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ABSTRACT  Ferroptosis is an iron-dependent, oxidative form of cell death that 
is countered mainly by glutathione peroxidase 4 (GPX4) and the production of 
glutathione (GSH), which is formed from cysteine. The identification of the 
cancers that may benefit from pharmacological ferroptotic induction is just 
emerging. We recently demonstrated that inducing ferroptosis genetically or 
pharmacologically in MYCN-amplified neuroblastoma (NB) is a novel and ef-
fective way to kill these cells. MYCN increases iron metabolism and subse-
quent hydroxyl radicals through increased expression of the transferrin recep-
tor 1 (TfR1) and low levels of the ferroportin receptor. To counter increased 
hydroxyl radicals, MYCN binds to the promoter of SLC3A2 (solute carrier fami-
ly 3 member 2). SLC3A2 is a subunit of system Xc-, which is the cysteine-
glutamate antiporter that exports glutamate and imports cystine. Cystine is 
converted to cysteine intracellularly. Here, we investigated other ways MYCN 
may increase cysteine levels. By performing metabolomics in a syngeneic NB 
cell line either expressing MYCN or GFP, we demonstrate that the transsul-
furation pathway is activated by MYCN. Furthermore, we demonstrate that 
MYCN-amplified NB cell lines and tumors have higher levels of cystathionine 
beta-synthase (CBS), the rate-limiting enzyme in transsulfuration, which leads 
to higher levels of the thioether cystathionine (R-S-(2-amino-2-carboxyethyl)-
l-homocysteine). In addition, MYCN-amplified NB tumors have high levels of 
methylthioadenosine phosphorylase (MTAP), an enzyme that helps salvage 
methionine following polyamine metabolism. MYCN directly binds to the 
promoter of MTAP. We propose that MYCN orchestrates both enhanced cys-
tine uptake and enhanced activity of the transsulfuration pathway to coun-
teract increased reactive oxygen species (ROS) from iron-induced Fenton re-
actions, ultimately contributing to a ferroptosis vulnerability in MYCN-
amplified neuroblastoma. 
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INTRODUCTION 
Both the evasion of cell death and dysregulated metabo-
lism are hallmarks of cancer [1]. Apoptosis has been the 
most studied type of cell death that tumors circumvent, 
and apoptotic-inducing BH3 mimetics have revolutionized 
hematological cancer therapy [2, 3]. More recently, a form 
of non-apoptotic cell death with important metabolic 
cross-talks, termed ferroptosis, has been described [4]. 
Ferroptosis is characterized by the iron (Fe)-dependent 
accumulation of reactive oxygen species (ROS), leading to 
excessive lipid peroxidation and cell death [4, 5].  

Rate-limiting accumulation of iron is at the receptor 
levels - the transferrin receptor protein 1 (TfR1) is respon-
sible for iron import, while ferroportin (FPN) is responsible 
for iron export [6]. We discovered that MYCN-amplified 
neuroblastoma (NB) tumors have high levels of TfR1 and 
low levels of FPN, contributing to increased cellular iron 
levels [7]. Iron contributes to a number of important bio-
logical pathways that promote growth/survival of cancer 
cells, making it perhaps not surprising that iron consump-
tion (for instance, in red meat) correlates with cancer risk 
[8]. Importantly, in addition to its contributions to biologi-
cal pathways, iron also increases cellular ROS through the 
Fenton reaction, leading to the generation of lipid perox-
ides. The accumulation of these lipid peroxides is counter-
acted by the glutathione (GSH)-dependent peroxidase, 
GPX4, which converts lipid peroxides into non-toxic lipid 
alcohols [9]. GSH synthesis requires cysteine. Cystine is the 
major extracellular resource of what eventually becomes 
cysteine. The cell controls extracellular cystine intake 
through an antiporter receptor, where cystine enters as 
glutamate exits. This cystine-glutamate antiporter is com-
posed of a light chain subunit, the 12-pass transmembrane 
protein, solute carrier family 7 member 11 (SLC7A11) (Xc-), 
and a heavy chain subunit, the single-pass transmembrane 
protein solute carrier family 3 member 2 (SLC3A2). Cyste-
ine can also be produced independent of this pathway de 
novo through the transsulfuration pathway [10]. We re-
cently reported that MYCN sensitizes NB to cystine with-
drawal and MYCN binds to and upregulates SLC3A2 and 
increases GSH levels [7], presumably to increase cysteine 
to counteract increased ROS from Fenton reactions. Here, 
we perform mass spectrometry metabolomics to better 
understand the regulation of cysteine by MYCN in NB, and 
to determine whether the transsulfuration pathway con-
tributes cysteine. 

