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Abstract

While agent-based models (ABMs) provide an effective means for investigating complex 

interactions between heterogeneous agents and their environment, they may hinder an improved 

understanding of phenomena being modeled due to inherent challenges associated with 

uncertainty in model parameters. This study uses uncertainty analysis and global sensitivity 

analysis (UA-GSA) to examine the effects of such uncertainty on model outputs. The statistics 

used in UA-GSA, however, are likely to be affected by the modifiable areal unit problem (MAUP). 

Therefore, to examine the scale varying-effects of model inputs, UA-GSA needs to be performed 

at multiple spatiotemporal scales. Unfortunately, performing comprehensive UA-GSA comes with 

considerable computational cost. In this paper, our cyberGIS-enabled spatiotemporally explicit 

UA-GSA approach helps to not only resolve the computational burden, but also to measure 

dynamic associations between model inputs and outputs. A set of computational and modeling 

experiments shows that input factors have scale-dependent impacts on modeling output variability. 

In other words, most of the input factors have relatively large impacts in a certain region, but 

may not influence outcomes in other regions. Furthermore, our spatiotemporally explicit UA-GSA 

approach sheds light on the effects of input factors on modeling outcomes that are particularly 

spatially and temporally clustered, such as the occurrence of communicable disease transmission.
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1. Introduction

Spatially explicit agent-based models (ABMs) provide a way to capture and simulate 

dynamic spatiotemporal phenomena characterized by interactions between heterogeneous 

agents and their environment. The usefulness of ABMs has been demonstrated in various 

fields, including land-use science (An, Linderman, Qi, Shortridge, & Liu, 2005; Bitterman 

& Bennett, 2016; Ligmann-Zielinska, 2013; Manson, 2005), ecology (Boyd, Roy, Sibly, 

Thorpe, & Hyder, 2018; Grant, Parry, Zalucki, & Bradbury, 2018) and public health (Crooks 

& Hailegiorgis, 2014; Mao, 2011). Because of a lack of available observed datasets for 
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model development (Crooks, Castle, & Batty, 2008), parameters and assumptions are often 

specified from incomplete knowledge, and thus, ABMs are faced with inevitable challenges 

associated with this uncertainty.

Uncertainty analysis (UA) and sensitivity analysis (SA) are used to explore the associations 

between model inputs and outputs in geospatial models, such as spatial simulation models 

(Crosetto & Tarantola, 2001; Hu, Lin, Wang, & Rodriguez, 2017; Kang & Aldstadt, 2019a; 

Ligmann-Zielinska, Kramer, Cheruvelil, & Soranno, 2014; Tang & Jia, 2014). Broadly, UA 

helps to quantify the uncertainty arising from model inputs, while SA measures the impact 

of changes in a particular model input on model outcome. Particularly, a variance-based 

global sensitivity analysis (GSA) framework (Crosetto & Tarantola, 2001; Saltelli, Tarantola, 

& Chan, 1999) enables assessing to what extent model inputs contribute to the variance in 

model outputs. Namely, GSA decomposes the variability from model outputs into variations 

of model inputs. UA-GSA is an integrated framework of uncertainty and global sensitivity 

analysis (Ligmann-Zielinska et al., 2014). Therefore, the findings from UA-GSA provide 

an improved understanding of a model’s input parameters and their effects on modeling 

outputs.

UA-GSA, however, are inevitably faced with both the modifiable areal unit problem 

(MAUP) (Openshaw, 1984) and the modifiable temporal unit problem (MTUP). The 

statistics used in UA-GSA need to be aggregated at a certain space-time scale. Importantly, 

input factors may influence spatiotemporal processes. Their impacts also may depend on 

location. For example, in dengue virus transmission models (Chao, Halstead, Halloran, & 

Longini Jr, 2012; Kang & Aldstadt, 2017), mosquito movement is key to spatial spread of 

dengue virus and mosquitoes are assumed to travel primarily between households within 

30 meters in the models. Therefore, mosquito movements may have significant impacts on 

regions in which buildings are spatially clustered. Within the ABM, parameter impacts are 

also time-dependent (Kang & Aldstadt, 2019a; Kang & Aldstadt, 2019c, Ligmann-Zielinska 

& Sun, 2010). For example, the impact of the herd immunity level against each serotype of 

dengue decreases over time (Kang & Aldstadt, 2019a). Herd immunity plays a critical role 

in limiting the number of potential infections and providing indirect protection to susceptible 

people in the region. Therefore, in this study our main research question is: how does the 

effect of each ABM parameter vary depending on not only spatial, but also temporal scale. 

Of particular interest in our study is to explore the scaling effects of MAUP, but not the 

zoning effects.

