The Journal of Neuroscience, January 19, 2022 - 42(3):377-389 - 377

Development/Plasticity/Repair

Existence of Functional Connectome Fingerprint during
Infancy and Its Stability over Months
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The functional connectome fingerprint is a cluster of individualized brain functional connectivity patterns that are capable of
distinguishing one individual from others. Although its existence has been demonstrated in adolescents and adults, whether
such individualized patterns exist during infancy is barely investigated despite its importance in identifying the origin of the
intrinsic connectome patterns that potentially mirror distinct behavioral phenotypes. To fill this knowledge gap, capitalizing on
a longitudinal high-resolution structural and resting-state functional MRI dataset with 104 human infants (53 females) with 806
longitudinal scans (age, 16-876 d) and infant-specific functional parcellation maps, we observe that the brain functional connec-
tome fingerprint may exist since infancy and keeps stable over months during early brain development. Specifically, we achieve
an ~78% individual identification rate by using ~5% selected functional connections, compared with the best identification
rate of 60% without connection selection. The frontoparietal networks recognized as the most contributive networks in adult
functional connectome fingerprinting retain their superiority in infants despite being widely acknowledged as rapidly developing
systems during childhood. The existence and stability of the functional connectome fingerprint are further validated on adjacent
age groups. Moreover, we show that the infant frontoparietal networks can reach similar accuracy in predicting individual early
learning composite scores as the whole-brain connectome, again resembling the observations in adults and highlighting the rele-
vance of functional connectome fingerprint to cognitive performance. For the first time, these results suggest that each individ-
ual may retain a unique and stable marker of functional connectome during early brain development.
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Functional connectome fingerprinting during infancy featuring rapid brain development remains almost uninvestigated even
though it is essential for understanding the early individual-level intrinsic pattern of functional organization and its relation-
ship with distinct behavioral phenotypes. With an infant-tailored functional connection selection and validation strategy, we
strive to provide the delineation of the infant functional connectome fingerprint by examining its existence, stability, and rela-
tionship with early cognitive performance. We observe that the brain functional connectome fingerprint may exist since early
infancy and remains stable over months during the first 2 years. The identified key contributive functional connections and
networks for fingerprinting are also verified to be highly predictive for cognitive score prediction, which reveals the associa-
tion between infant connectome fingerprint and cognitive performance. j
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al., 2018; Girault et al., 2019) and exploring personalized diagno-
sis and treatment of mental disorders (Orru et al., 2012; Wolfers
etal,, 2015). As a key solution, infant brain fingerprinting is used
to discover reliable and robust individualized brain organization
patterns that are capable of accurately distinguishing one indi-
vidual from others, like fingerprints. This is critical for providing
fundamental insight into the individual-level unique, stable, and
relatively invariant patterns (Finn et al, 2015; Horien et al,
2019) during rapid infant brain development.

To date, from the perspective of morphology and structural
connectivity, the brain folding and structural connectome finger-
printing in infants and neonates has been investigated (Duan et
al., 2020; Ciarrusta et al., 2021), which enables accurate identifi-
cation of an infant from its neonatal brain, highlighting the
uniqueness of cortical folding and structural connectivity pat-
terns. But infant functional connectome fingerprinting using
longitudinal resting-state functional MRI rs-fMRI), which is crit-
ical for understanding the origin of the individualized intrinsic
brain functional organization and development, still remains
uninvestigated. Actually, the fingerprinting capability of func-
tional connectome has been observed in the cohorts of older chil-
dren (Miranda-Dominguez et al., 2018), adolescents (Kaufmann
et al,, 2017), youths (Demeter et al., 2020), adults (Finn et al,
2015; Liu et al., 2018; Miranda-Dominguez et al., 2018; Horien et
al,, 2019), and even older adults (Horien et al., 2019), almost cov-
ering the whole life span, indicating that individualized functional
connectome distinguishability is substantial and reproducible.
Moreover, the existence of interindividual variability of functional
connectivity has been revealed in preterm neonates (Xu et al,
2019; Stoecklein et al., 2020). The individual uniqueness in the
neonatal functional connectome (36.9 - 44.1 weeks of postmenst-
rual age) has been reported by (Wang et al., 2021). Although the
individual uniqueness was validated by a split-half approach
with only a short time interval (1 min) between two sessions,
and the age range of individuals is relatively small, it promis-
ingly hints at the existence of an infant functional connectome
fingerprint. Meanwhile, some functional connections in higher
order association cortices are consistently identified as the most
distinctive connections for both individual identification and
cognitive performance prediction (Finn et al.,, 2015; Liu et al,,
2018; Miranda-Dominguez et al., 2018; Horien et al., 2019),
highlighting the association between the connectome finger-
print and cognitive functions and behaviors.

In this study, capitalizing on a longitudinal high-resolution
structural MRI (sMRI) and rs-fMRI dataset acquired from the
University of North Carolina (UNC)/University of Minnesota
Baby Connectome Project (BCP; Howell et al., 2019), state-of-
the-art infant-tailored sMRI and fMRI processing pipelines (Li et
al., 2019), a fine-grained infant-specific functional parcellation
map along with an infant-tailored functional connection selec-
tion, and validation strategy, we aim to provide the delineation
of an infant functional connectome fingerprint by examining the
following: (1) whether the individualized functional connectome
pattern exists during early brain development and keeps stable
over months to years, (2) which functional connections and net-
works manifest the most individualized uniqueness during
infancy, (3) how the functional connectome fingerprint evolves
with early brain development, and (4) the relationship between
brain functional connectome fingerprint and early cognitive per-
formance. Answering these points is of neuroscientific signifi-
cance not only for systematically understanding the origin of
individualized brain functional organization patterns but also the
crucial impact of infancy to one’s lifetime.
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Materials and Methods

To study the existence and stability of a functional connectome finger-
print, we use 104 subjects with 806 longitudinal high-resolution sMRI
and rs-fMRI scans acquired from the BCP (Howell et al.,, 2019). In the
identification procedure, feature selection is introduced because subsets
of connections are found to have higher identification accuracy than the
whole-brain connectome. Then, an identification-specific cross-valida-
tion was specifically designed for the analysis involving feature selection.
Next, the factors that affect the identification accuracy were studied by
pinpointing the most contributive edges for identification, comparing
identification rates with shorter time duration, coarser brain parcella-
tion, and more longitudinal information. The gender and head motion
effects were also examined. Furthermore, to delineate how the functional
connectome fingerprint evolves during infancy, we performed identification
tests on five adjacent age groups (0-6 months, 6-9 months, 9-12 months,
12-18 months, and 18-24 months of age). Finally, we examined the rele-
vance of a functional connectome fingerprint to cognitive performance
by studying the similarity in contributive edges and networks between
infant individual identification and individual early learning composite
(ELC) cognitive score predictions.

