
An integrative study of genetic variants with brain tissue 
expression identifies viral etiology and potential drug targets of 
multiple sclerosis

Astrid M Manuel1, Yulin Dai1, Leorah A. Freeman2, Peilin Jia1,*, Zhongming Zhao1,3,4,*

1Center for Precision Health, School of Biomedical Informatics, The University of Texas Health 
Science Center at Houston, Houston, TX 77030, USA,

2Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 
78712, USA,

3Human Genetics Center, School of Public Health, The University of Texas Health Science Center 
at Houston, Houston, TX 77030, USA,

4Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 
37203, USA

Abstract

Multiple sclerosis (MS) is a neuroinflammatory disorder leading to chronic disability. Brain 

lesions in MS commonly arise in normal-appearing white matter (NAWM). Genome-wide 

association studies (GWAS) have identified genetic variants associated with MS. Transcriptome 

alterations have been observed in case-control studies of NAWM. We developed a Cross-Dataset 

Evaluation (CDE) function for our network-based tool, Edge-Weighted Dense Module Search of 

GWAS (EW_dmGWAS). We applied CDE to integrate publicly available MS GWAS summary 

statistics of 41,505 cases and controls with collectively 38 NAWM expression samples, using the 

human protein interactome as the reference network, to investigate biological underpinnings of 

MS etiology. We validated the resulting modules with colocalization of GWAS and expression 

quantitative trait loci (eQTL) signals, using GTEx Consortium expression data for MS-relevant 

tissues: 14 brain tissues and 4 immune-related tissues. Other network assessments included a 

drug target query and functional gene set enrichment analysis. CDE prioritized a MS NAWM 

network containing 55 unique genes. The gene list was enriched (p-value = 2.34×10−7) with 

GWAS-eQTL colocalized genes: CDK4, IFITM3, MAPK1, MAPK3, METTL12B and PIK3R2. 
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The resultant network also included drug signatures of FDA-approved medications. Gene set 

enrichment analysis revealed the top functional term “intracellular transport of virus”, among other 

viral pathways. We prioritize critical genes from the resultant network: CDK4, IFITM3, MAPK1, 
MAPK3, METTL12B and PIK3R2. Enriched drug signatures suggest potential drug targets and 

drug repositioning strategies for MS. Finally, we propose mechanisms of potential MS viral onset, 

based on prioritized gene set and functional enrichment analysis.
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INTRODUCTION

Multiple sclerosis (MS) is a neuroinflammatory disease characterized by autoimmune 

attacks on the myelin sheaths of central nervous system (CNS) neurons. MS affects nearly 

one million people in the United States who are typically 20 to 40 years old when diagnosed, 

and it is one of the leading causes of disability in young adults (Wallin et al., 2019). MS 

lesions commonly affect the CNS white matter, but the normal-appearing white matter 

(NAWM) surrounding MS lesions may also be microscopically damaged (Moll et al., 2011). 

MS pathogenesis mechanisms may begin in the NAWM (van der Poel et al., 2019; Zeis 

et al., 2008). Different immune cell subsets have been described in the inflamed CNS 

and contribute to the pathophysiology of MS, including lymphocytes, macrophages, and 

resident microglial cells (Jordão et al., 2019). The suspected environmental trigger in MS 

is unknown, and the determination of genetically predisposing factors continues to be a 

popular area of research. It is hypothesized that immune response activation is stimulated 

by a viral infection leading to a T cell auto-reactivity process involving molecular mimicry 

(Dendrou et al., 2015). Some findings support the hypothesis of viral involvement, as 

Epstein Barr Virus (EBV) infection has been linked to MS risk. Furthermore, genetic risk 

factors may affect the immune response against EBV infection in MS (Agostini et al., 2018). 

Another hypothesis is that epigenetic factors, such as methylation, contribute to the onset of 

the disease by dysregulating genes in MS (Koch et al., 2013).

Studying genetic factors of MS may aid to better understand the etiology of this elusive 

disorder, given that hereditary patterns have been observed. Genome-wide association 

studies (GWAS) in particular have successfully identified several genetic loci associated 

with MS by screening the genotypes of large population samples (Dendrou et al., 2015; 

Jordão et al., 2019). For instance, the latest GWAS of MS has identified more than 200 

variants/loci associated with MS by screening the genotypes of a population of 47,429 

MS cases and 68,374 control subjects (Patsopoulos et al., 2019). However, the context 

in which these associations manifest the molecular changes remains unclear (Patsopoulos 

et al., 2019). The gene expression profiling of disease-related tissues of MS has revealed 

differentially expressed genes in MS (Hendrickx et al., 2017; van der Poel et al., 

2019), while the roles that genetic factors play during the disease pathogenesis are still 
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elusive. Integrating the disease-related tissue expression with GWAS signals can aid in 

understanding the biological basis of disease-associated genetic variants (Yan et al., 2020).

