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Abstract Atrial fibrillation (AF) is an important clinical problem. Chronic pressure/volume overload of the atria promotes
AF, particularly via enhanced extracellular matrix (ECM) accumulation manifested as tissue fibrosis. Loading of
cardiac cells causes cell stretch that is generally considered to promote fibrosis by directly activating fibroblasts, the
key cell type responsible for ECM production. The primary purpose of this article is to review the evidence
regarding direct effects of stretch on cardiac fibroblasts, specifically: (i) the similarities and differences among studies
in observed effects of stretch on cardiac fibroblast function; (ii) the signalling pathways implicated; and (iii) the
factors that affect stretch-related phenotypes. Our review summarizes the most important findings and limitations
in this area and gives an overview of clinical data and animal models related to cardiac stretch, with particular
emphasis on the atria. We suggest that the evidence regarding direct fibroblast activation by stretch is weak and
inconsistent, in part because of variability among studies in key experimental conditions that govern the results.
Further work is needed to clarify whether, in fact, stretch induces direct activation of cardiac fibroblasts and if so,
to elucidate the determining factors to ensure reproducible results. If mechanical load on fibroblasts proves not
to be clearly profibrotic by direct actions, other mechanisms like paracrine influences, the effects of systemic
mediators and/or the direct consequences of myocardial injury or death, might account for the link between cardiac
stretch and fibrosis. Clarity in this area is needed to improve our understanding of AF pathophysiology and assist in
therapeutic development.
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1. Introduction

Mechanical stretch of the heart, typically associated with pressure and/or
volume overload, is believed to be an important contributor to the de-
velopment of cardiac fibrosis. Atrial fibrosis promotes the occurrence of
atrial fibrillation (AF), the most common cardiac arrhythmia, and its asso-
ciated risk of stroke, heart failure, and mortality.1 The lifetime risk of AF
is estimated to be 22–26%, meaning that 1 in 4 people will be affected
over the course of their lives.1 AF is the single most important risk factor
for stroke in the elderly and is believed to be a potentially important con-
tributor to cognitive decline and dementia.1 Increased atrial pressure
alters atrial electrophysiology and is associated with atrial fibrosis,
thereby favouring AF occurrence.2–5 Moreover, AF per se impairs atrial
mechanical function, establishing a positive feedback loop that exacer-
bates the situation (Figure 1).6,7 Animal models that recapitulate cardiac
pressure overload show atrial remodelling that is characterized by con-
duction slowing, cellular calcium overload, fibrosis, fibroblast prolifera-
tion, and alterations in collagen degradation.8 How mechanical stimuli

are transduced at a cellular level and trigger fibrosis is still a matter of ac-
tive investigation. Stretch and hemodynamic load modulate the function
of many mechanosensitive ion channels and transmembrane proteins
that, in tight interplay with the extracellular matrix (ECM), activate a
range of signalling pathways to modify cellular function.9–11

Cardiac fibroblasts are widely distributed and are the primary cellular
controllers of ECM homeostasis. Sustained hemodynamic loading is be-
lieved to cause fibroblasts to proliferate, migrate, and differentiate into
myofibroblasts, which abundantly secrete ECM proteins. This process
causes fibrosis that prompts the progression of many cardiac disorders
by hampering myocardial excitation–contraction coupling and by dis-
turbing impulse propagation and ECM-dependent signalling pathways.12

The general molecular mechanisms and signalling pathways involved in fi-
broblast dysregulation and cellular mechanotransduction have been de-
scribed extensively elsewhere.13 Mechanical forces can promote
fibroblast activation via a number of processes, including changes in the
neurohumoral environment, the release of paracrine factors from cardi-
omyocytes, interactions with leucocytes and cytokines, and direct effects
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Figure 1 Schematic of processes believed to be involved in AF-promoting responses to stretch. Conditions leading to atrial stretch and its
consequences are shown at the top. These lead to atrial stretch, either directly via altered atrial load (primary or secondary to ventricular overload) or
indirectly by affecting atrial function and causing atrial cardiomyopathy. Atrial stretch in itself causes cellular consequences that lead to atrial
cardiomyopathy. Atrial cardiomyopathy leads to AF and can impair atrial function sufficiently to lead to atrial failure. CM, cardiomyocyte; ECM, extracellu-
lar matrix; FB, fibroblast; P/V, pressure/volume; SAC, stretch-activated channel.
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of mechanical stretch on fibroblasts. A direct profibrotic effect of fibro-
blast stretch is often invoked in the literature and has been studied ex-
tensively. Here, we will briefly review in vivo evidence from patients and
experimental models and then focus on the results of studies examining
the direct response of cardiac fibroblasts to stretch. The primary issues
that we aim to address are as follows: (i) how cardiac fibroblasts respond
to stretch, (ii) whether the profibrotic effect of hemodynamic load in vivo
can be attributed to direct fibroblast activation, and if so, (iii) what mo-
lecular pathways are responsible for such activation.

