Skip to main content
. 2022 Jan 20;8:e828. doi: 10.7717/peerj-cs.828

Algorithm 2. Hyper-matheuristic algorithm.

   REQUIRE: Hyper-matheuristic parameters, MILP Problem
   ENSURE: Hi, Best metaheuristic.
1  Fix limits for all the parameters in the scheme (upper and lower bound);
2  for i = 1 to NIM do
3    Generate matheuristic Hi;
4  End
5  for i = 1 to NIM do
6   Solve problem using the matheuristic in Hi;
7   for k = 1 to i do
8    if (Hi solution quality) < (Hk solution quality) then
9     Compare parameters between the metaheuristics;
10     Improve the matheuristic Hi modifying the parameters with more differences;
11    end
12   end
13  end
14  for i = NIM to NIM + NFM do
15   Select two matheuristics randomly from those generated in step 3;
16   Combine their parameters to create a new metaheuristic;
17   Execute steps from line 6 to 12;
18  end
19  Classify all the solutions by quality and time;
20  Select the best matheuristic (which maximize fitness/time), and save parameters;