 

RESULTS  
We employed our syngeneic SK-N-SH neuroblastoma cell 
pair expressing exogenous MYCN or GFP [11] and per-
formed untargeted liquid chromatography/tandem mass 
spectrometry of cell lysates to determine changes in a 
broad array of polar metabolites. Our data indicated de-
creased glutamate levels, increased cysteine levels and 
increased cysteinyl-glycine (Cys-Gly) levels, consistent with 
an activated system Xc- antiporter [7]. ’Confirming our 
previously published data from colorimetric analyses of 

GSH levels [7], GSH levels were increased over 5-fold in the 
presence of MYCN (Fig. 1A).  

Importantly, there was also evidence of increased 
transsulfuration pathway activation by MYCN. The trans-
sulfuration pathway transfers a sulfur group from methio-
nine for cysteine biosynthesis. Methionine is an essential 
sulfur containing amino acid that is acquired from the diet 
and converted to the ubiquitous methyl donor, S-adenosyl-
methionine (SAM). SAM donates its methyl group and is 
thus converted to S-adenosyl-homocysteine (SAH). SAH 
hydrolysis results in the production of homocysteine, 
which can then be converted to cystathionine and then to 
cysteine via the transsulfuration pathway (Fig. 1A). Of note, 
homocysteine can also pick up a methyl group from the 
folate cycle, and return as methionine [12]. Cystathionine 
is formed as an intermediate during transsulfuration via 
the condensation of homocysteine by cystathionine β-
synthase (CBS). While we did not detect cystathionine by 
mass spectrometry in these samples, we evaluated the 
DepMap portal metabolites dataset where cystathionine 
was quantified across hundreds of cancer cell lines. Con-
sistent with a role of MYCN increasing the transsulfuration 
pathway, cancer cell lines with high MYCN demonstrated 
high levels of cystathionine (r = 0.199), which likely is 
MYCN driven as other high MYCN cancer cell lines of dif-
ferent tissue origins (e.g., small cell lung cancer) had high 
levels as well (Fig. 1B). This was consistent with a substan-
tial increase of CBS in MYCN-amplified NB compared to 
wild-type tumors (Fig. 2A), however was not the result of 
MYCN binding to the promoter of CBS (Fig. 2B).  