Previously, we conducted a network analysis of MS GWAS data sets from 2009 and 2011 

(Manuel et al., 2020). We successfully linked GWAS signals to viral infection hypothesis 

of MS etiology, as well as MS drug targets. Here, we focus on the NAWM as an important 

and meaningful tissue type in MS (Moll et al., 2011; Zeis et al., 2008), which may provide 

further insights into mechanisms of MS onset and MS drugs. As network-based analyses can 

aid in detecting combinatory signals of identified genomic and transcriptomic annotations, 

we integrate the largest, publicly available MS GWAS dataset with gene expression profiles 

of MS NAWM post-mortem brain tissue, and use the human protein interactome as the 

reference network (Patsopoulos et al., 2019). We apply the Edge-Weighted Dense Module 

Search of GWAS (EW_dmGWAS) algorithm to perform this integrative network-based 

study in efforts to depict underlying MS mechanisms from biological data (Wang et al., 

2015). By following the EW_dmGWAS algorithm, nodes of network modules are weighted 

by GWAS signals, and edges are weighted by differential gene co-expression (Wang et al., 

2015). This algorithm can effectively combine the genetic association signals at the DNA 

(genetic variants from GWAS) and RNA (transcriptomic profiles) levels.

Another aim of this study is to perform a novel network-based evaluation to identify 

consistent signals of MS NAWM gene expression datasets, by integrating with a well 

powered MS GWAS dataset. To overcome the common flawed reproducibility issue with 

gene expression profiling (Zhang et al., 2008), we develop and apply a cross-dataset 

evaluation (CDE) function to identify replicated results and deliver more reproducible 

outcomes.

MATERIALS AND METHODS

We consider gene-expression datasets derived from MS NAWM and independently integrate 

each dataset with the largest up-to-date MS GWAS summary statistics data (Patsopoulos 

et al., 2019). Our EW_dmGWAS version 3.0 tool was used for this network-based 

integrative study (Wang et al., 2015). To construct the human protein interactome, multiple 

sources were integrated by compilation of experimentally validated human protein-protein 

interactions (PPIs). The compiled PPIs originated from the following sources: BioGRID 

(Oughtred et al., 2019), ESCAPE (Xu et al., 2013), HINT (Das and Yu, 2012), IRefIndex 

(Razick et al., 2008), ReactomeFI (Croft et al., 2011), and STRING (Szklarczyk et 

al., 2019). Two gene expression datasets of MS NAWM, with matched controls, were 

gathered from the Gene Expression Omnibus (GEO) database, which collectively included 

38 MS NAWM and matched control post-mortem brain tissue samples (Barrett et al., 

2013; Hendrickx et al., 2017; van der Poel et al., 2019). The first gene expression study, 

considered as the discovery dataset in the present work, performed whole transcriptome 

shotgun sequencing (RNA-seq) on 10 samples of isolated microglia from MS NAWM 

and 11 matched controls (van der Poel et al., 2019). The other dataset, considered as the 

evaluation dataset, comprised microarray profiles of 7 samples of chronic active perilesional 

MS NAWM and 10 matched controls (Hendrickx et al., 2017). Subsequently, we developed 

a Cross-Dataset Evaluation (CDE) feature for EW_dmGWAS to detect replicated results 
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in both the discovery and evaluation MS NAWM expression datasets. Lastly, we evaluate 

our resulting networks with several enrichment analyses: MS FDA-approved drug target 

enrichment, enrichment of GWAS-eQTL colocalization genes, and gene set enrichment 

analysis.

GWAS-based node weight calculations

We collected the most recent GWAS summary statistics with the largest samples for MS 

so far, conducted by the International Multiple Sclerosis Genetics Consortium (IMSGC), 

which was made publicly available at its website (http://imsgc.net/, Patsopoulos et al., 2019). 

This IMSGC GWAS summary statistics dataset included 41,505 individuals (14,802 MS 

cases and 26,703 controls) of European descent. The publicly available GWAS summary 

statistics collected pertained to the discovery cohort of the recent MS GWAS. The genotype 

data were imputed by the original IMSGC study, based on the 1000 Genomes Projects 

(1KGP) European Panel (Patsopoulos et al., 2019). In total, the GWAS summary statistics 

included association results for a total of 8,868,766 single nucleotide polymorphisms 

(SNPs), including those on the X chromosome, either genotyped or imputed (INFO > 0.1).

Nodes within our networks represented genes weighted by gene-level p-values (pg), which 

were calculated by the Pathway Scoring Algorithm (Pascal) from IMSGC GWAS summary 

statistics (Lamparter et al., 2016). Considering the potential biases from gene length, SNP 

density and the local linkage disequilibrium (LD) structure (1KGP Europeans), Pascal 

utilizes the sums of chi-squares to combine all SNPs in the gene body and 50 kb up- and 

down-stream of the gene body. We further excluded those genes failed the quality control 

(i.e. too few SNPs were observed for the corresponding genes). The GWAS-based node 

weights (v), representing vertices in networks, were obtained by transferring pg to z-scores, 

following the normal distribution function.