2. Clinical evidence regarding
electrophysiological consequences
of atrial stretch

Atrial overload is manifested as increased atrial pressure and/or volume.
Although acute stretch caused by acute atrial overload might have sub-
stantial short-term consequences, the clinical occurrence is quite limited.
Acute mitral regurgitation due to tear or rupture of part of the mitral
valve apparatus results in immediate increases in left atrial (LA) pressure
and volume. Substantial valve disruption (e.g. due to papillary muscle
rupture) is usually rapidly fatal. Less severe dysfunction (e.g. due to a rup-
tured corda tendinea) is often compensated by adaptive responses,
which are followed by changes typical of chronic stretch. Extensive acute
myocardial infarction or myocarditis can result in rapid increases in atrial
stretch, but the severe associated ventricular dysfunction usually over-
shadows the atrial changes for which the main clinical manifestation is
usually AF.

Chronic atrial overload inducing sustained increases in atrial stretch is
much more frequent, and therefore relevant, in clinical practice. Chronic
atrial selective stretch is present in conditions generating primarily atrial
overload, such as mitral stenosis, the classical paradigm of atrial pressure
overload,14 or congenital heart defects causing atrial volume overload
like atrial septal defects.15 More commonly, chronic atrial stretch devel-
ops in response to primary ventricular overload, either pressure- or
volume-related, in which, despite initial adaptive responses at the ven-
tricular level, the haemodynamic load is eventually transmitted retro-
gradely to the atria. Typical settings include hypertension, heart failure,
and valve disease other than mitral stenosis (Figure 1). Patients with hy-
pertension often show features of diastolic dysfunction including in-
creased LA pressure and atrial dilation,16 a common surrogate of atrial
stretch, and inadequate blood pressure control is associated with further
atrial dilation.17 Atrial overload is particularly important in heart failure,
both with reduced and preserved ejection fraction, and in valvular heart
diseases such as mitral regurgitation and aortic stenosis, where LA
enlargement is common and portends a greater risk of ventricular
decompensation and clinical morbidity/mortality.18–21 Other clinical
conditions like intensive exercise training,22 obstructive sleep apnea,23

and pulmonary hypertension24 have also been associated with
atrial dilation.

The clinical consequences of atrial stretch are very important. As
shown in Figure 1, a variety of common clinical conditions lead to atrial
stretch, either directly via altered atrial load (primary or secondary to
ventricular overload) or indirectly by affecting atrial function and causing
atrial cardiomyopathy. Atrial stretch itself produces remodelling that
causes structural and electrical changes in the atria that, with time, lead
to the development of atrial cardiomyopathy.25 Atrial cardiomyopathy
produces two principal clinically relevant manifestations, AF and the

newly recognized entity of ‘atrial failure’.26,27 Atrial failure is character-
ized by cardiac dysfunction due to primary abnormalities in atrial func-
tion, in the absence of significant ventricular or valvular dysfunction.27 AF
and atrial failure are intrinsically related to each other (Figure 1), and
both conditions feed back to each other and to atrial cardiomyopathy,
directly and by inducing further ventricular overload. Atrial failure and
AF have significant prognostic consequences, since both have potential
deleterious effects on ventricular function and may facilitate the progres-
sion to heart failure, and both are believed to be associated with blood
stasis and endothelial dysfunction, predisposing to thrombus formation
and thromboembolic events.26,27

Clinical observations on the atrial remodelling consequences of atrial
stretch are limited. Atrial pressure increases induced by ventricular pac-
ing or initiation of AV node re-entrant tachycardia are associated with
acute decreases in atrial effective refractory period (ERP) and monopha-
sic action potential duration.28 Acute atrial loading with atrial pacing
causes exaggerated atrial responses among AF patients compared to si-
nus rhythm (SR) controls in terms of increased LA wall tension and de-
creased ERP, despite comparable increases in LA pressure.29 In contrast
with the direct effects of acute atrial stretch, patients with chronic atrial
volume loading due to atrial septal defects show increased low-atrial
ERP, P-wave duration, and conduction delay across the crista termina-
lis.15 Inherited atrial cardiomyopathy due to mutation in the atrial natri-
uretic peptide gene causes extensive atrial fibrosis in association with
atrial dilation and contractility impairment.30

3. Experimental observations
relating to cardiac stretch in animal
models

Common findings in pressure-overloaded hearts include the induction
of the immediate early genes (IEG), c-Myc, c-Fos, and Fra-1 as the earliest
response.31 This is followed by increases in a-smooth muscle actin
(aSMA) in the myocardium and fibroblasts from pressure-overloaded
hearts,32–34 although some studies found that the changes are time vari-
ant, first increasing and then declining slowly after several days.35

Fibroblast activation and increased transforming growth factor-b
(TGFb) expression also occur in pressure-overloaded rat hearts,36–38

followed by increased deposition of collagen and fibronectin, and re-
duced collagen degradation.38–40 A study of systemic hypertension also
showed early collagen remodelling, with collagen type3/type1 ratio in-
creasing during the progression of systemic hypertension (4 weeks)
while returning to basal levels thereafter (35–88 weeks).41 However, an-
other study reported unchanged collagen expression 1 week after the
establishment of the model and decreased collagen type3/type1 ratios
after 8 weeks because of an increase in the synthesis of collagen I.42

Lipoma-preferred partner (LPP), a nucleo-cytoplasmic shuttling adaptor
protein that is a mechanosensitive protein highly expressed in cardiac
fibroblasts, is up-regulated in hearts from pressure-overloaded rats but
unchanged in hearts from myocardial infarction rats.43 The expression of
chymase, an enzyme capable of converting angiotensin I to II as well as af-
fecting a variety of ECM-localized enzyme systems, is increased in cardiac
fibroblasts isolated from a pure volume-overload rat model.44