Subjects and image acquisition

Subjects in this study are from the BCP (Howell et al., 2019). For the
study of normal early brain development, all infants recruited in BCP
were born at the gestational age of 37-42 weeks and were free of any
major pregnancy and delivery complications. We used 104 subjects (53
females, 51 males) with 806 longitudinal scans acquired at different ages
ranging from 16 to 874 d. All infant MRIs were acquired during infants’
natural sleep using a 3T Siemens Prisma MRI scanner with a Siemens
32-channel head coil. T1-weighted images (208 sagittal slices) were
obtained by using the three-dimensional magnetization-prepared rapid
gradient echo sequence: repetition time (TR), echo time (TE), and inver-
sion time (TT) = 2400, 2.24, 1600 ms, respectively; flip angle = 8°, and re-
solution = 0.8 x 0.8 x 0.8 mm?>. T2-weighted images (208 sagittal slices)
with turbo spin-echo sequences (turbo factor = 314, echo train length =
1166 ms): TR, TE = 3200, 564 ms, respectively; and resolution = 0.8 x
0.8 x 0.8 mm? using a variable flip angle. All structural MRI data were
assessed visually for excessive motion, insufficient coverage, and/or
ghosting to ensure sufficient image quality for processing. For the same
cohort, rs-fMRI scans were also acquired using a blood oxygenation
level-dependent (BOLD) contrast-sensitive gradient echo echo-planar
sequence: TR = 800 ms, TE = 37 ms, flip angle = 80°, field of view = 208 x
208 mm, 72 axial slices per volume, resolution =2 x 2 x 2 mm?, total
volumes = 420 (5min 47 s). fMRI scans include anterior to posterior
scans and posterior to anterior scans, which are two opposite phase-
encoding directions for better correction of geometric distortions. Here,
in BCP, setting same scanning parameters for all the subjects at different
ages may not be the optimal protocols for some ages but would largely
avoid the inconsistency and uncertainty resulting from different scan
protocols, which is beneficial for our study. We also used cognitive data
that were collected within a month around each fMRI data collection.
Specifically, we used ELC cognitive scores defined in Mullen Scales of
Early Learning (Yitzhak et al., 2016), which is a composite of the expres-
sive language, fine motor, receptive language, and visual reception
scores. We selected age-equivalent scores for our study because they are
more suitable for research related to longitudinal cognitive scores
(Mullen, 1989).

Image processing

All structural and functional MRIs were processed following state-of-
the-art infant-tailored pipelines (Li et al., 2019; Zhang et al., 2019), which
have been extensively validated in many infant studies (Meng et al,
2016, 2018; Wang et al., 2019). All T1-weighted and T2-weighted MRIs
were processed by iBEAT V2.0 Cloud (https://www.ibeat.cloud/) with
the following main steps: (1) skull stripping by a learning-based method
(Shi et al., 2012); (2) cerebellum and brainstem removal by a deep-learn-
ing-based model (densely connected U-Net); (3) intensity inhomo-
geneity correction by the N3 framework (Sled et al., 1998); (4) tissue
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The process of dataset description, identification-specific cross-validation, and network definition. A, Dataset construction and description. To study the fingerprinting using data-

sets with different distributions of age and session gaps, we generated three datasets from 806 longitudinal scans from 104 subjects, each with at least two longitudinal scans. Datasets I-Ill
consisted of all the first two scans, all the last two scans, and all the first and last scans, respectively. A(3)—(5), The scan distribution of Datasets I-lll, where the blue and red points represent
the scans acquired from session 1 and session 2, respectively. For detailed age distribution information of the three datasets, the box plots of the scan age of session 1 (S1), session 2 (S2), and
the session gap between ST and S2 are shown in A(2). B, Identification procedure with one round of 10-fold cross-validation. Each subject has a pair of scans acquired from two sessions that
constitute a base set and a target set for the identification test. First, the target set and base set were partitioned into 10 folds by correspondingly partitioning the subjects set; the training set
consists of nine folds from target and base sets; the testing set consists of the remaining fold of the target set and the whole base set. Then, a feature selection procedure was implemented to
obtain the edge set with the largest SD among subjects. Finally, infant identification was conducted on the testing set. €, Node and network definition. We leveraged an infant-specific fine-
grained brain functional parcellation map with 602 cortical nodes (ROIs) defined from the BCP dataset (Wang, 2020). Seven networks were then grouped from the nodes according to a popular

network template (Yeo et al., 2011) for comparison with the results obtained in adults.

segmentation using an age-specific deep-learning-based framework
(Wu et al, 2017; Wang et al.,, 2018), which was visually inspected to
ensure sufficient accuracy; and (5) noncortical structures filling and
left/right hemisphere separation (Li et al., 2014b). After that, for each
hemisphere of each scan, the topologically correct and geometrically
accurate inner (white/gray matter interface), middle, and outer
(gray matter/cerebrospinal fluid interface) cortical surfaces were
reconstructed using a topology-preserving deformable surface
method based on tissue segmentation results (Li et al., 2014a). The
inner cortical surface, which has vertex-to-vertex correspondences
with the middle and outer cortical surfaces, was further smoothed,
inflated, and mapped onto a standard sphere (Fischl et al., 1999).
Each spherical surface of each subject was aligned onto its age-
group-specific template in the University of North Carolina 4D
Infant Cortical Surface Atlas (https://www.nitrc.org/projects/
infantsurfatlas/; Li et al., 2015; Wu et al., 2019) using Spherical
Demons (Yeo et al., 2010), thus warping all cortical surfaces across
subjects and ages to a common space. Then all cortical surfaces were
accordingly resampled using the same mesh tessellation, thus estab-
lishing cortical vertex-to-vertex correspondences among individual
surfaces. Infant rs-fMRI preprocessing was conducted according to
an infant-specific functional pipeline in the following steps (Li et al.,
2019; Zhang et al., 2019): (1) correction of head motion and spatial
distortion using the Functional MRI of the Brain Software Library
(FSL); 2) registration of fMRI scans onto the corresponding struc-
tural MRI scans by boundary-based registration (Greve and Fischl,
2009) via aligning fMRIs to the tissue segmentation map obtained
from T1- and T2-weighted images to avoid inaccurate alignment
because of the substantially different image appearances at different
ages, (3) resampling fMRI data in the native space through a one-
time resampling strategy by concatenation of the above two trans-
formations, (4) removing linear trends in the data based on a con-
servative high-pass filtering with a o of 1000 s, (5) decomposing
each fMRI signal into 150 components using individual independ-
ent component analysis by MELODIC (Multivariate Exploratory
Linear Optimized Decomposition into Independent Components)
in FSL, and (6) removing noisy components based on a deep-learn-
ing model (Kam et al, 2019). At each cortical vertex on the
resampled middle cortical surface, its representative fMRI time se-
ries were extracted (Glasser et al., 2016).