Edge weight calculation from NAWM tissue expression

Pearson correlation coefficient (PCC) values were used to generate gene co-expression 

matrices for MS NAWM cases and controls. To quantify the RNA-seq expression, we 

obtained the Reads Per Kilobase of transcript, per Million mapped reads (RPKM). We 

used log2(RPKM +1) values for the RNA-seq discovery set and microarray intensities for 

the evaluation set. PCC values of gene-gene co-expression corresponding to PPIs from 

our human protein interactome compilation were matched. Fisher’s Transformation of PCC 

values was performed for normalization, and the Fisher’s Test of Differing Conditions 

was conducted for MS NAWM cases versus controls of gene expression, as previously 

described (Wang et al., 2015). Edge weight z-scores (e) and respective p-values (pe) were 

transferred from Fisher statistic values, following the normal distribution (Wang et al., 

2015). Differential co-expression was defined by edge weight scores transferring below the 

nominal p-value (pe < 0.05; |e| > 1.96). Lastly, all genes with attainable GWAS-based node 

weights, human PPIs and differential co-expression edge weights were matched. Custom 

scripts coded in the R programming language, which may be found in the GitHub repository 

(https://github.com/astrika/MS_NAWM_CrossDatasetEvaluation), performed all statistical 

analyses for edge weight calculations and node weight matching.
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Implementation of EW_dmGWAS for gene module identification

Node weights and edge weights of respective genes and PPIs were input for EW_dmGWAS. 

A dense module searching method was used to score modules by

S = λ
∑eϵE edgeweigℎt e

No . of E +
∑vϵV nodeweigℎt v

No . of V ,

where S represents the module score, E represents the set of edges, e represents each 

edge weight, V represents the set of nodes, v represents each node weight, and λ is a 

scaling factor for GWAS and gene-expression values (Wang et al., 2015). In this work, 

we used λ = 1. When we used the parameter λ = 1, we assumed the genetic factors and 

expression factors contributed equally to the module network, though such weights can be 

adjusted under specific cases. Lastly, modules were ranked by EW_dmGWAS based on 

1,000 permutations of signal-enrichment from both genomic and gene expression profiling 

of MS cases and controls. In summary, interactions between genes were considered edges 

within our networks, resulting from annotations of human PPIs and enhanced by differential 

genetic co-expression in MS NAWM cases versus controls.

Cross-Dataset Evaluation (CDE) framework

This newly developed CDE feature identifies consistently enriched signals for both a 

discovery expression dataset and an evaluation expression dataset, in conjunction with trait-

associated GWAS summary statistics. In this study, the CDE feature assesses overlapping 

signals of independent MS NAWM expression datasets, also considering MS genomic 

variations as an anchoring factor, as nodes remained weighted by IMSGC GWAS. The MS 

NAWM RNA-seq dataset was considered the discovery set, as RNA-seq experiments show 

higher specificity than microarray assays (Wang et al., 2009). The MS NAWM microarray 

dataset was considered the evaluation set. The module list of the discovery set was the 

input for the CDE algorithm. Edge scores of each module in module list were recalculated 

based on evaluation set (co-expression values of MS NAWM microarray data). We used the 

same node weights, calculated from the 2019 MS GWAS, for both the discovery set and the 

evaluation set. New evaluation module scores were obtained by computing the sum of node 

scores and edge scores, considering the same scaling of edge scores used in the discovery set 

analysis. The resulting CDE modules output by CDE were only those overlapping above the 

97.5% quantile of discovery set permutation module scores and newly ascertained evaluation 

module scores. The CDE algorithm was coded in a custom R script, which may be accessed 

at https://github.com/astrika/MS_NAWM_CrossDatasetEvaluation.

MS GWAS-eQTL colocalization using disease-relevant GTEx tissues

We conducted GWAS-eQTL colocalization by using a Bayesian method (Giambartolomei et 

al., 2014). This method evaluates whether the GWAS and eQTL associations best fit a model 

in which the associations are due to a single shared variant (summarized by the posterior 

probability). Firstly, we parsed all genome-wide significant (p < 5 × 10−8) SNPs. The SNPs 

were LD-pruned by plink (r2 < 0.1) on 1KPG European panel following the methods in 

Patsopoulos’s work (Patsopoulos et al., 2019; Purcell et al., 2007). Tag SNP region was 
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identified by r2 > 0.8 for each index LD-pruned SNPs. We further excluded those tag SNP 

regions overlapped with the MHC region (Chr. 6: 24–35 Mbp, hg19 Genome Assembly). For 

eQTL data, we used 18 tissues including all 14 brain tissues and 4 immuno-related tissues 

in GTEx V7 (data accessed by 06/15/2018) (Lonsdale et al., 2013). We systematically 

implemented the colocalization analysis for the 500-kb window around each Tag SNP region 

using eQTL from these 18 MS related tissues (GTEx V7) and MS summary statistics 

(Giambartolomei et al., 2014). A posterior probability (H4) of colocalization ≥ 0.8 was 

considered as strong evidence for a causal gene. The causal genes with strong evidence of 

colocalization (H4 ≥ 0.8) are referred to as egenes. We report these intersected “causal” 

signals (eQTL and GWAS) and the corresponding egenes in Supplementary Table 1.

Assessment of prioritized gene modules by distinct enrichment analyses

Gene sets pertaining to the prioritized modules of CDE, as well as top 100 ranking modules 

of each independent gene expression data, were each assessed through gene set enrichment 

analysis (GSEA) using ToppGene (Kaimal et al., 2010), based on Gene Ontology (GO) 

Biological Process annotations (Gene Ontology Consortium, 2004). We used the GO 

Biological Process annotations because these terms have been commonly considered as 

biological pathways in the gene set enrichment analysis (Wang et al., 2011; Jia et al., 2012). 