Enhanced collagen degradation and increased MMP levels are seen in
patients with congestive heart failure (CHF).45 Similarly, in the LA and
left ventricle (LV) of dogs with tachypacing-induced CHF, apoptosis and
white-cell infiltration are transiently increased after the imposition of
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tachypacing, mitogen-activated protein kinases (MAPKs) are activated,
and active TGFb1 monomer and angiotensin II expression are increased
compared to control dogs. In the same study, LA fibrous-tissue content
was increased 20-fold with CHF.46 Burstein et al. also reported much
greater profibrotic responses in the LA vs. LV of CHF dogs, including in-
creased fibroblast proliferation and activation, increased ECM gene ex-
pression, and induction of platelet-derived growth factor (PDGF) and its
receptor.47 A significant interaction between chamber (atrium vs. ventri-
cle) and condition (CHF vs. control) indicates that these responses are
chamber specific.47 Dawson et al. also reported that atrial tissues and
freshly isolated atrial fibroblasts from CHF dogs displayed significantly
greater mRNA levels of ECM genes.48 Atrial fibrosis is also produced in a
pig model of mitral regurgitation and promotes AF development.49 On
the other hand, in a goat model of chronic atrial volume loading due to
an aortic LA shunt, while AF susceptibility was increased, neither LA ERP
nor collagen content was changed.50 Work in an LV-LA shunt dog model
also showed AF promotion, but with slightly decreased LA ERP, in-
creased conduction heterogeneity, and fibrosis localized to the inferior
pulmonary vein region.51

Thus, both clinical and experimental data indicate that cardiac fibrosis
occurs in pressure/volume-overloaded contexts, along with characteris-
tic molecular changes, and that the atria are particularly susceptible to fi-
brosis development.

4. Fibroblasts and the ECM

Cardiac fibroblasts control the ECM framework that creates the func-
tional scaffold for the myocardium.52–54 Far from a passive skeleton, the
ECM in turn acts as a reservoir for multiple growth factors, chemokines,
enzymes, and matricellular proteins that regulate fibroblast phenotype
and function.55–57 Cardiac fibrosis appears as a result of a series of phe-
notypic changes that include fibroblast proliferation, differentiation, and
ECM remodelling. Fibrosis affects cardiac structure and electrical func-
tion in complex ways. In addition to direct disturbance of conduction
pathways by interrupting muscle bundles,58 cardiomyocyte electrical ac-
tivity can be affected by electrical coupling between fibroblasts and cardi-
omyocytes,59,60 although the extent to which this occurs in vivo remains
controversial. Upon cardiac injury, quiescent fibroblasts get activated by
growth factors, cytokines, and other stimuli and differentiate into myofi-
broblasts.61 Myofibroblasts are normally eliminated by programmed cell
death after completing wound healing or tissue remodelling.62 However,
under conditions like prolonged cardiac injury, inflammation, or aging,
myofibroblasts become resistant to apoptosis, accumulate in fibrotic
regions, and lay down large amounts of ECM.63

In comparison with fibroblasts, myofibroblasts possess greater ability
to synthesize collagen, deposit and degrade ECM, recruit inflammatory
cells, and promote inflammatory cell infiltration.64–67 They also express
larger quantities of aSMA that confers contractile capacity involved in
wound retraction68–70 and extra domain-A (ED-A) fibronectin, the bio-
logically active splice variant that plays a key role in activation.69,71

Myofibroblasts secrete collagen I and collagen III, which constitute 80%
and 10% of the normal structural ECM, respectively.72 The metabolism
of these proteins is determined by the balance between deposition of
newly synthesized molecules, degradation of existing collagen by matrix
metalloproteinases (MMPs), and inhibition of MMPs by the tissue inhibi-
tors of metalloproteinases (TIMPs).72 Collagen strand assembly in ma-
ture fibres, which is controlled by the lysyl oxidase enzyme (LOX) family
members that cross-link collagen fibrils, is also a determinant step.73,74

The ECM is a highly dynamic structure, with constant turnover of colla-
gens and other ECM proteins.

At the cellular level, aSMA, vimentin, and other filaments form cellular
stress fibres that in consort with the ECM, membrane receptors, integ-
rins, focal adhesions, and other membrane proteins, participate in trans-
ducing external mechanical forces into subcellular structures,
particularly the nucleus. In turn, changes in gene expression induce ECM
remodelling and release of growth factors and other biologically active
molecules that contribute to the maintenance of cardiac mechanotrans-
duction.13,55,75,76 This system constitutes a feed-forward loop that can
result in continuous myofibroblast activation and contribute to patholog-
ical remodelling of the heart. It is widely assumed that the occurrence of
fibrosis in conditions inducing cardiac pressure/volume loading is due to
direct fibroblast activation by stretch, as described for non-cardiac fibro-
blasts.77 In the following section, we review evidence from studies exam-
ining the response of isolated cardiac fibroblasts to stretch to evaluate (i)
the nature of their response and (ii) the mechanisms involved.