Infant-specific functional parcellation and network definition

An infant-specific fine-grained cortical functional parcellation map with
602 cortical ROIs, as shown in Figure 1C, was constructed based on
1064 longitudinal resting-state fMRI scans from 197 subjects during the
first 2 years after birth (also from BCP data) using the following steps
(Wang et al,, 2020): (1) An individual gradient density map of functional
connectivity for each scan was computed (Gordon et al., 2016), (2) the
group-average functional gradient density map was generated by averag-
ing the individual gradient density maps, and (3) a watershed method
was applied on a group-average functional gradient density map to gen-
erate the corresponding functional parcellation map (Gordon et al,
2016). Each individual’s cortical surfaces were then parceled into 602
ROIs by aligning them onto the obtained group-level infant-specific
functional parcellation map, which has been validated by the measures
of reproducibility and homogeneity following the ways in Gordon et al.
2016. Then, all time series within each ROI were averaged and further
correlated with those from all the others. A 602 x 602 functional con-
nectivity matrix was derived by calculating Pearson’s correlation coeffi-
cient between the time series courses (low-frequency band of interest,
0.01-0.1 Hz) of each pair of ROIs. Fisher’s r to z transformation was con-
ducted to improve the normality of the functional connectivity. For the
subjects who had multiple scan directions and sessions at the same age,
we combined all the corresponding functional connectivity matrices via
averaging to reduce noise (Cao et al., 2019). During the processing, all
cortical surfaces from individual scan spaces were warped to the Human
Connectome Project (HCP) 32k_LR space and were further resampled
to meshes with 32,492 vertices. To obtain the networks definition, we
registered Yeo’s seven-network atlas (Yeo et al, 2011) to the HCP
32k_LR space; the networks are shown in Figure 1C.

Experimental design and statistical analysis
Identification test

Datasets preparation. Among the 104 subjects with 806 longitudinal
rs-fMRI scans, 47 subjects have 2 longitudinal scans, 28 subjects have 3
longitudinal scans, and 29 subjects have 4 or more longitudinal scans af-
ter combining the scans acquired from the same subject at the same age
(multiple scan directions and sessions). To study the impact of the distri-
bution of subject age and session gap (the time interval between two
fMRI sessions) on infant brain connectome fingerprinting, three repre-
sentative datasets (i.e., Datasets I-III) were derived. Figure 1A illustrates
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Table 1. The demographic information of the three datasets
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Figure 2.  The identification rates across session pairs and networks. Identification rates based on whole-brain connectivity (All), frontoparietal networks (1 + 2 + 7), and seven individual

networks. The color of the bars, blue/red in the top row and yellow/green in the bottom row, indicates different session pairs as base set, target set, where session 2 (S2) was acquired later
than session 1 (51) and the error bar in figure A is the SD of identification rates. A, The identification rates obtained with feature selection and identification-specific cross-validation. B, The

identification rates obtained without feature selection.

how these datasets were generated and the age distribution of each dataset.
In every dataset, each subject has a pair of longitudinal scans acquired from
two sessions at different ages, with session 1 being earlier than session 2.
The basic information of the three datasets is shown in Figure 1A and Table
1. The mean * SD of the mean framewise displacement (FD) power before
processing and the number of DVARS (SD of intensity difference between
successive time points) outliers after processing are also included in Table 1.
Motion outliers were identified by thresholding the DVARS at the 75th per-
centile plus 1.5 times the interquartile range.

Feature-selection-based identification test

Although all the prior research on functional connectome fingerprinting
used all the edges for individual identification, and there is evidence that
more edges are beneficial for higher identification accuracy in adults (Byrge
and Kennedy, 2019), we found that proper selection of edges can improve
the identification accuracy in infants (Fig. 2). Thus, we proposed feature-
selection-based identification via estimating the differential capability of an
edge by its SD across subjects. Because feature selection was involved in the
identification process, we designed an identification-specific 10-fold cross-
validation and repeated it 20 times for the infant identification analysis.

Target set, base set, and identification rate
The individual infant identification test was performed across paired
scans consisting of one target set, T = {Xf, i=1,2,---,n}, and one

base set, B = {X}”,j =1,2,---,n}, where X! and X? are all flattened vec-
tors of the upper triangle of the whole-brain connectivity matrix (602
nodes, 180,901 edges) and the subscripts i and j denote the subject index.
With the requirement that X! and X? are acquired from the i subject at
different ages, each subject has two longitudinal fMRI scans from two differ-
ent sessions. In the process of identification, one target matrix, X}, was
selected from the target set T, and Pearson’s correlation coefficient was used
to measure the similarity between X! and all the matrices in base set B. The
corresponding  similarity matrix is defined as follows: H = (hj),,,,»
hi; = corr(X, X;’ ). The identity in B having the largest similarity with X}
was regarded as the predicted identity of X}, that is, as follows:

Identity(X}) = argmaxjcorr(Xf,th).

After this identification process was implemented iteratively for all the
subjects in T, the identification rate was measured as the percentage of
subjects whose identity was correctly predicted among the total number of
subjects. The differential identifiability of similarity matrix is defined as
Lir = (Lseit — Lothers) X 100, where I and Iophers are the average diagonal
elements and the off-diagonal element of similarity matrix H, respectively.

Feature selection and identification-specific cross-validation
All the connections (including negative correlations) in the connectome
were considered as possible features for identification. In the iterative
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analysis, features were selected on the training set, and infant identifica-
tion was implemented on the testing set. First, the target set T and base
set B were partitioned into 10 folds by correspondingly partitioning the
subjects set; a training set is represented as { T}, B, } and constituted 9
folds from T and Bj; a testing set is represented as { T}, B} and consti-
tuted the remaining fold of target set and the whole base set B. Of note,
the testing set should be constructed as { T}, Bz} if we follow the con-
ventional method of cross-validation, where By, is the remaining fold of
the base set. It means for each X! in Ty, the identity of X! will be deter-
mined within By, which obviously decreases the difficulty of identification
and leads to a false high accuracy. Thus, we proposed an identification-
specific cross-validation and set the testing set as { T¢, B}. Then, a feature
selection procedure was implemented by ranking features according to their
SD across subjects in the training set, retaining only features with the high-
est SD values bigger than the thesholded percentile. For each edge e in the
connectome, the SD of e was computed as follows:

Z\TM 1 Z\Tn\
e — €;
i=1 [Ty i=1

|T|

Z\Bn\ 1 [Ber|
e —— e;
j=1 / |Brr| j=1 ! )

|Bu| ’

SD(e) = 0.5 x (

+

where ¢; and ¢; are the edges of i" and j‘h subject in T}, and By, respec-
tively; | - | represents the number of subjects in the set. Third, infant
identification was conducted on the testing set by taking T}, and B as the
target set and the base set, respectively. After the identification process
was implemented iteratively for all the subjects in the target set T, the
identification rate was measured as the percentage of subjects whose
identity was correctly predicted among the total number of subjects.

Network-based identification test

In addition to conducting the identification test based on the whole-
brain connectivity, we also tested the identification performance of the
seven networks (Yeo et al., 2011). We repeated 20 times of 10-fold cross-
validation described above separately for each network and only
included the within-network edges for identification. The mean and SD
of the identification rate over all cross-validations were also used to
show the predictive power of each network.

Factors affecting identification test

Contributive edges and networks. In the identification test, 20 times
of 10-fold cross-validation were implemented. Because the training set
in each iteration was slightly different, 200 different sets of edges were
selected as the features for further identification or prediction. The
selected frequency was used to measure the edgewise contribution,
which was computed in the following steps: (1) A binary 200 x 180,901
matrix was generated to represent the 200 different sets of selected edges
with each row representing the selected edges in one iteration, where the
elements 1 and 0 indicate the corresponding edge is selected and not
selected, respectively; (2) each row of the matrix was normalized by the
number of the selected features in this iteration; and (3) the values of
each column were averaged to obtain the selected frequency of the edge.
Then, the selected frequency of the within- or between-network edges
were summed up and normalized by the total number of the corre-
sponding edges to measure the network-wise contribution, respectively.