The gene set size was set between 5 and 500 genes to avoid too general or too small GO 

terms to be analyzed. GSEA results were then filtered to include only the terms with at least 

3 contributing genes from the query gene list and with Benjamini-Hochberg adjusted p-value 

(false discovery rate, FDR) being < 0.05 (Benjamini and Hochberg, 1995).

We collected a comprehensive list of FDA-approved drugs for MS, and their respective 

drug targets from DrugBank database annotations (downloaded by 03/11/2019) (Wishart et 

al., 2018). A query was conducted for assessment of module genes, which considered any 

32 target genes of MS FDA-approved drugs within top modules. To check potential drug 

targets, we also performed a query with annotated drug pathways from the “FDA-approved 

drugs collection” of the Drug Signature Database (DSigDB) (assessed by 02/27/2020) (Yoo 

et al., 2015). We further computed hypergeometric enrichment, to assess overlapping genes 

between our modules and Drug Signatures (Hahne et al., 2008). Lastly, to provide more 

genetic evidence for our resultant CDE network, gene sets were cross-referenced with 111 

significant eQTL genes.

RESULTS

Network modules with GWAS-based node weights and expression-based edge weights

We compiled the reference network from various sources (see Methods), which included 

21,139 genes and 412,494 experimentally validated human PPIs. Next, the gene-based 

association analysis was performed independently of PPI network compilation, by 

consideration of solely the IMSGC GWAS SNP-level data. Pascal scoring of IMSGC 

GWAS summary statistics yielded 21,762 successfully (denoted “SUCCESS” by Pascal) 

attained gene-level p-values (pg). RNA-seq differential co-expression profiles in MS NAWM 

microglia produced 305,173 edge weight values matched to human PPI interactions 

involving 13,964 unique genes. EW_dmGWAS yielded 1,996 modules with scores (Sm) 
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greater than 2.46 and less than 15.60 for the RNA-seq discovery set. When filtering values 

of differential co-expression in microarray profiling of active perilesional MS NAWM 

(evaluation set), we matched 15,316 GWAS-based node weights with 322,728 human PPI 

edge weights. EW_dmGWAS yielded 2,101 modules (2.39 < Sm < 15.70) for the evaluation 

set.

With the scaling factor λ=1, the GWAS-based node weights accounted for a higher 

proportion in the module score because there were differences in the distributions of node 

weights versus edge weights (Supplementary Figure 1). In this way, higher weights were 

applied to the dataset with higher statistical power, given that the MS GWAS had a much 

larger sample size than the expression datasets.

Top modules of independent analyses present drug target genes of MS medications

The top 100 ranking modules of the RNA-seq discovery dataset exhibited permutation 

scores (Zperm) greater than 7.22, containing 196 unique genes. Notably, this gene set 

included gene HDAC1 [GWAS gene-based p-value (pg) = 4.71 × 10−5] (Figure 1A). 

HDAC1 is the molecular target of FDA-approved MS drug Fingolimod. HDAC1 presented 

differential co-expression with the genes STAT3 (pg = 3.09 × 10−12) and MORF4L1 (pg 

= 5.10 × 10−5), as shown in Figure 1B. Some sparse correlations were observed in Figure 

1B due to the small sample size of the MS NAWM discovery dataset. To examine the 

sparse correlations, and to avoid the potential impact of extreme points, we used rank-based 

Spearman correlation. Although there were slight differences in the Pearson and Spearman 

correlations, all negative correlations remained negative, while all positive correlations also 

remained positive (Supplementary Figure 2). Other MS drug targets present in top 100 

modules of discovery set included IFNAR1 (pg = 2.05 × 10−4), KEAP1(pg = 2.31 × 10−9) 

and RELA (pg = 6.77 × 10−6), none of which were reported in the original gene expression 

studies (Supplementary Figure 3A–D).The top 100 ranking modules of the evaluation set 

yielded Zperm > 7.47. They comprised 199 non-redundant genes, including target genes of 

MS medications: KEAP1 (pg = 2.31 × 10−9) and RELA (pg = 6.77 × 10−6). These two genes 

were not reported in the original gene expression study (Supplementary Figure 3E–F).

CDE identified replicated differential expression relationships in MS NAWM datasets

Cross-Dataset Evaluation of NAWM expression datasets prioritized 19 modules comprising 

55 non-redundant genes from the 1,996 discovery set modules identified. These 19 modules 

were prioritized by our CDE analysis because their calculated discovery and evaluation 

module scores overlapped over the 97.5% quantile (Figure 2A). From the 19 modules 

depicted by CDE, we selected the module with the highest sum of edge scores in both 

discovery set and evaluation set as the top-ranked module (Figure 2B). We considered the 

module with the highest sum of edge scores because edge scores represent differential 

co-expression, a key part of the CDE analysis. Intriguingly, this module showed a similar 

differential co-expression relationship between the genes TEC (pg = 2.11 × 10−6) and VAV1 
(pg = 7.21 × 10−4) in both the discovery set and evaluation set modules (Figure 2C). Nine 

other differential co-expression relationships were present in the prioritized CDE modules 