5. Stretch studies in cultured
cardiac fibroblasts

For over 30 years, there has been an increasing interest in studying how
mechanical forces act on cardiac cells.78 It is difficult to investigate the
effects of stretch per se in vivo, because most manipulations that alter
stretch also affect many other functions, for example autonomic tone,
neurohormone concentrations, cytokine release, etc. Therefore, the
only way to study pure and isolated stretch effects on fibroblasts is to
evaluate them with in vitro systems. Cell-stretching devices have been
used extensively to generate in vitro mechanical strain in many isolated
cell types, particularly fibroblasts, in order to determine the consequen-
ces of cellular mechanotransduction.79–85 One of the first in vitro stretch
studies performed on cardiac cells was performed by Terracio et al.,
who applied cyclic uniaxial stretch to neonatal rat cardiac fibroblasts.78

They demonstrated that stretched fibroblasts elongate and orient per-
pendicular to the direction of stretch, with vimentin intermediate fila-
ments reorganizing parallel to the long axis of the cells. This was the first
study showing that mechanical stretch has a direct effect on cardiac
fibroblasts. Since then, many other researchers have investigated cardiac
fibroblast mechanotransduction by using similar stretch paradigms.
Relatively few studies have specifically investigated atrial fibroblasts. The
discussion below addresses findings for cardiac fibroblasts in general and
considers the issue of the specific considerations that apply to atrial
fibroblasts.

5.1 Stretch-induced phenotypic changes in
cardiac fibroblasts
5.1.1 Proliferation, apoptosis, and morphology
There is no clear consensus on whether stretch increases, decreases, or
has no real effect on fibroblast proliferation (Table 1). Some investigators
reported a decrease in fibroblast proliferation under mechanical load-
ing,86–90 while others have seen an increase.87,90,91 Moreover, many of
those studies showed that proliferation of the stretched fibroblasts could
be modified by changing other parameters in the experimental system,
such as oxygen content, serum, or surface rigidity, suggesting that if
stretch influences fibroblast proliferation, it is not in a straightforward
manner and may be modulated by the specific conditions existing at the
time of stretch.
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Ugolini et al. reported an increase in proliferation of fibroblasts

stretched under hypoxic conditions and their data suggest that prolifera-
tion may be more dependent on oxygen levels than stretch.87

Moreover, in physiological conditions, described by the authors as 6%
oxygen, stretch only increased proliferation under low strain levels.92

Herum et al. reported that stretch-induced proliferation depended on
the stiffness of the substrate for cell seeding, and although the profibrotic
markers collagen and fibronectin were up-regulated after stretch regard-
less of the substrate, they saw increased proliferation when fibroblasts
were seeded on low-stiffness membranes, and decreased proliferation
upon seeding on high-stiffness membranes.90 These authors observed
paracrine signalling from stretched cardiomyocytes on fibroblast prolif-
eration. Other studies have also suggested that paracrine factors are im-
portant in stretch-related cellular signalling,55,93,94 which reinforces the
idea that a proliferative response of fibroblasts in stretched myocardium
may be dependent on cardiomyocyte-released factors rather than, or in
addition to, the direct effects of stretch on fibroblasts themselves.
Studies on human samples have shown a reduction in fibroblast prolifer-
ation and migration (but an increase in differentiation) in cultured atrial
fibroblasts isolated from AF patients vs. SR controls.95 In the scenario of
atrial fibrosis, which is a common feature of AF patients,96 an increase in
the atrial content of secretory myofibroblasts is expected and might ex-
plain the reduction in overall proliferation.

Results are much more consistent in terms of apoptosis. Although it is
well established that cardiomyocytes enter apoptosis when stretched or
when exposed to pressure overload,46,97 cardiac fibroblasts did not show
significant signs of cell necrosis or apoptosis even after 96 h of high-strain
stretch.98 Boerma et al. reported that after stretch, up to 15% of the car-
diomyocyte apoptotic genes were differentially regulated compared to
non-stretched controls, while fibroblasts had very few genes differentially
expressed.99 These studies suggest that cultured cardiac fibroblasts are
more resilient to stretch-induced apoptosis than cardiomyocytes.

Fibroblasts do change morphology and orientation when stretched,
although these changes can also be modulated by ECM substrates.86

Fuseler et al. observed ruffling of cell edges, disorganization of actin
fibres, and cell shortening in all directions when fibroblasts were sub-
jected to static equibiaxial stretch with 5% elongation.100 In response to
long-term uniaxial stretch, cardiac fibroblasts and vimentin filaments
were elongated, polarized, and oriented perpendicular to the direction
of stretch.78,101 These studies suggest that fibroblast shape is sensitive to
stretch but that change in cytoskeleton, cell morphology, and cell polar-
ity depend on time and direction of the applied stretch, as well as on cul-
ture conditions, particularly the matrix.