Identification with shorter time duration. To investigate the identifi-
cation capability of the functional connectome over shorter acquisition
durations, we performed whole-brain-based identification on the 104
subjects while varying the number of time points used to calculate con-
nectivity matrices. With the same starting point, each subject’s full 5 min

43211 . .

47 s rs-fMRI run was truncated to {—,—,—,—,—} x 420 time points.

For each reduced time series, 20 times of 10-fold identification-specific
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cross-validation were implemented to obtain the corresponding identifi-
cation rate.

Identification with coarser parcellation of brain. To investigate the
effect of the specific choice of parcellation maps on identification, we
repeated the identification experiments using connectivity matrices
calculated from the 360-node (Glasser et al., 2016) and 68-node
(Desikan et al., 2006) parcellation maps by aligning the cortical sur-
face onto the UNC 4D Infant Cortical Surface Atlas (Wu et al.,
2019). As the identification test implemented with 602 nodes, 20
times of 10-fold identification-specific cross-validation were imple-
mented to obtain the corresponding identification rate.

Identification based on two-base set and two-target set. In an effort
to validate accumulated uniqueness across longitudinal scans, we also
tested a design option in which two longitudinal matrices were included
in the base set or target set for each subject. In the ordinary identification
test design, there was only one scan in the target set and one correspond-
ing scan in the base set for each subject. Adding an additional longitudi-
nal scan acquired on a different age has the potential to improve the
identification performance. Therefore, we designed two identification
tests by adding one longitudinal scan to the base set and target set.
Fifty-seven subjects with more than two longitudinal scans were used
to generate three datasets, that is, MM-Dataset I, MM-Dataset II, and
MM-Dataset III, where “MM” means two longitudinal matrices (M)
were used during the identification and is used to differentiate these
datasets with the ones used in the standard identification. Each sub-
ject has three scans in every dataset. MM-Dataset I, MM-Dataset II,
and MM-Dataset III consisted of the first three scans, the last three
scans, and the first/middle/last scans, respectively, where middle is
defined as the biggest integer smaller than half of the longitudinal
scan number of the subject. For the identification based on a two-
base set, we created a base set that included two connectivity matri-
ces obtained from the scans acquired longitudinally as follows:
B={(X},X?),i=1,---,57}. To predict the subject identity, we lin-
early project the current target matrix Y; (j = 1,---,57) to the sub-
space spanned by the pair (X}, X?) to obtain a projection Y; and
then computed the correlation between Y; and Y; to find the best
match. On the other side, for the identification based on a two-tar-
get set, we created a target set that included two connectivity matri-
ces obtained from the scans acquired longitudinally as follows:
D={(Y},Y}),i=1,---,57}. To predict the subject identity, we lin-
early project the base set matrix X; to the subspace spanned by the
pair (le, YJZ) to obtain a projection X; and then computed the corre-
lation between X; and X to find the best match.

In each dataset, because every subject has three scans acquired at
three sessions (t1, f2, t3), the two-base set identification was implemented
on the base-target pairs of (1, t)-t3, (t1, t3)-t2, (t2, £3)-t;, and the two-
target set identification was performed on the base-target pairs of
t-(t2, 13), ta-(t1, t3), t3-(t1, 1 ). The identifications with a normal base set
and target set (i.e., including only one connectivity matrix for each sub-
ject) were implemented on the pairs of t,-t5, t1-t3, t-t3, t-t1, 13, t3-1;.
The identification rates of the two-base set and two-target set were the
average of identification rates of 20 times of 10-fold cross-validation
across three base-target pairs.

Effects of gender and head motion. To test the gender effect, the iden-
tification rates were broken down to males and females, and then the
paired ¢ test across three datasets and two base-target pairs were adopted
for determining whether there is significant gender difference in the
identification test. To examine the possibility that the identification
resulted from the individual characteristic of movement patterns, we
used motion estimates solely to implement the identification test.
Specifically, (1) we calculated motion vector for each scan based on
DVARS; (2) the mean and SD of the DVARS across all scans were com-
puted; (3) 60 bins that spanned the grand mean * SD were specified,
and the motion distribution vectors were computed correspondingly;
(4) the motion distribution vector of a subject having multiple scan
directions and sessions at the same age was obtained by averaging the
motion distribution vectors of the corresponding scans; and (5) the
functional connections were replaced by the motion distribution vec-
tors in the three datasets, and the identification tests were
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implemented the same way as for using the functional connections
for infant identification.

Identification in adjacent age groups

To further investigate whether the identification rate is related to
the age of the subjects and whether the contribution of the seven
networks to identification and their individual identification per-
formances change along with brain development, we tested the
identification rate with five adjacent datasets across different age
groups, that is, 0-6months, 6-9months, 9-12months, 12-
18 months, 18-24 months (with 19, 21, 14, 30, and 15 subjects,
respectively). The scan acquired at an age within 30 d from the age
group was included in the corresponding dataset to increase the
number of subjects in each dataset. We repeated 20 times of 10-
fold identification-specific cross-validation with the same proce-
dure shown in Figure 1B for each age group and assessed the iden-
tification performance by averaging the accuracies over all cross-
validations.

Association between connectome distinctiveness and age

After the identification process was implemented iteratively for all the
subjects across Dataset I, Dataset II, and Dataset III, in a dataset, the
connectome distinctiveness of each subject was defined as the percentage
of it being correctly identified across 20 times of 10-fold cross-validation
based on a base-target pair of session 1 to session 2. The scan age of this
subject at session 1 was taken as the corresponding age for the connec-
tome distinctiveness. The (age, connectome distinctiveness) pairs in
Datasets I-III were concatenated together. Then, with this concatenated
dataset, we repeatedly fitted a smooth curve with automatic estimation of
the smoothness parameters (Fjell et al., 2010) between connectome distinc-
tiveness and age, with mean and SD computed across 10,000 bootstraps.

Cognitive score prediction

To explore whether the most contributive networks for a functional con-
nectome fingerprint are also predictive for infant cognitive performance,
the whole brain and the frontoparietal connectivity profile, were sepa-
rately used to predict the ELC score in the Mullen Scales of Early
Learning assessment (Yitzhak et al., 2016). The ELC score is the aggrega-
tion of scores of the fine motor, visual reception, receptive language, and
expressive language domains. A dataset of 232 scans with corresponding
ELC cognitive scores was used (143 subjects, males/females = 64/79).
Comparing with the identification test, 39 more subjects were included
in ELC score prediction for better model fitting and feature analysis
based on machine learning.