(Supplementary Table 2).
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Enrichment of MS GWAS-eQTL colocalized genes in resultant gene networks

The MS GWAS-eQTL colocalization analysis (see Methods) identified 111 genes with 

GWAS-eQTL pairs, which are reported in Supplementary Table 1. Sixty of 111 significant 

colocalized genes were present in the discovery expression dataset. Of these 60 colocalized 

genes, seven presented in the top 2.5 % discovery set modules (containing 105 genes), 

yielding an enrichment with a p-value of 1.03 × 10−6 (Fisher’s Exact Test). When 

considering the evaluation set, 64 of 111 significant colocalized genes were included in 

the node and edge weight input. From these 64 colocalized genes, 6 were included in the 

resulting top 2.5% modules of evaluation set, which showed a significant overrepresentation 

(p-value = 1.77 × 10−5, Fisher’s Exact Test). Lastly, the input of the discovery set of CDE 

included 60 of 111 colocalized genes, of which six were found in the top 2.5% overlapping 

CDE modules (containing 55 genes). This exhibited a 24.97-fold enrichment with the 

colocalized genes (p-value = 1.20 × 10−7, hypergeometric test). These six colocalized 

genes were: CDK4 (pg =3.28 × 10−12), IFITM3 (pg =4.40 × 10−11), MAPK1 (pg =3.04 

× 10−11), MAPK3 (pg =3.38 × 10−7), METTL21B (pg =1.94 × 10−11) and PIK3R2 (pg = 

4.28×10−12). Table 1 summarizes all respective MS-associated eQTL tissues for which these 

genes showed colocalization, including 14 brain tissues and 4 immune-related tissues. The 

gene IFITM3 in particular presented colocalization pairs in 8 of 14 brain tissues. Strikingly, 

METTL21B showed colocalization pairs in all MS-relevant GTEx tissues that we examined. 

Tag SNP identified the colocalization pairs between MS GWAS and the GTEx tissues 

(Figure 3).

Functional gene set enrichment analysis of CDE network

The prioritized gene set by the CDE feature of EW_dmGWAS was highly enriched with 

several GO Biological Processes terms (Supplementary Table 3). The top enriched term was 

“JAK-STAT cascade involved in growth hormone signaling pathway” (FDR = 4.54×10−7) 

with 5 contributing genes: JAK2, MAPK1, MAPK3, STAT3, and STAT5A. Among top 

10 enriched terms, several pathways involved in immune reactions were observed, such as 

“Response to granulocyte macrophage colony-stimulating factor” (FDR = 3.63×10−4), “Fc 

receptor mediated stimulatory signaling” (FDR = 1.17×10−3), and “T cell costimulation” 

(FDR = 6.52×10−3). Other top enriched terms showed involvement of viral process, such as 

“Response to exogenous dsRNA” (FDR = 0.011) and “Intracellular transport of virus” (FDR 

= 0.018).

Drug signatures of FDA-approved medications were present in CDE network

We performed enrichment analysis at a drug signature pathway level, which considered 

all the drug signatures annotated for a particular drug in DSigDB (Yoo et al., 2015). 

Several drug signatures from FDA-approved collections of DSigDB were enriched in 

our MS-associated CDE network (Table 2). The top enriched drug signature pathway in 

our network was for rubidomycin hydrochloride (FDR = 0.014), a medication indicated 

for acute myeloid leukemia. The second most enriched drug signature pathway was for 

zafirlukast (FDR = 0.014), a medication developed to treat asthma. Interestingly, the genes 

JAK2, MAPK1, MAPK3 and STAT3 were contributing to several of top 10 drug signature 

pathways.
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DISCUSSION

Consistency of methods exemplified by stable HDAC1 observations

We developed and applied the CDE feature not only investigate the largest MS GWAS, 

but also to provide supporting evidence in NAWM expression. We highlight target network 

modules, from which to pinpoint target genes with druggability. For instance, we emphasize 

the module containing HDAC1, a drug target gene of the FDA-approved MS drug 

fingolimod, for its presence in a top network module (Figure 1). HDAC1 was also previously 

identified in our network analysis of a former and smaller MS GWAS, GeneMSA GWAS 

(Baranzini et al., 2009; Manuel et al., 2020). The reliability of our methods is exemplified 

by stable observations of HDAC1 interactions in our current networks and previous work 

(Manuel et al., 2020). Although HDAC1 did not show association with MS (pg > 0.05) in the 

GeneMSA GWAS (of only 1,861 MS cases and controls), we highlighted HDAC1 as a hub 

gene for its interactions with other significant genes (Manuel et al., 2020). Here, we have 

greater power to identify the true genome-wide significance of HDAC1 (pg = 4.71 × 10−5), 

due to the larger sample size of the recent MS GWAS (IMSGC GWAS of 41,505 MS cases 

and controls) (Patsopoulos et al., 2019). Moreover, HDAC1 was differentially co-expressed 

with STAT3 in MS NAWM (Figure 1), which further asserts the conjecture that STAT3 is a 

potential drug target for MS, as we also previously indicated (Manuel et al., 2020).

