methods obtain
performance similar to randomized hyperparameter searches and may be
far more resource intensive.59

5. Future directions

Given the secondary objectives of our study (e.g., prediction of ancillary
codes, studying sources of variation in text, i.e. pathologist), we were able
to identify additional areas for follow-up.

First, we were able to assess nuanced pathologist-specific language,
which was largely determined by specialty (e.g. subspecialties such as cy-
tology use highly regimented language, making it more difficult to separate
practitioners). There is also potentially useful information to be gained by
working to identify text that can distinguish pathologists within subspe-
cialties (found as a flag in the Pathology Information System) and condi-
tional on code assignment rather than identify pathologists across
subspecialties. This information can be useful in helping to create more
standardized lexicons/diagnostic rubrics (for instance, The Paris System
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for Urine Cytopathology60). Research into creating a standard lexicon for
particular specialties or converting raw free text into a standardized report
could be very fruitful, especially for the positive impact it would have in
allowing nonpathologist physicians to more easily interpret pathology re-
ports and make clinical decisions. As an example of how nonstandardized
text lexicon can impact reporting, it has long been suspected that outlier
text can serve as a marker of uncertainty or ambiguity about the diagnosis.
For instance, if there is a text content outlier in a body of reports with the
same CPT code, then we can hypothesize that such text may be more
prone to ambiguous phrases or hedging, fromwhich pathologists may artic-
ulate their uncertainty for a definitive diagnosis. As such, we would also
like to assess the impact of hedging in the assignment of procedural
codes, and further its subsequent impact on patient care. As another exam-
ple, excessive ordering of different specialized stains and pathology con-
sults may suggest indecisiveness, as reflected in the pathology report. To
ameliorate these differences in reporting patterns, generative deep learning
methods can be employed to summarize the text through the generation of
a standard lexicon.

Other excellent applications of BERT-based text models include the pre-
diction of relative value units (RVU’s) via report complexity for pathologist
compensation calculations (which is related to primary code assignment)
and the detection of cases that may have been mis-billed (e.g., a code of
lower complexity was assigned), which can potentially save the hospital
resources.61 We are currently developing a web application that will both
interface with the Pathology Information System and can be used to esti-
mate thefiscal impact of underbilling by auditing reportswith false positive
findings. Tools such as Inspirata can also provide additional structuring for
our pathology reports outside of existing schemas.62

Although much of the patient’s narrative may be told separately
through text, imaging, and omics modalities,63 there is tremendous poten-
tial to integrate semantic information contained in pathologist notes with
imaging and omics modalities to capture a more holistic perspective of
the patient’s health and integrate potentially useful information that
could otherwise be overlooked. For instance, the semantic information
contained in a report may highlight specific morphological and macro-
architectural features in the correspondent biopsy specimen that an
image-based deep learning model might struggle to identify without addi-
tional information. Although XGBoost demonstrated equivalent perfor-
mance with the deep learning methods used for CPT prediction, its
usefulness in a multimodal model is limited because these machine-
learning approaches rely heavily on the feature extraction approach,
where feature generation mechanisms using deep learning can be tweaked
during optimization to complement the other modalities. Alternatively, the
semantic information contained within the word embedding layers of the
BERT model can be fine-tuned when used in conjunction with or directly
predicting on imaging data, allowing for more seamless integration of mul-
timodal information. Integrating such information, in addition to struc-
tured text extraction systems (i.e., named entity recognition) that can
recognize and correct the mention of such information in the text, may pro-
vide a unique search functionality that can benefit experiment planning.34

Although comparisons between differentmachine-learningmodels may
inform the optimal selection of tools that integrate with the Pathology In-
formation System, we acknowledge that such comparisons can benefit
from updating as new machine-learning architectures are developed. As
such, we plan to incorporate newer deep learning architectures, such as
the Reformer or Albert, which do not suffer from the word length limita-
tions of BERT, though training all possible language models was outside
of the scope of our study since pretrained medical word embeddings were
not readily available at the time of modeling.

6. Conclusion

In this study, we compare three cutting-edge machine learning tech-
niques for the prediction of CPT codes from pathology text. Our results pro-
vide additional evidence for the utility of machine-learning models to
predict CPT codes in a large corpus of pathology reports acquired from a
11
mid-sized academic medical center. Further, we demonstrated that utiliz-
ing text from parts of the document other than the diagnostic section aids
in the extraction of procedural information. Although both the XGBoost
and BERT methodologies yielded comparable results, either method can
be used to improve the speed and accuracy of coding by the suggestion of
relevant CPT codes to coders, though deep learning approaches present
the most viable methodology for incorporating text data with other pathol-
ogy modalities.
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