5.1.2 Short-term responses at a molecular level
The initial responses of cultured fibroblasts to stretch are primarily the
activation of the immediate early gene (IEG) pathways (Figure 2, Table 2).
Activation of G proteins and kinases activates ERK2 and JNK1 and
leads to the phosphorylation of the early response genes c-Jun, c-Fos,
and Fra-1.102,103 These enhance the transcriptional activity of active
dimer activator protein-1 (AP1)-dependent genes,102,103 which orches-
trate longer-term responses.104 In contrast to the unclear effects of
stretch on proliferation, there seems to be a consensus that the phos-
phorylation and nuclear translocation of IEG are the first responses in
stretched fibroblasts. MacKenna et al. demonstrated a rapid, matrix-
dependent activation of the ERK pathway and the JNK pathway in re-
sponse to 4% static stretch, which could also be induced, although to a
lesser extent, by stretch-conditioned medium.55 Rapid activation of JNK

and p38 was confirmed by Papakrivopoulou et al., who showed phos-
phorylation after 10 min of cyclical stretch.105 Lal et al. demonstrated
that the phosphorylation of JNK1 was fast and transient, appearing after
5 min of stretch, peaking at 15 min and disappearing immediately thereaf-
ter. In contrast, p38 also peaked at 15 min and returned to baseline but
was phosphorylated again after 4 h of stretch and remained phosphory-
lated after 24 h.106 Atance et al. also reported significant MAPK activation
1 min after starting cyclic stretch,86 and G proteins were also activated in
cells subjected to 1 min of equibiaxial stretch.106 Similar increases in c-
Jun and Fra-1 gene expression were also observed when non-stretched
fibroblasts were cultured with medium obtained from stretched fibro-
blasts or cardiomyocytes.93

5.1.3 Long-term responses at a molecular level
Despite the consensus about the short-term responses being mediated
by the activation of the IEG, the downstream long-term outcomes are
much more variable among studies and seem to depend largely on the
type of stretch and culture conditions. The transition to myofibroblast
phenotype generally involves activation of the TGFb pathway and is as-
sociated with up-regulation of aSMA and collagen production.84,107

Collagen metabolism is a complex process that is tightly regulated by
many enzymes. Both increases in collagen secretion in pressure-
overloaded hearts and in fibrotic cardiac regions, and enhanced collagen
degradation, have been described in patients with CHF.45 As seen in stud-
ies with cultured cardiac fibroblasts from patients and experimental ani-
mals, the responses of collagen expression/secretion to stretch are
diverse (Table 3). Stretch significantly increased collagen I expression and/
or secretion in some studies86,89,105,108,109 and decreased it in
others,43,89,107,110 with some studies showing both increases and
decreases depending on the conditions. As well, collagen III levels were
increased after stretch in some papers107,108,110,111 and decreased in
others.86,110 Differential behaviours in collagen expression occurred with
variations in cell culture parameters like serum, membrane-coating,
etc.68,84,89,107,110,112 Furthermore, the relative myofibroblast vs. fibroblast
content is likely important, given the different phenotypes they express.

Several studies have reported changes in aSMA expression in cardiac
fibroblasts exposed to sustained mechanical forces (Table 4). Some stud-
ies suggest that stretch has opposite effects on aSMA depending on the
basal level of aSMA expression, enhancing expression when basal levels
were low and decreasing expression in fibroblasts with high basal lev-
els.68,112 However, this finding is not universal.90,108 Moreover, levels of
aSMA have also been seen to fluctuate in an in vivo pressure-overloaded
model, first increasing and then declining slowly after abdominal aortic
constriction.35

There are also discrepancies in upstream regulation of aSMA. Wang
et al. and Papakrivopoulou et al. reported that the stretch-induced in-
crease in aSMA and procollagen 1A1 mRNA expression were depen-
dent on ERK phosphorylation, while their reduction was dependent on
p38;68,105,112 another study reported the opposite, showing that the
stretch-induced increase in aSMA expression was prevented in p38-
deficient cells.113

Similarly, TGFb, the most known driver of fibroblast differentiation,
has been shown to act differently in several stretch studies (Table 5).
Some studies reported that stretch induced an increase in the expres-
sion and activity of TGFb1,84,107 depending on the type of stretch ap-
plied. Exposing fibroblasts to exogenous TGFb exerted a profibrotic
effect by inducing collagen and aSMA expression, although interestingly
this effect was attenuated in the presence of stretch.93,112,113 Further

Stretch effects on cardiac fibroblasts and AF 447
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..studies also demonstrate that promoter activity of collagen 1A1 was de-
pendent on TGFb.114 Although many studies have focussed on the role
of TGFb1, not all have seen an increase in its activity with stretch84 and
little is known on the effects on cardiac fibroblasts of other TGFb cyto-
kines like TGFb2 and b3.

Several papers have reported that stretch affects the expression of an-
giotensin genes or tumour necrosis factor (TNF). Lal et al. observed that
p38 phosphorylation increased angiotensinogen expression while JNK1/
2 decreased it; they noted time-dependent regulation of angiotensin ex-
pression by static stretch, decreasing it at 4 h and increasing it after
8 h.115 Another study from the same group characterized the upstream
regulators of these events and saw that stretch activated Rac1 and RhoA
within 5 min. Rac1 activity returned to control levels after 4 h, whereas
RhoA remained high throughout the whole period of stretch (24 h).
Rac1 inhibited the expression of angiotensin through both JNK-

dependent and JNK-independent mechanisms, while RhoA stimulated it
through a p38-dependent mechanism.116 Exposing cardiac fibroblasts to
exogenous angiotensin increased collagen I and aSMA expression, indi-
cating a profibrotic effect.112,117 In fact, angiotensin exposure also in-
creased TNF to a similar extent as stretch alone.118

In this section, we have tried to summarize key observations regarding
the main effects of stretch on cardiac fibroblasts. A great deal of variabil-
ity in responses was seen among studies; in the section below, we iden-
tify some of the technical factors that might explain this apparent lack of
consistency.