Top MS-associated networks contain drug signatures of FDA-approved medications

We assessed independent gene networks, each yielded from either the RNA-seq discovery 

set or microarray evaluation set. The top 100 gene modules of the discovery set and 

evaluation set were significantly enriched (p < 0.05) with drug target genes of MS 

medications extracted from the DrugBank database (Wishart et al., 2018), including HDAC1 
(drug target of fingolimod), IFNAR1 (drug target of interferon medications), KEAP1 and 

RELA (both drug targets of dimethyl fumarate) from the discovery set module list and 

KEAP1 and RELA from the evaluation set module list, respectively (Supplementary Figure 

1). Importantly, these novel MS drug target associations were not reported by the original 

GWAS and gene expression studies (Hendrickx et al., 2017; Patsopoulos et al., 2019; van 

der Poel et al., 2019). Here, we utilize the MS GWAS and NAWM expression datasets to 

demonstrate human genetic evidence that supports drug targets of approved MS drugs.

Following independent analyses, we performed CDE analysis to deal with the challenge 

of limited MS brain samples, where both the discovery and evaluation datasets were 

collectively analyzed. Here, we presented the independent results because they showed 

genetic evidence for drug target genes of MS. However, some of the modules resulting from 

the independent analyses were not present in the CDE results. Final prioritizations of critical 

genes in MS NAWM were based on the CDE findings.

Furthermore, our drug signature enrichment analysis of CDE gene set sheds light on 

potential drug targets and repositioning strategies for MS. Drug signatures of rubidomycin 

hydrochloride and zafirlukast were significantly enriched (FDR < 0.05) in our gene set 

(Table 2). Rubidomycin hydrochloride is a drug indicated for acute myeloid leukemia. 

In MS, the autoimmune attacks might be suppressed by the drugs used to inhibit the 
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proliferation of certain immune cells in blood cancers. Zafirlukast, a medication used to 

treat asthma, may also be drug of interest for MS treatment because of its anti-inflammatory 

actions. In future work, we will further investigate these medications as drug repositioning 

options for MS. Furthermore, we suggest genes JAK2, MAPK1, MAPK3 and STAT3 as 

potential drug target genes for MS, as they were contributing to several enriched drug 

signature pathways (Table 2). These potential drug targets also warrant further investigation.

The noncanonical interaction between TEC and VAV1 in MS NAWM

Our CDE method identified and reproduced a differential co-expression relationship 

between TEC and VAV1 in both discovery and evaluation MS NAWM expression datasets 

(Figure 2). The gene TEC was highlighted as a candidate gene of MS risk in a network 

analysis performed by IMSGC (Zipp et al., 2013). Our findings support the involvement of 

TEC in MS mechanisms, and highlight the differential co-expression of TEC with VAV1 
in MS NAWM. TEC gene encodes Tec protein tyrosine, and VAV1 gene encodes Vav 

guanine nucleotide exchange factor 1. The interaction between these two proteins was first 

identified by co-immunoprecipitation and kinase assays of human cell lines, which showed 

that Tec protein tyrosine kinase increases the activity of Vav guanine nucleotide exchange 

factor 1 (Kline et al., 2001). This relationship is confirmed by the positive PCC of TEC 
and VAV1 expression in non-neurological NAWM controls of both discovery and evaluation 

sets (Figure 2C). However, MS NAWM expression showed that TEC and VAV1 had an 

inverse relationship, where VAV1 expression decreased as TEC expression increased (Figure 

2C). Both TEC and VAV1 have important roles in T cell development, and this interaction 

has been implicated in T cell receptor signaling (Lucas et al., 2003; Raberger et al., 2008; 

Reynolds et al., 2002). Thus, the noncanonical interaction of TEC and VAV1, observed in 

MS NAWM expression, may lead to dysfunction of appropriate T cell development in MS, 

thereby contributing to mechanisms of autoimmune reactions.

Evaluations of CDE yield the support of viral involvement in MS etiology

Gene set enrichment analysis of the CDE genes also indicated involvement of viral 

processes in MS NAWM by the presence of enriched GO Biological Process term 

“intracellular transport of virus”. All other GO Biological Process terms contributing to viral 

processes are depicted in Figure 4A. We validate our CDE gene set with enrichment analysis 

of colocalized MS GWAS-eQTL genes by using a Bayesian method and GTEx brain 

tissues and immune-related tissues (Giambartolomei et al., 2014; Lonsdale et al., 2013). 

Our CDE gene set was significantly enriched (p-value = 2.34 × 10−7) with six colocalized 

genes: CDK4, IFITM3, MAPK1, MAPK3, METTL12B and PIK3R2. METTL12B was 

colocalized in all eighteen GTEx disease-relevant tissues considered. METTL12B encodes 

a methyltransferase protein (Malecki et al., 2017). METTL12B may contribute to abnormal 

epigenetic mechanisms in MS (Huynh et al., 2014; Koch et al., 2013). IFITM3 was 

colocalized in eight of fourteen GTEx brain tissues. IFITM3 encodes for the interferon-

induced transmembrane protein 3, which plays an essential role in conferring immunity 

for several viral infections by enabling lysosomal degradation of viral components (Figure 

4B) (Everitt et al., 2012; Poddar et al., 2016; Spence et al., 2019). We postulate that the 

variability of IFITM3 in MS patients may hinder the anti-viral action of this interferon-

induced protein, thereby leading to viral import and viral infection in MS. The gene 
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MAPK3, presenting colocalization in the cortex, frontal cortex, lung, spleen and whole 

blood, was differentially co-expressed with CASP8 in CDE network (Figure 4C). Models 

of the protein interaction between MAPK3 and CASP8 have demonstrated that activation 

of CASP8 by MAPK3 has resulted in mitochondria-dependent cell death (El Mchichi et 

al., 2007). Thus, we conjecture that differential expression of MAPK3 and CASP8 in MS 

NAWM leads to subsequent intrinsic apoptotic signaling (Figure 4D).