Methionine can also be produced through a methio-
nine salvage pathway generated from polyamine metabo-
lism. Here, methylthioadenosine (MTA) is converted by the 
enzyme MTA phosphorylase (MTAP) to 5-methylthioribose-
1-phosphate (MTR-1P), a precursor of methionine. We 
found MTAP was highly elevated in MYCN-amplified NB 
tumors [13, 14] (Fig. 2A) and, confirmed an earlier report 
that MYCN  binds the promoter of MTAP [15] (Fig. 2B). 
These data demonstrate MYCN binds to the promoter of 
MTAP to increase salvage of methionine, likely contributing 
to sustained methionine levels which could perpetuate 
cysteine biosynthesis. Mass spectrometry in the same 
syngeneic SK-N-SH cell line confirmed increased expression 
of CBS (2.52-fold) and MTAP (14.85-fold) (Fig. 2C and Table 
S1). Treatment with propargylglycine (PAG) [16], a phar-
macological inhibitor of the key enzyme in the transsul-
furation pathway that catalyzes the hydrolysis of cystathi-
onine into cysteine, cystathionine γ-lyase (CSE), was suffi-
cient to sensitize two MYCN-amplified NB cell lines to sys-
tem Xc- inhibition (Fig. 2D). Significant accumulation of the 
dimeric form of TfR1 [17] in the presence of both inhibitors 
evidenced ferroptosis (Fig. 2E) [18]. Our results from this 
study and our previous one [7] are summed up in Fig. 3. 
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FIGURE 1: Overexpression of MYCN leads to high levels of cystathionine. (A) Changes in key metabolites of the glutathione and the trans-
sulfuration pathway after analyzing SK-N-SH MYCN and GFP cells by untargeted liquid chromatography/tandem mass spectrometry. Samples 
were run in quintuplicate. For high throughput/untargeted metabolomics, compounds are resolved by liquid chromatography and then ana-
lyzed for mass and fragmentation by tandem mass spectrometry. In complex biological mixtures such as cell lysates, the liquid chromatog-
raphy-based resolution is not optimized for any one metabolite, and therefore some metabolites of interest (e.g., cystathionine) may not be 
readily identified. The numbers represent the log2 (fold change) of the metabolites in SK-N-SH MYCN compared to SK-N-SH GFP cells; p-
values were determined by t-test with false discovery rate. (B) DEPMAP (Broad Institute consortium) analysis of the correlation between 
cystathionine and MYCN expression among 910 cancer cell lines of all cancer subtypes. For all statistical considerations differences were 
considered statistically significant if P < 0.05. For all calculated P values: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 



K.V. Floros et al. (2022)  MYCN increases cystathionine production 

 
 

OPEN ACCESS | www.cell-stress.com 24 Cell Stress | FEBRUARY 2022 | Vol. 6 No.  

 

FIGURE 2: MYCN induces the transsulfuration pathway to further protect neuroblastomas from ferroptotic cell death. (A) Box plots from 
datasets obtained from R2 platform demonstrating differential RNA expression of CBS and MTAP enzymes in MYCN-amplified neuroblastoma 
tumors compared with MYCN-wt neuroblastoma tumors. Mann–Whitney test was performed. (B) MYCN signal in the promoters of MTAP 
and CBS genes in the corresponding neuroblastoma cell lines. 24 h - signal post MYCN shutdown. Signal tracks were scaled to the same range 
for comparison. Red bar represents statistically significant MYCN binding in the MTAP promoter and lack of binding in the CBS promoter. (C) 
Fold- change  in  the expression levels  of CBS and MTAP proteins  between  SK-N-SH MYCN and SK-N-SH GFP  cells  analyzed by LC-MS. Three  
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DISCUSSION 
To suppress oxidative lipid damage and ferroptosis, our 
data reveal that MYCN-amplified NB employs an overactive 
GSH pathway, which is at least in part due to a direct result 
of MYCN upregulation of SLC3A2 [7] important for stabili-
zation of system Xc- [19].  

Here we performed select metabolic profiling in an NB 
cell line that was engineered to expresses exogenous 
MYCN or GFP, to determine other sources of cysteine in 
the cell that could help counteract ROS. We found higher 
levels of metabolites involved in the transsulfuration 
pathway and confirmed in cell lines there are high levels of 
cystathionine across different tissues of high MYCN-
expressing cancers. Consistent with an oncogene effect, we 
found strikingly high levels of CBS, the enzyme that forms 
cystathionine and the rate-limiting enzyme in transsulfura-
tion in the MYCN-amplified NB tumors. Interestingly, CBS 
catalyzes the condensation of serine and homocysteine 
(Hcy) to form cystathionine. Serine synthesis has been re-
ported to be important for MYCN-amplified NB, once again 
a result of direct MYCN upregulation of the key enzymes in 
the pathway [20]. We also observed high MTAP expression, 
an enzyme in the methionine salvage pathway that con-
verts the polyamine nucleoside byproduct MTA, to a me-
thionine precursor. Polyamine catabolism is an important 
growth/survival pathway in NB [21]. In fact, ornithine de-
carboxylase carnitine (ODC) is upregulated by MYCN, lead-
ing to upregulation of polyamine biosynthesis [22]. In addi-
tion, while MYCN-amplified NB tumors have increased ex-
pression of both system Xc- components compared to 
MYCN wild-type tumors (SLC7A11 and SLC3A2); however, 
both are relatively lowly expressed in NB compared to oth-
er tumors (ref. [23] and the DepMap portal, depmap.org), 
which suggested to us that there may be other contribu-
tions to cysteine biosynthesis. Indeed, treatment with a 
pharmacological inhibitor of PAG with sulfasalazine (SAS) 
led to enhanced ferroptosis (Fig. 2E) evidencing an additive 
role of the transsulfuration pathway to help detoxify ROS 
from iron metabolism in MYCN-amplified NB.  