5.2 Factors that govern the response of
fibroblast to stretch
There is substantial variability in the published results of studies evalua-
tion in vitro stretch on cardiac fibroblasts. Many factors are likely involved

Figure 2 Schematic of biochemical and functional changes in response to stretch and modifying factors. aSMA, alpha-smooth muscle actin; AP1, activa-
tor protein 1; ECM, extracellular matrix; ERK, extracellular signal-regulated kinase; GPCR, G-protein-coupled receptor; JNK, c-Jun N-terminal kinase;
p38, p38 mitogen-activated protein kinase; Rac1, Ras-related C3 botulinum toxin substrate 1; RhoA, Ras homolog family member A.
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but differences in experimental conditions likely play a major role
(Figure 3). The key factors can be classified into: (i) differences in fibro-
blast origin, (ii) culture conditions, and (iii) type of stretch.

5.2.1 Fibroblast origin
An important source of variability between studies is the origin of cardiac
fibroblasts. Three central factors have to be considered: species, age of
the animal, and cardiac chamber of origin. The most commonly used spe-
cies is the rat, although stretch studies have been also reported using
mouse90,119 and human107,120 fibroblasts (Figure 4A). In terms of subject
age, cells can be isolated from foetal, neonatal, or adult animals (Figures 3
and 4B). Whether stretch responses can be affected by age remains un-
known, but as with cardiomyocytes that present greater surface adher-
ence and reproductive abilities at the foetal and neonatal stage,121

fibroblasts present stage/age-related phenotypic differences that could
condition their behaviour towards stretch. For example, foetal human
cardiac fibroblasts are smaller and proliferate faster than adult and differ-
ently influence neighbouring cardiomyocytes.122,123 Foetal fibroblasts
also have distinct epigenetic and transcriptomic features including chro-
matin accessibility, histone marks, motifs, and corresponding transcrip-
tion factors, suggesting that their responses to stretch or other stimuli
could differ.122

Another crucial consideration is the heart chamber from which fibro-
blasts are isolated. Most stretch studies use either isolated ventricular
fibroblasts or pool atrial and ventricular fibroblasts together. The latter
approach introduces additional variability, since atria and ventricle fibro-
blasts have different phenotypes124 and respond differently to external
stimuli.47 While stretch responses of atrial fibroblasts have not been ex-
tensively investigated in vitro, it is known that atria and atrial fibroblasts ex-
posed to pressure overload exhibit greater fibrotic responses compared
to ventricular fibroblasts.35,68,84,125,126 Moreover, atrial fibroblasts from
patients with chronic AF showed significant changes in gene expression,
proliferation, migration, and myofibroblast differentiation, suggesting they
might respond differently to external stimuli compared to ventricles.95

5.2.2 Coating materials and membrane stiffness
Silicone membranes are often used in stretch devices because they are
flexible, transparent, and non-deformable. However, they are hydropho-
bic and unsuitable for cell culture if not treated.127 Researchers generally
coat the membranes with ECM proteins, as they improve cell adhesion
and mimic the in vivo environment around cardiac fibroblasts. Laminin,
collagen, and fibronectin are the most common coating materials,
followed by elastin and vitronectin. As an alternative, Lateef et al. used
arginylglycylaspartic acid peptide, the binding sequence for integrins
found in most ECM proteins, and also showed stable cell adhesion
throughout the stretch protocol.127

Although the coating step might seem trivial, the ECM component
used for coating is a critical determinant of the cellular responses
induced by mechanical loading. Identical stretch protocols applied to
fibroblasts seeded on different coatings induce differential responses in
cell morphology, cell proliferation, signalling pathways, and gene expres-
sion.17,18,98,108 The most plausible explanation is that different coatings
differentially affect different cell contact proteins like integrins and pro-
duce differential activation of signalling pathways.55 For example, Watson
et al. reported that fibroblasts cultured on fibronectin-coated membranes
decreased collagen I and increased collagen III expression under stretch
conditions.107 The same stretch protocol applied to cells cultured on col-
lagen VI or laminin increased both collagen I and collagen III expressions,
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..and when cells were seeded on collagen IV or I, there was no change.108

The aSMA expression in those studies was also different depending on
the coating: decreased by stretch on fibronectin coating but increased on
collagen VI or laminin matrix.108 Another study reported that stretch de-
creased aSMA expression when cells were cultured on collagen I matrix
but not on fibronectin or fibronectin ED-A domain polypeptide.112

These observations highlight the crucial role of ECM components in
mechanotransduction and suggest that stretch-induced effects might be
ligand specific. The ECM is a complex structure containing and regulated
by many proteins and molecules. Which component reproduces the
‘correct’ in vivo response is unclear and it is possible that in vivo responses
result from a complex blend of ECM protein regulated effects that may
be very difficult to reconstitute in an in vitro system.