Limitations

Our study was limited by the data heterogeneity between MS NAWM expression datasets 

(RNA-seq of MS NAWM microglia versus microarray of perilesional MS NAWM). Another 

limitation is lack of human PPI network completeness. Although we compile an extensive 

list of PPIs from several database sources, it remains that these do not contain a full 

list of PPI interactions in humans and may not contain PPIs specific to brain expression. 

In addition, the sample size of the transcriptomic profiling in MS is still small, though 

we demonstrated the integrative analysis with GWAS signals can effectively uncover joint 

contributions to MS. In this study, we assumed the integrative contribution of genetic factors 

and co-expression factors were equal by setting the scaling factor λ = 1. However, we 

were aware of that contribution ratio λ might be other than the empirical number one. The 

determination of parameter λ remains open and needs future exploration. Finally, we mainly 

focused on European population in our analysis. The genetic factors vary among different 

ethnic populations. For future work, we plan to expand on our network-based methods to 

include more multi-omics data, such as methylation, which likely also plays a role in MS 

pathogenesis (Huynh et al., 2014). We will also extend the work to the data in other human 

populations when such data become available in future.

CONCLUSIONS

In order to investigate the biological underpinnings of MS mechanisms, we introduced 

a newly developed CDE function for EW_dmGWAS, which is useful for identifying 

replicated results in separate expression datasets, while also examining GWAS signals. 

The CDE function was applied to collectively 38 MS NAWM cases and healthy controls, 

in conjunction with the largest up-to-date MS GWAS. By performing this evaluation, we 

prioritized a MS-associated network of 55 core genes. The MS-associated network was 

enriched with drug signatures of FDA-approved drugs, which indicated potential drug 

repositioning strategies for MS. We highlighted rubidomycin hydrochloride and zafirlukast 

as potential medications for drug repositioning strategies in MS. Furthermore, we also 

showed that MAPK and JAK2/STAT3 pathways are the major drug targets in MS, due to 

their presence in several enriched drug signature pathways (Table 2). We also examined the 

top network module of the MS-associated network, as it identified replicated differential co-

expression between the genes TEC and VAV1 in both the discovery and evaluation NAWM 

expression datasets, and we suggest that the noncanonical relationship may lead to abnormal 

T cell development in MS, contributing to MS autoimmune reactions. The MS-associated 

network was validated by enrichment of GWAS-eQTL colocalization. The colocalized 

genes enriched in our network are prioritized as critical genes in MS: CDK4, IFITM3, 
MAPK1, MAPK3, METTL12B and PIK3R2. We presented conjectural mechanisms for 
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viral involvement in MS etiology, based on the enriched Gene Ontology terms (Figure 

4). Specifically, we hypothesized that the variability of IFITM3 in MS may hinder its 

anti-viral action, leading to the entry of viral components in cells of NAWM. Moreover, 

we also showed that MAPK3 and CASP8 had a differential co-expression relationship, 

which may lead to stress-induced mitochondria-dependent cell death in MS NAWM. Further 

investigation is warranted in order to validate the involvement of viral activity in MS 

etiology.
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Figure 1. Top module of MS NAWM discovery set presents HDAC1, drug target of MS 
medication fingolimod.
(A) HDAC1 showed differential co-expression with STAT3 (pg = 3.09 × 10−12) and 

MORF4L1 (pg = 5.10 × 10−5) in the 5th top ranked module of discovery set. (B) Differential 

co-expression between HDAC1 and STAT3 presented a Pearson Correlation Coefficient 

(PCC) in MS NAWM microglia (PCCMS) as −0.28, as opposed to the strong positive 

co-expression relationship observed with a PCC in control samples (PCCCtrl) of 0.85. These 

different PCC values of co-expression between HDAC1 and STAT3 yielded an edge weight 

(e) of 2.27, which transfers to a p-value (pe) of 0.02 (by the normal distribution function), 

representing a differential co-expression relationship. The genes HDAC1 and MORF4L1 
presented a similar differential co-expression relationship (PCCMS = − 0.39, PCCCtrl = 0.86, 

e = 2.62, pe = 0.008).

Manuel et al. Page 16

Mol Cell Neurosci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Reproduced differential expression relationship between TEC and VAV1 in discovery 
and evaluation sets of MS NAWM expression.
(A) Red coordinates represent the resultant modules of CDE analysis, which overlapped 

over the 97.5 % quantile of discovery set module permutation scores and evaluation module 

scores. (B) Top module of CDE is shown. The discovery set module is plotted based on 

differential co-expression in RNA-seq dataset; the evaluation set module was plotted based 

on microarray dataset. (C) TEC and VAV1 showed a negative PCCMS of −0.82 and a 

positive PCCCtrl of 0.53, yielding an edge score (e) of 2.66 and a p-value (pe) of 0.008. 