Spatiotemporally explicit UA-GSA are computational challenging to resolve complex 

spatiotemporal structures of model outputs and to support numerous executions of UA-

GSA workflows. A cyberGIS approach to spatiotemporally explicit UA-GSA is capable of 

addressing such computational challenges, leveraging high-performance computing power 

provisioned by advanced cyberinfrastructure (Wang, 2010). Although the advantages of 

using high-performance computing power for implementing and running ABMs have been 

advocated (Kim, Tsou, & Feng, 2015; Shook & Wang, 2015; Tang & Jia, 2014; Tang, Wang, 

Bennett, & Liu, 2011), less attention has been paid to harnessing this power for examining 

the associations between model inputs and outputs at multiple spatiotemporal scales.
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This study focuses on the spatiotemporally sensitive impacts of uncertainty on model 

outputs in ABMs. We use the spatially explicit ABMs of dengue virus transmission (Kang 

& Aldstadt, 2019b) as a case study. Dengue is a mosquito-borne disease that is endemic in 

tropical and subtropical countries (WHO, 2012). The goal of the study is threefold: 1) to 

design a cyberGIS approach to spatiotemporally explicit UA-GSA, 2) to quantify uncertainty 

in model outputs at multiple spatiotemporal scales, and 3) to examine sensitivity to input 

factors at multiple spatiotemporal scales. Performing UA-GSA at multiple spatiotemporal 

scales would be helpful to fully investigate simulation uncertainty and sensitivity to the 

model inputs. The results from UA-GSA at multiple spatiotemporal scales should also be 

explicitly provided in a spatiotemporal format. In this paper, we call this spatiotemporally 
explicit UA-GSA. The following sections explain the issue of MAUP and MTUP in UA-

GSA. Section 3 presents the spatially explicit ABM of dengue virus transmission and 

a cyberGIS-enabled spatiotemporally explicit UA-GSA. In section 4, we summarize the 

results from the UA-GSA, and section 5 concludes with discussions of the cyberGIS-enabled 

UA-GSA and future directions.

2. MAUP and MTUP in UA-GSA

As discussed in the introduction, the aggregated statistics used in UA-GSA meet the 

inevitable issues associated with the zoning effects of MAUP and MTUP that are likely to 

impact the results of UA-GSA. ABMs of communicable diseases often produce point pattern 

data about outbreaks (i.e., longitude, latitude and timestamp) as outcomes. Such point-based 

measures are often aggregated at certain spatial and temporal scales. Figure 1 illustrates how 

model outputs can be summarized at multiple scales. Spatial patterns of disease outbreaks 

can be described as regional, community, or neighborhood scale patterns. Temporal patterns 

can be explained as yearly, monthly, or weekly cases. The output scales can be summarized 

as yearly cases at a regional scale, monthly cases at a community scale, or weekly cases at a 

neighborhood scale.

UA-GSA takes statistics (e.g., dengue infection rates or the number of dengue cases) 

from each simulation run. UA-GSA at a yearly regional scale may be performed once. 

Importantly, to carry out UA-GSA at multiple spatiotemporal scales, multiple executions of 

UA-GSA are required. Running UA-GSA multiple times may be computationally intensive. 

For example, suppose that we ran the simulation for 1 year within the study area (10 

km × 10 km) and plan to perform the UA-GSA at finer scales (e.g., weekly patterns in 

neighborhood scales (250 m × 250 m)). The number of times that UA-GSA need to be 

performed is equal to 1,600 (40 × 40). If each UA-SA will take 1 minute and then, the total 

amount of time will be approximately 26.67 hours.

3. Methods

3.1. A spatially explicit ABM of dengue virus transmission

In this paper, we used a spatially explicit ABM of dengue transmission (Kang & Aldstadt, 

2019b), which was implemented in Anylogic 7.3.5. For the details of this model, please see 

the Overview, Design Concepts and Details (ODD) protocol (Grimm et al., 2010) provided 

in Kang and Aldstadt (2019b). The model is also available at the Anylogic cloud (https://
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cloud.anylogic.com/model/64d09b7f-fcd6-4b04-af26-834a26be569d?mode=SETTINGS). In 

the model, there are three main components: (1) human agents, (2) mosquito agents, and 

(3) an environment. The ABM considers the nature of dengue transmission; there are four 

distinct serotypes of dengue, but they are serologically related to each other. An infection 

from one serotype of dengue provides a lifelong immunity to that serotype with cross-

protection to other serotypes for 120 days (Chao et al., 2012). After 120 days, individuals 

again become susceptible to serotypes that they have not been previously infected with 

(Vaughn et al., 2000).