Noteworthy, the cell lines used in the current study 
were maintained in regular CO2 incubators with an oxygen 
tension matching that of atmospheric oxygen levels (~20%). 
This is much higher than the oxygen levels experienced in 
vivo (~5%). Exposure to more physiological oxygen condi-
tions might partially affect the data collected from our 
metabolomic experiments [24]. 

How may these results be clinically translated? Buthi-
onine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine 

synthetase (γ-GCS), the rate limiting enzyme in GSH syn-
thesis, effectively reduces GSH in NB cell lines [7, 25]. BSO 
was investigated recently in a phase I trial in combination 
with melphalan. BSO was administered as a 3 g/m2 bolus 
and was well tolerated in 28 patients with recur-
rent/refractory NB [26]. As such, BSO is likely currently the 
most compelling drug to translate in a biomarker-directed 
(i.e., MYCN amplification) way. How do we target the 
transsulfuration pathway in combination with BSO? One 
such interesting possibility is the experimental recombi-
nant methioninase (rMETase) which blocks methionine 
dependent xenografts and have been dosed successfully in 
patients [27].  

In conclusion, MYCN increases cystathionine produc-
tion and directly upregulates MTAP, shunting methionine 
into the transsulfuration pathway, contributing cysteine. 
Thus, in addition to system Xc- receptor activation, this 
pathway provides another source for cysteine metabolism 
in MYCN-amplified NB. Targeting this part of the pathway 
in conjunction with canonical inhibitors like BSO may be an 
exciting avenue of therapy for MYCN-amplified NB, and 
advances our understanding of how MYCN meets the en-
hanced GSH reliance in MYCN-amplified neuroblastoma. 
 
MATERIALS AND METHODS 
Cell lines 
The cell lines SK-N-SH, SIMA and KELLY were from the Molecu-
lar Center Therapeutics Laboratory at Massachusetts General 
Hospital (Boston, MA), which performs routine testing of cell 
lines by single-nucleotide polymorphism and short tandem 
repeat analysis. The SK-N-SH cell line was cultured in 
DMEM/F12 (50:50) supplemented with 10% FBS, 1 μg/mL 
penicillin and streptomycin. The SIMA and KELLY cell lines 
were cultured in RPMI 1640 supplemented with 10% FBS,  
1 μg/mL penicillin and streptomycin. All three cell lines were 
used for less than 40 passages but were not independently 
authenticated. They were regularly screened for Mycoplasma 
using a MycoAlert Mycoplasma Detection Kit (LT07–318; Lon-
za). All cell lines were maintained in a CO2 incubator under 
regular cultured conditions (37oC, 5% CO2, ~20% oxygen ten-
sion) 

 
Reagents and antibodies 
The following reagents were purchased: Sulfasalazine (SAS) 
(S0883; Sigma-Aldrich), DL-Propargylglycine (PAG) (P7888; 
Millipore Sigma). The antibodies used for immunoblotting in 
this study were as follows: anti-GAPDH (sc-32233; Santa Cruz), 
Transferrin Receptor Monoclonal Antibody (H68.4) (13-6800; 
ThermoFisher Scientific). 