We used random forest (RF) to perform the ELC prediction, which
is widely used as a supervised machine-learning method (Kesler et
al., 2017; Wlaszczyk et al., 2019) and could well address the data
scarcity of the ELC score prediction because of the bootstrapping
strategy. In the RF-based analysis, the number of ensemble trees
equals 20, and the minimum number of observations per tree leaf
equals five (as the default in MATLAB), whereas a different num-
ber of ensemble trees from 5 to 60 were tried in our experiment
and achieved similar results. We used 20 times of 10-fold cross-
validation to estimate the prediction performance. Each subject
belongs to only the training set or the testing set in each fold to
ensure the independence of the data in training and testing.
Feature selection and prediction modeling were implemented in
the training set, and the ELC score prediction was performed on the
testing set. The following steps were used for the prediction of the ELC.
First, feature selection was implemented on the training set. Only
the edges with the highest Pearson’s correlation coefficient with
the ELC score, corresponding to p < 0.001, were retained for mod-
eling (different p values of 0.1, 0.05, 0.01, and 0.005 were tried in
our experiment and achieved similar results). Then, the selected
edges were separated into two tails, those positively correlated
with ELC and those negatively correlated with ELC. By summing
all the absolute correlation values of all the edges in the corre-
sponding feature set, two single-subject summary statistics were
generated based on the selected edges, that is, positive whole-brain
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network strength and negative whole-brain network strength. For
an individual connectivity matrix, the two summary statistics were

defined as follows:
E : N
Spositive = |re|me
e

SNegtive = § ‘rc|m;7

e

where 7, is the Pearson’s correlation between the two nodes of edge e,
and m; =1, m; =0 when >0, otherwise m] =0, m; = 1.
Moreover, RF was adopted to model the relationship between the two
single-subject summary statistics (Sposirive> Snegtive) and the dependent
variable ELC, because the bootstrapping strategy used in RF and the
summarized features could well address the data scarcity issue in ELC
prediction. Finally, the ELC scores of the unseen subjects in the testing
set were predicted with the trained RF model. With all the 20 times of
10-fold cross-validation finished, the predicted values obtained from
each time of 10-fold cross-validation were averaged as the final predicted
value to estimate the overall performance of the model. The mean abso-
lute error and Pearson’s correlation of the predicted and observed scores
yielded the indexes of the accuracy performance. To estimate the predic-
tive power of each edge, we computed the frequency of this edge being
selected across all iterations. To further explore the contribution of the
networks to ELC prediction, the frequencies of the within- and between-
network edges were summed and normalized by the total number of the
corresponding network edges. The contribution of the edges was summar-
ized separately with the negatively and positively correlated feature set.

Results

Infant identification with brain functional connectome
Whole-brain-based identification

Using the feature-selection-based identification test, we obtained
identification rates well above chance with all the three datasets
(Fig. 2A). The results demonstrate that the functional connec-
tome fingerprint may exist during early infancy and keep stable
over months. Specifically, the identification rates (mean = SD)
of 104 infants over 20 times of 10-fold cross-validation were 58.99
* 1.05% (Dataset I), 72.88 = 1.52% (Dataset II), and 50.87 =
0.98% (Dataset III) based on a base-target pair of session 1-session
2 and 72.36 * 0.98% (Dataset I), 78.61 * 1.32% (Dataset II), and
60.72 *= 1.33% (Dataset III) of the reverse session 2-session 1.
With relatively older ages of the scans, Dataset II reaches the best
performance in the three datasets, indicating that the individual-
ized functional connectome patterns tend to be more stable with
increasing age. Meanwhile, with the largest session gap distribu-
tion, the relatively lower accuracy obtained by Dataset III reveals
increasing identification difficulty with the longer interval between
sessions. We also performed 1000 times of permutation testing to
estimate the statistical significance of these identification rates.
The mean identification rates over 1000 permutation testing were
1.02 * 1.02% (Dataset I), 1.03 = 1.13% (Dataset II), and 1.07 =
1.04% (Dataset III) based on a base-target pair of session 1-session
2, and 1.06 = 1.00% (Dataset I), 1.01 = 0.97% (Dataset II), and
1.10 = 0.95% (Dataset III) of the reverse session 2-session 1,
whereas the corresponding p values were all equal to zero.

Network-based identification

We next used each of the seven functional networks (Fig. 1C)
and certain combinations of these networks to examine which
functional networks manifest more individualized uniqueness
during early brain development. Although all the single networks
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led to lower identification rates than the whole-brain connectome
(Fig. 2A), the one-tailed paired ¢ test across three datasets and
two base-target pairs showed that the dorsal attention net-
work (network 1) and default network (network 3) are the
only two networks that achieved higher identification rates
than all the other four networks (dorsal attention network,
p<1072~10"*% default network, p<<10°~107*). There is no
significant difference in identification rates achieved by the
dorsal attention network and the default network. Among all
the combinations of any two networks and three networks,
after implementing identification tests on them, the combi-
nation of the dorsal attention network (network 1), frontopa-
rietal network (network 2), and ventral attention network
(network 7), referred to as the frontoparietal networks (Finn
etal.,, 2015; networks 1 + 2 + 7), led to the highest average iden-
tification rate across the two base-target pairs. Specifically, it
reached 60.53 *= 0.58% (Dataset I), 74.76 * 0.98% (Dataset II),
and 52.36 = 1.15% (Dataset III) based on the base-target pair of
session 1-session 2 and 74.18 = 0.78% (Dataset I), 79.09 = 0.61%
(Dataset IT), and 58.80 = 1.00% (Dataset III) of the reverse session
2-session 1. Based on the one-tailed paired ¢ test across 20 times of
10-fold cross-validation, frontoparietal networks tend to have sig-
nificantly higher capability of infant identification than the whole-
brain connectome in five (¢,9) = 2.61~5.39, Pp<1073~107°) of
six base-target pairs over three datasets.

Factors affecting identification accuracy

Contributive edges for identification

Although no studies have yet showed that more edges could
decrease identification accuracy, we observed that the identifica-
tion rates with all the edges in whole-brain connectivity were
only 43.27% (Dataset I), 58.65% (Dataset II), and 36.54%
(Dataset IIT) based on a base-target pair of session 1-session 2
and 44.23% (Dataset I), 59.62% (Dataset II), and 37.50% (Dataset
III) of the reverse session 2-session 1. The performance of the
whole-brain connectivity was significantly lower than the identi-
fication with SD-based feature selection (Mann-Whitney U test
on the six identification tests on three datasets over two base set-
target set directions, rank sum = 54, one-tailed p = 0.0076). The
network-based identification rates without feature selection are
shown in Figure 2B. The benefit of feature selection is demon-
strated by comparing Figure 2, A and B. Moreover, Figure 3
demonstrates that including low contributive edges for identifi-
cation may degrade accuracy. First, as shown in Figure 3A, the
superiority of diagonal elements compared with nondiagonal is

more obvious in the cross-subject similarity matrix obtained
with selected edges. Second, in Figure 3B, the differential identifi-
ability of the cross-subject similarity matrices obtained by whole-
brain edges is lower than the ones obtained by the selected edges
thresholded at the 95th percentile of the SD values. Third, Figure
3C illustrates that the identification rate increases as the threshold
becomes greater and sharply decreases after reaching the peak value
with the threshold equal to 0.95 ~ 0.98. Of note, the results shown
in Figure 3, A and C, were only based on Dataset II for illustrating
the importance of feature selection, and the corresponding results
obtained from Dataset I and Dataset III were similar.