Substrate stiffness can also influence the basal expression levels of
profibrotic genes and cell proliferation.90,107 Herum et al. reported that
as substrate stiffness increased, more profibrotic responses were seen in
the seeded fibroblasts and suggested 8 kPa as the suitable stiffness to
avoid differentiation. This is considered the stiffness of a healthy myocar-
dium, as opposed to 20–100 kPa values in fibrotic cardiac tissue.90

5.2.3 Culture time and cell passage
It is well known that cell culture and passage affect fibroblast properties,
fostering their differentiation into myofibroblasts.48,128 The state of fibro-
blast differentiation can have important consequences on the outcome
of a stretch experiment and must be considered when comparing

studies.68 For example, freshly isolated fibroblasts from CHF dog atria
differed from fibroblasts isolated from control animals in cell morphol-
ogy and ECM gene expression (reflecting the in vivo profibrotic state),
while after two days in culture these differences disappeared because
control fibroblasts increased their collagen and fibronectin expression
levels to a greater extent through the response to culture.129 These
culture/passage-dependent effects, seen in both neonatal and adult fibro-
blasts, modify collagen deposition, growth factor production, membrane
receptor expression, focal adhesion proteins, and key myofibroblast
marker proteins including vimentin, aSMA, and smooth muscle myosin
heavy chain. In some studies, primary cardiac fibroblasts were stretched
after short periods of culture,110 while in others fibroblasts underwent
up to more than 10 passages before stretch;108 clearly these differences
can importantly affect outcomes. Differences in basal levels of profibrotic
genes due to culture conditions might contribute to discrepancies be-
tween studies. As mentioned above, stretch increased aSMA expression
in cells cultured for only 1 day before stretch, while decreasing aSMA ex-
pression when cells were cultured for 3 days pre-stretch and had higher
basal aSMA expression.68,112 To avoid excessive cell differentiation be-
cause of culture, cells should not be cultured for prolonged periods and
should be kept at very low passages.

5.2.4 Serum concentration
Serum is used in fibroblast culture and serum concentration plays a
critical role in regulating fibroblast responses in general, but its specific

Figure 3 Factors that can affect the results of cardiac fibroblast stretch studies.
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..effect on stretch is not clear. Two studies by Butt et al. demonstrated a
synergistic effect on collagen expression between serum concentrations
and stretch. They reported that cells stretched over 48 h and cultured in
10% FBS increased procollagen expression and procollagen degradation,
while when cultured in 1% FBS, collagen production did not change,109

and in serum-free medium, procollagen synthesis decreased.89

However, Husse et al. reported opposite results: a decrease in collagen I
and III in 10% FBS medium, and an increase when cells were stretched in
serum-free medium.110 Although both teams used the same stretch
device, they applied different stretch amplitudes and coating materials,
which could explain the discrepancies. Other studies reported similar
results to Butt et al.,43,105,130 while Lindahl et al. reported a result

Figure 4 Schematic representing (top) the relative percentage use of different key conditions (species, age/stage and stretch device) across different
studies reviewed in this paper; and (bottom) different types of stretch pattern used in research on stretch effects on fibroblasts. (A–C) Pie charts indicat-
ing the percentage of various species (A), age/stage of fibroblasts (B), and type of stretch devices (C) that were used in the in vitro stretch studies reviewed
in the present paper. (D–H) Schematics showing the types of stretch patterns used for in vitro studies of stretch effects on fibroblasts. The solid arrows in-
dicate the direction of applied stretch. (D, E) Uniaxial (linear) stretch. (F, G) Biaxial stretch. (H) Isotropic, equibiaxial stretch.
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similar to Husse et al.114 These apparent inconsistencies reinforce the
complexity and limitations of these stretch studies and the need to clarify
their basis.

5.2.5 Stretch protocol
One of the main constraints in studying mechanotransduction in a
monolayer system is the difficulty in mimicking the complex and dynamic
forces that mechanical stimuli exert in the intact heart. Static stretch
mimics a chronic hemodynamic overload such as an increase in heart
volume,84,90,131–133 while cyclical stretch reflects regular cardiac
contraction better.92,101,131,134 However, performing in vitro stretch over
extended periods at the frequencies of heart rates of a rat (�6 Hz) or a
mouse (�10 Hz) is technically difficult and hard on the cells.

The strain generated by stretch devices can be classified as uniaxial,
biaxial, and equibiaxial (Figures 3 and 4D–H). Uniaxial strain distribution is
anisotropic and non-homogeneous on the elastic membrane;135 the
devices generate concomitant compression perpendicular to the axis of
stretch and shear forces near membrane edges.92,134 In contrast, biaxial
stretch allows cells to be stretched without shear stress,101 and equibiax-
ial stretch generates homogeneous and isotropic strains to the cell cul-
tures.133,136 Ugolini et al. designed a microdevice with a cell culture area
of 5 mm2, allowing the seeding of 1,000 cells, which generates uniform
strain fields in a high-throughput fashion.87,92 However, these small
numbers of cells are often not compatible with expression assays
like western blot. Another system designed by Wang et al. applies con-
tinuous static perpendicular forces to cardiac fibroblasts cultured on
magnetic beads, but strain is not homogeneously distributed68,112

(Figure 4C). Mechanical strain in intact hearts are multiaxial and non-
uniform, so even the most sophisticated devices fail to fully recapitulate
what happens in an intact heart.84