 

biological replicates have been used for the mass spec analysis. For statistical significance ANOXA test was performed. The data has been 
included in supplemental material (Table 1S). For the 3D structures of MTAP and CBS molecules the Protein Data Bank (PDB) was used. 
More specifically, for the MTAP molecule, PDB ID: 3OZE [36] and for the CBS molecule, PDB ID: 1JBQ [37]. (D) The MYCN-amplified neuro-
blastoma cell lines KELLY and SIMA were treated with 0 and 1000 μM of sulfasalazine (SAS) with or without 1mM propargylglycine (PAG) for 
36 h (KELLY) and 24 h (SIMA) and cell viability was assessed by CellTiter-Glo (n=3; error bars, +SD). (E) Whole-cell lysates were prepared from 
KELLY and SIMA cells that were treated overnight with (i) no drug (No Rx), (ii) 1mM propargylglycine (PAG), (iii) 1mM sulfasalazine (SAS) and 
(iv) their combination, subjected to western blotting, and probed for the indicated proteins. For D, Student t test was performed, and P 
values were corrected for multiple testing using Bonferroni method. For all statistical considerations differences were considered statistical-
ly significant if P < 0.05. For all calculated P values: *, P < 0.05; **, P < 0.01. 
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Western blotting 
Cells were lysed in lysis buffer (20 mM Tris, 150 mM NaCl, 1% 
Nonidet P-40, 1 mM EDTA, 1 mM EGTA, 10% glycerol, and 
protease and phosphatase inhibitors), incubated on ice for 15 
min, and centrifuged at 16,000 x g for 10 min at 4 °C. Equal 
amounts of the detergent-soluble lysates were resolved using 
the NuPAGE Novex Midi Gel system on 4–12% Bis–Tris gels 
(Invitrogen), transferred to PVDF membranes (PerkinElmer) in 
between six pieces of Whatman paper (Fisher Scientific) set in 
transfer buffer from Biorad with 20% methanol, and following 
transfer and blocking in 5% nonfat milk in PBS, probed over-
night with the antibodies listed above. Representative blots 
from several experiments are shown in the figures. Chemilu-
minescence was detected with the Syngene G: Box camera 
(Synoptics). 

 
Cell viability assay  
The CellTiter-Glo experiments were performed in 96-well flat-
bottom black plates. Cells were treated with 25 μL of CellTiter-
Glo (G7573; Promega), following continuous drug treatment 
(each time with the indicated drugs at the indicated concen-
trations), at 37°C and 5% atmospheric CO2 and immediately 
read on a H1 Biotek plate reader according to the Promega 
protocol. Quantification of non-treatment seeded cells was 

used to determine the total cell growth number over the ex-
periment. 

 
Vector construction and establishing stable cell lines 
The pLENTI-GFP control plasmid was previously described [28]. 
The plasmid pMXs-hu-N-Myc [29] was a gift from Shinya Ya-
manaka (50772; Addgene) and cloned into the pLENTI back-
bone to form pLENTI-MYCN. SK-N-SH cells were transduced 
with plasmid-containing viral particles and viral particles were 
generated in 293T cells and collected after 48 h.  

 
Database analyses 
Gene expression datasets were obtained from the 
R2:Genomics analysis and visualization platform 
(http://r2.amc.nl), which contains data from the tumor neuro-
blastoma datasets including: Kocak [30] and SEQC [31]. These 
datasets contain mRNA expression data. The analysis was 
performed with R2, and the data and p-values were down-
loaded. MYCN/Cystathionine correlation data were obtained 
from DepMap consortium (https://depmap.org/portal/). For 
Figure 1D: MYCN ChIP-seq hg38 data were obtained from 
Cistrome DB [32]. Data for SHEP21 and KELLY neuroblastoma 
cell lines (Cistrome DB: 84181, 84176, 88303) were from Zeid 
et al. study [33]. Data for SK-N-BE(2)-C neuroblastoma cell line 

FIGURE 3: Suggested model for the metabolic pathways that lead to accumulation of cysteine and ultimately to glutathione (GSH) and 
inhibition of lipid peroxidation in MYCN-amplified neuroblastomas. Cysteine can derive either (1) from cystine that is imported by system 
xc-, or (2) from cystathionine that is produced from methionine through the transsulfuration pathway. To provide adequate fuel molecules 
to the transsulfuration pathway, MYCN orchestrates the induction of the key enzymes CBS and MTAP. 

https://depmap.org/portal/
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(Cistrome DB: 69364) were from Hsu et al. study [34]. IGV 
browser was used to visualize ChIP-seq signal [35]. 