The discriminative power of each edge (edgewise contribu-
tion) was measured by the average frequency with which this
edge was selected across all iterations. As the results of the edge-
wise contribution in the three datasets are similar (two-tailed
paired t tests on the three pairs of the datasets, p = 1), we only
show the contribution analysis based on Dataset II in Figure 4A.
Approximately 69% of the edges with a high contribution to
identification were intranetwork connections. Approximately 38
and 50% of the high contributive edges were linked to the dorsal
attention network and visual network, respectively, which sug-
gests they possess high intersubject variability and play an im-
portant role in the infant brain functional fingerprint.

Identification with shorter time duration

We next evaluated the distinguishability of the functional con-
nectome fingerprint associated with the rs-fMRI BOLD signal
acquisition duration. The identification rates obtained by the
truncated rs-fMRI run with {il, E, %, l, 1
5 5 5 5 6
points were investigated. We observed that although longer time
series tend to improve identification accuracy, shorter time
courses with more than ~250 time points were able to relatively
preserve the identification capability in connectivity profiles (Fig.
4B), and the identification performance degraded sharply with
fewer than ~70 time points. The number of time points at which
the identification accuracy decreases was consistent across the
three datasets (I-III). Thus, during infancy, the minimal rs-fMRI
acquisition duration required for accurate identification is not
affected by the distribution of session gap and subject age.

X 420 time

Identification with coarser parcellation of brain

As shown in Figure 4C, the identification rates using the 360-
node atlas were 5043 * 1.10% (Dataset I), 65.29 *= 0.53%
(Dataset II), and 42.69 * 1.18% (Dataset III) based on a base-
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(purple) in the colored matrix (bottom) shows the summed normalized contribution within and between networks. B, Identification with shorter time duration. We performed identification with

43211

a truncated rs-fMRI run, where {¢,2,2. 11

} time points with the same starting point were used to compute connectivity matrices; different curves in the figures show the identification

performance obtained from three different datasets (Datasets I-Ill). , Effect of parcellation scheme. We calculated the connectivity profiles of the scans based on 360-node and 68-node cortical
parcellation maps and compared the identification performance of different parcellation schemes. D, Identification with two-base set including two longitudinal connectivity matrices as the base

set or two-target set including two longitudinal connectivity matrices as the target set. The box p

lots show the performance of identification with the two-base set, two-target set, and single

matrix on the three datasets (i.e., MM-Dataset |, MM-Dataset Il, and MM-Dataset Il) generated from 57 subjects with >2 longitudinal scans. The error bar is the SD of identification rates.

target pair of session 1-session 2 and 59.33 * 0.83% (Dataset I),
73.08 = 0.54% (Dataset II), and 57.36 * 0.72% (Dataset III) of
the reverse session 2-session 1. The identification rates using the
68-node atlas were 23.08 * 0.00% (Dataset I), 32.69 = 0.00%
(Dataset II), and 17.31 = 0.00% (Dataset IIT) based on a base-target
pair of session 1-session 2 and 25.00 = 0.00% (Dataset I), 27.88 =
0.00% (Dataset II), and 12.50 * 0.00% (Dataset III) of the reverse
session 2-session 1. Compared with our 602-node fine-grained
infant-dedicated cortical functional parcellation map, the identifica-
tion rates with low-resolution parcellation were obviously reduced.

Identification based on two-base set and two-target set

The functional connectome fingerprint should be stable and be
maintained across ages to a certain extent. In an effort to validate
accumulated uniqueness across longitudinal scans, we performed
an identification test using an expanded base set and expanded
target set with two longitudinal connectivity matrices on three
datasets (i.e., MM-Dataset I, MM-Dataset II, and MM-Dataset
III) with different distributions of scan age and session gap. In all
cases, the identification rate was improved using the two-base set
or two-target set (detailed results with Mann-Whitney U test on
the three datasets, respectively: rank sum = 8695, 8950, and 8453,
two-sided p<<10722,107%6, 107" on two-base set vs single-ma-
trix base set; rank sum = 7333, 7075, and 7376, two-sided
p<1078,107%, 1078 on two-target set vs single-matrix target set).
Specifically, for the identification based on the two-base set, the
average identification rates of 20 times of 10-fold cross-validation
increased substantially to 82.16 * 3.13% (MM-Dataset I), 86.84 =
3.82% (MM-Dataset II), and 79.21 * 7.41% (MM-Dataset III),
respectively (average identification rates were respectively
63.49 = 12.3%, 69.23 * 11.43%, and 59.41 * 11.69% with the
normal single-matrix base set and single-matrix target set on
the three datasets). For the identification based on the two-
target set, the average identification rate of 20 times of 10-fold
cross-validation increased to 73.71 = 14.41% (MM-Dataset I),

76.87 + 15.47% (MM-Dataset II), and 71.78 * 13.49% (MM-
Dataset III), respectively. This suggests that the uniqueness
can be better captured by longitudinal information (Fig. 4D).

Effects of gender and head motion

After breaking down the identification rates according to gender,
the paired ¢ test across three datasets and two base-target pairs
shows there is no significant difference between males and
females (p = 0.2920). Furthermore, the average identification
rate with motion estimates vectors on the three datasets over two
base-target pairs is 0.96%, which is even lower than the identifi-
cation rate of chance level over 1000 permutation testing (aver-
age identification rate is 1.1%). Thus, it is unlikely that
identifiability is related to idiosyncratic patterns of head motion.

Identification in adjacent age groups

The relevance of subject age to identification rate and the contri-
bution of the seven networks to identification were tested with
five adjacent datasets across different age groups, that is, 0-
6 months, 6-9 months, 9-12 months, 12-18 months, and 18-
24 months. As shown in Figure 5A, the frontoparietal networks
(networks 1 + 2 + 7) still led to comparable identification rates
as the whole-brain connectivity at all age groups. As the age
increases, the advantages of high-order networks in independ-
ently identifying the identity become more obvious. We also
explored the contribution of the edges and networks in each age
group (Fig. 5B) following the same procedures described before.
Similar pattern was found in the distribution of the most contri-
butive edges to identification throughout the first 2 years after
birth, revealing the stability of the functional connectome finger-
print across early brain development. First, the connections
within the dorsal attention network and visual network make the
largest contributions across all age groups. Second, the internet-
work connections involving the dorsal attention network usually
contribute more to the identification compared with other
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Identification in adjacent age groups. M, Month. 4, The identification accuracies at five age groups of the first 2 years after birth. At different age groups, the identification rates

based on the whole-brain connectivity (All), frontoparietal networks (1 + 2 + 7), and seven individual networks are represented by dots in the figure. The base set/target set sequences are
shown in the top of each figure; that is, sessions 1 and 2 are the base set in the left figure and right figure, respectively. B, The contributive edges for the identification in the five age groups.
The color (purple) in the colored matrices (bottom) shows the summed normalized contribution within and between networks; the color gray in the colored matrices shows the summed stand-
ardized contribution within and between left (L) and right (R) hemispheres. C, Association between connectome distinctiveness and age. The mean and SD of the smooth function fitting across

10,000 bootstraps are represented by the blue curve and shaded area, respectively.

internetwork connections without the dorsal attention network.
Finally, within-network connections are more distinctive than
between-network connections. Moreover, to further study the
association between connectome distinctiveness and age, we
defined the connectome distinctiveness with the identification
tests based on Datasets I-III, which is the average accuracy across
20 times of 10-fold cross-validation on all the three datasets
based on a base-target pair of session 1-session 2. The scan age of
each subject at session 1 was taken as the corresponding age with
the connectome distinctiveness. The relationship between con-
nectome distinctness and age is demonstrated by a smooth curve
based on the automatic estimation of the smoothness parameter
(Fjell et al., 2010) between them (Fig. 5C), with mean and SD
computed across 10,000 bootstraps. There is a clear tendency
that connectome distinctiveness increases with age (Fig. 5C).