In principle, the elongation and frequency of stretch should mimic the
natural mechanical forces exerted in the heart, which are very hard to
quantify. Researchers have applied levels of stretch sufficient to produce
4% to 20% elongation. In their natural environment, fibroblasts stretch
because of the contraction and relaxation of adjacent cardiomyocytes;
therefore, myocyte stretch has been taken as a reference. Sadoshima et
al. claimed that in the intact heart, a 20% increase in cell length is within
the physiological range and suggested that cardiomyocytes were not in-
jured or detached during such stretch.132 Wang et al. also used 10% and
20% uniaxial stretch to mimic myocardial hypertrophy,137 and
MacKenna et al. claimed that the area change generated by 4% equibiaxial
stretch was comparable to the changes observed in vivo.55 Gan et al. also
reported that equibiaxial stretch with a 5% elongation could simulate the
physiological in vivo condition but that 18% equibiaxial stretch was dele-
terious.119 Lee et al. showed that changing elongation extent caused col-
lagen expression to change in different directions, although these
findings were not reproduced by others.84 When 10% uniaxial or 3%
equibiaxial stretch was applied, collagen mRNA and fibronectin mRNA
expression increased, but when the elongation was increased to 20%
and 6% respectively, they decreased.84 This observation implies that
cardiac fibroblasts are able to distinguish and react differently to
different types of mechanical forces. The range between physiological
and pathological stretch is still a matter of debate. Overall, it is generally
assumed that a uniaxial stretch between 10% and 20% cell elongation
and an equibiaxial stretch of 3%–6% are within the physiological range of
both cardiomyocytes and fibroblasts.

In terms of frequency, 1 Hz is most commonly used, although studies
have used frequencies between 0.1 Hz and 1.5 Hz. Rodent cardiac

fibroblasts in an intact heart are exposed to rates 6 to 10 times higher
than the frequencies recapitulated by the stretch devices. There is no
information available regarding differential cellular responses due to
changes in frequencies.

The duration of stretch may also condition outcomes. Stretch-
induced responses occur in a specific temporal sequence. Stretch proto-
cols in the literature have been applied for periods varying from 5 s to
96 h.98,106 The earliest response to stretch reported is the activation of
the IEG and MAPKs and this does not seem to be affected by different
experimental conditions (Table 2). However, changes in profibrotic
genes like aSMA and collagen are only observed after long-term stretch
(of at least 2 h for aSMA and at least 12 h for collagen)68,111 and the
reported responses vary widely (Tables 3 and 4). For example, angioten-
sinogen gene expression changes were biphasic, with a decrease after
4 h of static stretch and an increase between 8 h and 24 h of static
stretch.115 Another example is LPP, for which 2 h of cyclical stretch at
1 Hz with 10% elongation only affected subcellular localization, but a
48-h stretch period at 1 Hz with 5% elongation up-regulated protein ex-
pression.43 The expression of serum-glucocorticoid-regulated kinase
1 (SGK1), a kinase that contributes to cardiac remodelling and the
development of heart failure, is similarly regulated by stretch in a time-
dependent fashion.119

The influence of the wide range of technical factors detailed above
makes this literature particularly difficult to analyse. It is rare for different
studies not to vary in important technical determinants and therefore
when discrepant results are obtained, it becomes very difficult to know
whether the results are truly in conflict or differ because of technical
determinants, and if so which (if any) of the obvious technical differences
are responsible for the differing outcomes. There seems to be a clear
need to obtain a clearer consensus about the effects of stretch on fibro-
blast function and to understand better the determinants of the
response.

6. Conclusions

It is clear that fibrosis occurs in many paradigms of cardiac pressure and/
or volume overload. In atria subjected to chronic pressure/volume load-
ing conditions, fibrosis is common and appears to play an important role
in AF. However, contrary to widespread assumptions, the evidence re-
garding direct cardiac fibroblast activation by mechanical forces is weak
and unclear, with key responses like fibroblast proliferation, collagen
production, and indices of differentiation to myofibroblasts showing di-
vergent and sometimes directionally opposite changes among studies in
response to stretch. While the differences in response may be due to
technical differences in terms of fibroblast origin, state of differentiation,
degree of stretch, seeding medium, etc., it is not possible to identify clear
patterns in the published work. Further research is needed to obtain re-
producible results that answer the question of whether, and if so how,
mechanical stretch directly activates fibroblasts.

There is great interest in developing novel therapeutic approaches
that prevent fibrosis development in the treatment of heart disease, par-
ticularly AF.138 In order to accomplish this goal, the key mechanistic
determinants need to be understood. It is therefore important to deter-
mine definitively whether the association between pressure/volume
loading and cardiac fibrosis is due to a direct activating effect on fibro-
blasts, to profibrotic substances produced by cardiomyocytes, leuco-
cytes, or neurohormonal responses, or to some combination of these
factors. Important new tools have become available to help in this effort.
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.
For example, single-cell RNA sequencing allows for the identification of
changes in cell populations identified by their transcriptomic signature,
rather than by classical, somewhat arbitrary criteria. This approach has
recently been used to evaluate changes in specific fibroblast cell popula-
tions associated with AF.139 Clarifying these issues may provide the key
to developing new and more effective therapies to prevent the develop-
ment and progression of atrial fibrosis and positively influence the natural
history of AF.
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