Similarly, in the evaluation set, TEC and VAV1 displayed a negative PCCMS of −0.45 and 

a positive PCCCtrl of 0.84 (e = 2.14, pe = 0.03). Connections were also exhibited between 

VAV1 and LAT (pg =3.30 × 10−3; PCCMS = 0.90, PCCCtrl = −0.26, e = 2.66, pe = 0.008) and 

between LAT and TEC (PCCMS = −0.92, PCCCtrl = −0.26, e = 1.98, pe = 0.05).
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Figure 3. MS GWAS-eQTL colocalization examples.
(A) The tag SNP rs34481144 identified the GWAS-eQTL colocalization pair for IFITM3 
in basal ganglia expression. (B) The tag SNP rs1110575 identified the GWAS-eQTL 

colocalization pair for MAPK3 in cortex expression. (C) The tag SNP rs10877011 identified 

the GWAS-eQTL colocalization pair for METT2L1B in whole blood expression.
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Figure 4. Proposed mechanisms of viral involvement in MS mechanisms.
(A) Representation of viral cycle is shown, based on enrichment of GO Biological Process 

terms: “Intracellular transport of virus” (FDR = 0.018) is depicted through endocytosis, 

followed by release of viral components. Viral components then enter endoplasmic 

reticulum (ER), leading to “Intrinsic apoptotic signaling pathway in response to endoplasmic 

reticulum stress” (FDR = 0.017). “Protein import into nucleus, translocation” (FDR = 

0.013) and “Regulation of membrane permeability” (FDR = 0.023) are other enriched 

GO Biological Process terms. Please see Supplementary Table 3 for complete enrichment 

results. (B) Canonical function of IFITM3 is shown. JAK-STAT pathway is induced by 

interferon, leading to IFITM3 activation and subsequent degradation of virus. We postulate 

that this pathway has dysfunction in MS. (C) Differential co-expression of MAPK3 and 

CASP8 in MS NAWM. Positive correlation (PCC = 0.52) is shown in cases and negative 

correlation (PCC = −0.77) is shown in controls. (D) Environmental factors, potentially viral 
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components, activate the mitogen-activated protein kinase (encoded by MAPK3), leading to 

CASP8 activation, which signals for intrinsic apoptosis. Figure 4A, B, D were drawn using 

online tool BioRender.com.
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Table 1:

GTEx tissues of MS GWAS-eQTL colocalization and corresponding posterior probability (H4) values

Posterior probability of gene

GTEx tissue CDK4 IFITM3 MAPK1 MAPK3 METTL21B PIK3R2

Amygdala - 0.935 - - 0.951 -

Anterior cingulate cortex - 0.921 - - 0.948 -

Caudate basal ganglia - 0.992 - - 0.949 -

Cerebellar hemisphere - - - 0.950 -

Cerebellum - 0.876 - - 0.947 0.938

Cortex - - - 0.819 0.946 -

Frontal cortex - - - 0.969 0.948 -

Hippocampus - - - - 0.953 -

Hypothalamus 0.917 0.952 - - 0.950 -

Nucleus accumbens basal ganglia - 0.992 - - 0.948 -

Pituitary - - - - 0.949 -

Putamen basal ganglia - 0.990 0.802 - 0.945 -

Spinal cord cervical - - - - 0.946 -

Substantia niagra - 0.947 - - 0.960 -

Lung - - - 0.852 0.946 -

Small intestine terminal ileum - - - - 0.929 -

Spleen - - - 0.950 0.944 -

Whole blood - - - 0.977 0.949 -

-:
data is not available.
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Table 2:

Top 10 enriched FDA drug signature pathways of MS-associated gene network

Drug name Indication of medication Genes contributing to drug signature pathway Raw p-value FDR*

Rubidomycin hydrochloride Acute myeloid leukemia HSPA1A, JAK2, MAPK1, STAT3 3.36 × 10−4 0.014

Zafirlukast Prophylaxis in asthma KAT2A, MAPK1, MAPK3 4.05 × 10−4 0.014

Podophyllotoxin Genital warts JAK2, STAT3, TUBB3 8.21 × 10−4 0.016

Hexachlorophene Disinfectant KAT2A, MAPK1, MAPK3, STAT3 9.17 × 10−4 0.016

Etoposide Chemotherapy MAPK1, MAPK3 3.96 ×10−3 0.053

Mitoxantrone dihydrochloride Acute myeloid leukemia KAT2A, MAPK1 4.64 ×10−3 0.053

Doxorubicin Hydrochloride Acute myeloid leukemia JAK2, MAPK1, STAT3 7.79 ×10−3 0.060

Ruxolitinib phosphate Myelofibrosis JAK2 7.86 ×10−3 0.060

Palbociclib Breast cancer CDK4 7.86 ×10−3 0.060

Zalcitabine HIV/AIDS MAPK1 0.012 0.081

*
FDR: p-value adjusted by Benjamini-Hochberg procedure for multiple tests.
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