Cognitive score prediction
In adults, it has been shown that the frontoparietal networks are
the most discriminative for individuals and also have high capabil-
ity in cognitive behavior prediction (Finn et al,, 2015; Liu et al.,
2018). Here, we explore whether this fact still holds for infants.
We found that both whole-brain connectivity (r = 0.36,
p<107%) and frontoparietal connectivity (r = 0.34,p<<10"7)
generated significant predictions (Fig. 6A). The dorsal attention
network and somatomotor network demonstrated more predic-
tive power for cognitive behavior. Different from the distribution
of the most contributive edges for identity identification, inter-
network edges showed a higher contribution to ELC prediction
(Fig. 6B). Approximately 89.1 and 58.5% of the edges with a high
contribution to ELC prediction were intranetwork connections
in positively and negatively correlated edge sets, respectively.

Discussion
By performing functional connectivity-based individual identifi-
cation in infants, for the first time we demonstrate that the

individualized functional connectome pattern may exist during
early infancy and remains stable over months. Both the primary
and high-order systems capture the characteristics of individual
uniqueness in brain functional organization. Notably, the fron-
toparietal networks exhibit comparable capability as the
whole-brain connectivity in identity identification and cog-
nitive performance prediction during infancy, resembling
the prior research about the functional connectome finger-
print in older children (Miranda-Dominguez et al., 2018),
adolescents (Kaufmann et al., 2017), and adults (Finn et al.,
2015; Horien et al., 2019), as well as individual uniqueness in
neonates (Wang et al., 2021). Moreover, we demonstrate the
stability of the brain functional fingerprint by the relative
high identification rates using datasets of large session gaps,
and also suggest the potential of inferring individual behav-
ior phenotypes based on the functional connectome during
infancy.

The functional connectome fingerprint exists and evolves
during infancy

The identifiability of a functional connectome appears to be
established during early infancy as the infant functional connec-
tivity has become unique enough for individual identification
(the average identification rate on three datasets reaches 65.76%,
with the average session gap approaching 212 d). Despite rapid
brain development during infancy, we achieved statistically sig-
nificant identification rates based on the functional connectivity
pattern. Together with the prior literature showing the existence
of a functional connectome fingerprint in older children/adoles-
cents/youths (7-15years old (Miranda-Dominguez et al., 2018),
8-22years old (Kaufmann et al., 2017), 9-19 years old (Demeter
et al,, 2020), 11-29years old (Horien et al,, 2019), adults (22—
36 years old; Finn et al., 2015; Liu et al., 2018), and older adults
(59-72years old (Horien et al., 2019), we suggest, at the popula-
tion level, the functional connectome may have identifiability in



386 - J. Neurosci., January 19, 2022 - 42(3):377-389

Huetal. o Functional Connectome Fingerprint During Infancy

A Whole brain-based prediction B Positive connections
150 ! ' orsal
L ttention R
140 Dorsal A3, ¥
Attention 3
130 f Fronto
-parietal 02 00 25
120 . .
é o ese 1t Default 0.6 0.2 0.1 5
'8 110 A
ks 7 Visual 03 06 (15 03 o
© 100 .
o =
: v g, Limbic 03 05 05 16 00 1
90 % & .
_ Somato 0.2 0.3 H 06 08 0.3
80 MAE = B.60 -motor - 0.5
il o Ventral 03 02 12 19 02 06 03
70 P <1077 Attention ) : - e : - o
" . » O g O Y »
2L B> N & & M e
70 80 90 100 110 120 130 140 150 FE K @ & G K6
Real ELC U €& & F O LS tral
S TN Xerdron
Frontoparietal networks-based prediction Negative connections ]
150 : — Attention R
16 ., & &
140 Dorsal g4 w T .
Attention 14 y Im‘ I %
130) Fronto ' 0.0 0.1 $ \ ” \/ -
-parietal 1.2 & \ ) ‘ “ e o,
Q” / N \ \ \ ‘% 2
Default 01 03 05 1 7'\* Y -
g \ £ x|
i AR\ (P
< > V "s 18’ £ -
Visual 91 00 00 o041 0.8 g @1 //,//.//t‘f’» \ 3
0.6 s //‘10"‘ ) % @s
.. 00 00 03 00 O . N
Limbic 0 ' 2P .
110.4 < L NG A7 3 \ j~$
MAE = 9.06 Somato 00 00 01 00 % W Y Fs
80r r = 0.3598 -motor 02 % A ‘ N y 3
=2 Ventral K i X X X . Q] b {
- P<10 Attention. 03 01 01 01 03 02 ; % Pt
70 8 90 100 110 120 130 140 150 &7}.\\00@&%{3* ,\,bé‘_e\)q) _&\0 @% &QE\OQ % tﬁl&
Real ELC U’ <<sz>‘\ PN LGS Xerahn
v 4 =
Figure 6.  Cognitive score prediction based on functional connectome. A, ELC score prediction results based on the whole-brain connectivity and frontoparietal networks. Scatter plot shows

the averaged predicted ELC from the 20 times 10-fold cross-validation and the real observed ELC. Each dot represents the predicted and real ELC pair from one subject; the gray area indicates
95% confidence interval for the best-fit line. B, The contributive edges for ELC score prediction. The contribution of the edges was summarized separately with a negatively and positively corre-
lated edge set. The color in the colored matrices shows the summed standardized contribution of within and between networks. The circle map shows the contribution of the edges to the ELC
score prediction, where the whole edge set was thresholded at the 99.9th percentile for better visualization; the 602 parcels in the whole brain are grouped into seven networks. The black lines
in the circle map represent the most contributive edges for both cognitive prediction and infant identification.

some extent across the whole life span, which echoes the hypoth-
esis of the life-long existence of a cortical folding-based finger-
print (Duan et al., 2020).