 
LC-MS analysis 
The samples (SK-N-SH MYCN/GFP) were solubilized using a 
Bead Beater, then reduced with 10 mM DTT in 0.1 M ammo-
nium bicarbonate and then alkylated with 50 mM iodoacetam-
ide in 0.1 M ammonium bicarbonate (both room temperature 
for 0.5 h). The samples were then digested overnight at 37°C 
with 0.5 µg trypsin in 50 mM ammonium bicarbonate. The 
samples were acidified with acetic acid to stop digestion and 
then spun down and further purified using C18 tips. The solu-
tions were evaporated to 20 µL for MS analysis. 

The LC-MS system consisted of a Thermo Exploris 480 
mass spectrometer system with an Easy Spray ion source con-
nected to a Thermo 75 µm x 15 cm C18 Easy Spray column. 
 5 µL of the extracts were injected and the peptides eluted 
from the column by an acetonitrile/0.1 M formic acid gradient 
at a flow rate of 0.3 µL/min over 2.0 hours. The nanospray ion 
source was operated at 1.9 kV. The digest was analyzed using 
the rapid switching capability of the instrument acquiring a full 
scan mass spectrum to determine peptide molecular weights 
followed by product ion spectra (Top10 HCD) to determine 
amino acid sequence in sequential scans. This mode of analy-
sis produces approximately 25000 MS/MS spectra of ions 
ranging in abundance over several orders of magnitude. Not 
all MS/MS spectra are derived from peptides. The data were 
analyzed by database searching using the Sequest search algo-
rithm against Uniprot Human. The samples (SK-N-SH 
MYCN/GFP) produced identifications for ~4000 proteins. The 
samples were grouped in triplicate by condition and ANOVA 
analysis was performed.  

 
Metabolomics 
MYCN or GFP-expressing SK-N-SH cells were snap-frozen. Pel-
lets were resuspended in 20% methanol/water and cells were 
lysed via sonication. Samples were centrifuged for 5 minutes 
at 5,000 x g to pellet insoluble material. Supernatant was ana-
lyzed by liquid chromatography/tandem mass spectrometry 
using the ThermoFisher Q-Exactive HF system. Cell lysates 
were resolved by liquid chromatography on a Vanquish UHPLC 
system on a silica column using a gradient from 50:50 acetoni-
trile:water with 0.1% formic acid to 1:99 acetonitrile: water 
with 0.1% formic acid at a flow rate of 300 µl/min, or on a 
HILIC column using a 50:50 acetonitrile:water with 0.1% for-
mic acid and 5mM ammonium formate  50:50 methanol:water 
with 0.1% etc. 

Samples were analyzed in both positive and negative ion 
mode. In each ion mode, aliquots of each sample were pooled 
to generate representative MS2 spectra. Compound Discover-
er v. 3.1. was used to deconvolute raw LC/MS data with re-
spect to alignment and peak area determination. Compounds 
were identified relative to the MS2 spectra from the pooled 
sample. Statistical analysis was performed by Compound Dis-

coverer v. 3.1. Samples were run in quintuplicate. For high 
throughput/untargeted metabolomics, compounds are re-
solved by liquid chromatography and then analyzed for mass 
and fragmentation by tandem mass spectrometry. In complex 
biological mixtures such as cell lysates, the liquid chromatog-
raphy-based resolution is not optimized for any one metabo-
lite, and therefore some metabolites of interest (e.g., cysta-
thionine) may not be readily identified. 
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