Although the functional connectome fingerprint exists from
early infancy and may last the whole life, the strength of the iden-
tifiability is different at different periods of life. We observed an
increasing pattern of the association between connectome dis-
tinctiveness and age (Fig. 5C). Meanwhile, in the longitudinal
design of the identification test based on five adjacent age groups
(Fig. 5A), the identification accuracy during 0 ~ 6 months was
mostly lower than that of the older age groups. The difference in
identification rates between Dataset I and Dataset II also sup-
ports the difficulty in identification when involving younger sub-
jects. Here, the session gap effect is ruled out because the average
session gap of Dataset I is smaller compared with that of Dataset
I1. It can be speculated that the brain functional connectome fin-
gerprint goes through a gradual process of formation during the
course of brain development. Actually, many previous studies
about the functional (Tau and Peterson, 2010; Gao et al., 2013)
and structural (Schneider et al., 2004; Geng et al., 2012) develop-
ment of the infant brain have suggested that the first infantile
year could be characterized as the construction process of the
backbone of most functional networks and thus possesses low
intersubject variability. Although the magnitude of interindivid-
ual difference gradually increases after fundamental construc-
tion, the individualization of the functional connectome tends to

be strengthened. Our results suggest that the functional connec-
tome fingerprint is not static but evolves during infancy, which
also aligns with the hypothesis that the brain functional connec-
tome is undergoing a process of individualization during adoles-
cence (Kaufmann et al., 2017).

Frontoparietal networks are the most distinguishing
functional systems even during infancy

The frontoparietal networks have been demonstrated to perform
best in defining the uniqueness of individuals from neonates to
adults (Vanderwal et al., 2017; Horien et al., 2019; Wang et al.,
2021). Our findings illustrate the superior distinctiveness of fron-
toparietal networks in infants by showing their high and stable
discriminative capability (averaged on the three datasets, the
frontoparietal networks reach an identification rate of 66.62%
compared with the rate of 65.76% obtained by the whole-brain
connections). Interestingly, as the high-order association corti-
ces, the frontoparietal networks are consistently recognized as
being immature and continuously developing (Smyser et al,
2011; Cao et al., 2017a,b). How could the frontoparietal networks
keep uniqueness and stability during brain development is an
intricate problem. Gao et al. (2014) suggested that the prolonged
maturation of higher order systems offers an opportunity for the
development of intersubject variability, and Mueller et al. (2013)
interpreted it as the result of environmental factors. But these
determinants may not explain all the contributive connections
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with high uniqueness because the primary networks, also identi-
fied as contributive networks in our study, are always recognized
as well-established systems in prenatal development with little
environmental influence. Our results may suggest that the func-
tional connectome fingerprint is a specific pattern tightly related
to only a very small portion of connections (Using only 5% con-
nections can reach significantly higher identification
accuracy than using the whole-brain connections.), which main-
tain high stability (despite slightly evolving and completing),
whereas the rest of the connections are heavily affected by brain
development.

The basic pattern in the infant functional connectome
fingerprint is relatively stable over months

Using connectome-based identification in three datasets, we
demonstrate that the functional connectome fingerprint remains
stable over months because of the satisfactory identification over
big session gaps (the mean is 147 ~ 298 d). Although longer ses-
sion gaps may lead to lower intrasubject stability and are prone
to degrade identification accuracy, the statistically significant
identification accuracies still demonstrate the stability of the
functional connectome fingerprint, consistent with previous
studies suggesting that the uniqueness of the functional connec-
tome is stable for a few months in older adults and 1-2 years in
adolescents (Horien et al.,, 2019). Existing reports have provided
evidence that brain networks are largely stable with trivial varia-
tion in networks over time, especially during rest (Vakhtin et al,,
2014; Laumann et al, 2017), and are dominated by individual
factors such as genetics (Gratton et al., 2018). Meanwhile, given
that existing studies in neonates and infants suggest a more fun-
damental role of genetic factors (Lee et al.,, 2015; Sadeghi et al.,
2017) over environmental factors in the stability of brain organi-
zation, we speculate that the functional fingerprint may be
largely linked to genetics.

Potential factors to boost identification rate

Some factors could potentially increase the identification rate.
First, eliminating the edges with low intersubject variability could
benefit the identification in infants. It has been observed that a
small portion of functional connections is sufficient to obtain
similar identification accuracy comparing with the whole-brain
connections (Byrge and Kennedy, 2019). In our study, the con-
nections with low intersubject variability are prone to reduce
identification accuracy. This factor may be more prominent for
infants because of the confounding effect of immature functional
patterns. Second, a parcellation with higher resolution has the
potential to improve identification. The increased identification
rate obtained by a fine-grained parcellation (Fig. 4C), resembling
the results in adults (Finn et al., 2015), may imply that the func-
tional fingerprint is a delicate pattern. Third, uniqueness could
be boosted with more reference scans. We found, as expected,
the identification accuracies significantly increased with a two-
based set or two-target set, again in agreement with the findings
in adults (Finn et al., 2015), and possibly resulted from the stabil-
ity of the functional fingerprint.

Association exists between functional connectome
fingerprints and cognitive performance

We also demonstrated that the frontoparietal networks highly
contribute to the ELC score prediction as well as identity identifi-
cation, which is consistent with existing studies demonstrating
the relationship between individual uniqueness and cognitive
behavior (Cole et al., 2012; Kaufmann et al., 2017; Horien et al.,
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2019). This result reveals the association between functional fin-
gerprints and cognitive performance during infancy. Meanwhile,
difference exist in the individualized connectome characteristics
between identification and behavior prediction. The strong de-
pendence of cognitive score on the across-network connectivity
suggests the domination of large-scale coordination of brain ac-
tivity in cognitive behavior (Power et al., 2011). By comparison,
the involvement of more within-network connectivity in the
uniqueness of individual connectome patterns reveals the impor-
tance of localized stability in the functional fingerprint.

Additional considerations

In our study, subjects older than 876 d in the BCP dataset were
not included because they were typically scanned while watching
movies rather than sleeping, and the functional connectivity may
show different patterns with different engagement of visual and
auditory stimuli (Vakhtin et al, 2014; Horien et al, 2019).
Employing longitudinal pediatric scans acquired across different
scan paradigms and during longer intervals up to years may fur-
ther test the stability of the functional connectome fingerprint-
ing. Our recent work on sleep-to-awake functional connectome
prediction based on deep learning may be beneficial for the
related study (Hu et al,, 2021). Another consideration is that we
only used static functional connectivity to investigate the individ-
ualized pattern of the functional connectome. Examining
whether the dynamic functional connectivity and some derived
dynamic measures (Liu et al., 2018) can characterize individual
uniqueness of infants would further improve our understanding
of the stable inherent traits and ongoing changes of the infant
connectome fingerprint.

Conclusion

In summary, our findings reveal that the functional connectome
fingerprint appears to be established during early infancy and,
more importantly, maintains stability over the span of months,
despite rapid early brain development. Complementary to the
reports of the individualized patterns of functional connectome
in adolescents, adults, and older adults, our results highlight the
existence of individualized functional connectivity patterns dur-
ing infancy, thus filling a knowledge gap in neurodevelopment
and completing the full picture of the functional connectome fin-
gerprint across the whole life span after birth. The necessity of
functional connection selection during our study emphasizes the
specificity of the functional connectome fingerprint during
infancy as well. By demonstrating the distinctness of high-order
association cortices and the differential contribution of various
networks in individual identification, we characterize, for the
first time, the network mechanisms underlying the functional
connectome fingerprint in infants. Our findings support the
potential application of an individualized functional connectome
in measuring individual personal traits and tracking the progres-
sion of mental disorders during early brain development.
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