In this model, DENV epidemics occur through interactions between human and mosquito 

agents. Such interactions for the dengue transmission are described with a SEIR model 

(Susceptible-Exposed-Infectious-Recovered). Because there are four serotypes of dengue, 

each individual has four SEIR statuses. A susceptible individual is able to be exposed to 

dengue serotype that he/she has not been previously exposed to. An exposed individual who 

comes into contact with dengue through an infectious mosquito’s bite is not able to transmit 

the virus during the incubation period. An infectious individual can transmit the virus to 

susceptible mosquitoes. A recovered individual is no longer susceptible to that serotype of 

dengue.

To estimate an individual human’s dengue exposure prior to the dengue epidemic 

simulations, it is assumed that all individuals are exposed to dengue with an annual attack 

rate of 0.14, regardless of serotypes. The lack of consideration for serotypes related to prior 

exposure to dengue virus may be responsible for aspatial structures of community-level 

immunity (Kang & Aldstadt, 2019b). Given the seasonal serotype-specific dominance in 

Thailand (Nisalak et al., 2003) and the focality of dengue outbreaks (Mammen Jr et al., 

2008), the immunity statuses of individuals should be similar to that of their neighbors. 

Therefore, we incorporated a burn-in period; dengue epidemic simulations were carried out 

for five years, but only the final year’s output was utilized in this study.

In this model, individual human agents have age-specific commuting behaviors, as shown in 

Figure 2 (A). First of all, people aged 5 to 19 and those aged 20 to 64 typically commute 

their schools and workplaces around 9am, respectively, and they come back home around 

5pm. Second, everyone else stays at home. Those who become infected stay at their home 

until they are recovered (Kang & Aldstadt, 2019b).

Mosquito agents refer only to infected female mosquitoes. The number of female 

mosquitoes per building represents mosquito breeding and feeding sites. If an infectious 

human is in range, one or more susceptible mosquitoes may bite the human. If it bites an 

infectious human it will become an agent. Once infected mosquitoes become infectious, 

they can transmit dengue to co-located susceptible human agents during their lifetime. The 

mosquitoes can also travel to neighboring houses (within 30 meters) with a 0.15 probability 

per day (Chao et al., 2012) (Figure 2 (B)). Because summer in Thailand is hot and humid, 

the initial number of mosquitoes is set to 42 in June (Chao et al., 2012) (Figure 3). We also 

assume that the maximum number of mosquitoes is the same in every building. The biting 

behavior for mosquitoes occurs at four discrete time intervals (08–13 h, 13–18 h, 18–24 

h, and 00–08 h) with biting rates of 0.08, 0.76, 0.13, and 0.03, respectively. How long a 
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mosquito agent survives depends on its age (Harrington et al., 2001; Harrington et al., 2008; 

Harrington et al., 2005).

3.2. Study area and data

The study area lies in a portion of northeastern Kamphaeng Phet province in Thailand. In the 

area there are 3,683 households, 185 workplaces, and 8 schools. A LIDAR-derived building 

dataset was utilized to indicate the locations of all buildings in the study area (Figure 

4). A household dataset collected in 2009 (Thomas et al., 2015) was used to assign the 

number of households and the ages of household members. Based on birth rates and death/

out-migration rates calculated from population register data obtained from the Department 

of Provincial Administration, Ministry of Interior Thailand, the population was updated 

every year.

3.3. CyberGIS-enabled spatiotemporally explicit UA-SA

3.3.1. Workflow—Monte Carlo (MC) simulations are required prior to performing UA-

GSA. MC simulations are executed by varying the uncertain input parameters of interest, 

which are often chosen from quasi-random sampling (Saltelli, Tarantola, & Chan, 1999). 

We ran 16,000 simulations of the ABM of dengue virus transmission. The equation for 

calculating the number of simulation runs is provided in Section 3.3.2. Each simulation 

produces an output. In the case of dengue simulations, the simulation output consists of 

point pattern data about outbreaks (i.e., longitude, latitude and timestamp). The details of the 

MC simulations conducted in this paper are provided in Section 3.3.2.

The workflow of a cyberGIS approach to spatiotemporally explicit UA-GSA is as follows: 

1) determine sets of spacetime scales, 2) partition the model outputs at each spacetime 

scale, 3) measure the average and variance of the model outputs for the spatiotemporally 

explicit UA, and 4) measure the first-order sensitivity index and total sensitivity index for 

the spatiotemporally explicit SA (Figure 5). These tasks concerning partitioning, UA, and 

GSA should ideally be performed on advanced cyberinfrastructure, which provides high 

performance computing power to resolve the computational burdens of UA-GSA at multiple 

spatiotemporal scales.

In our study, UA-GSA was performed at multiple space-time scales (Table 1). Since the 

spatial extent of the study area is approximately 8,900 × 8,200 (meters), the coarsest spatial 

resolution is 9,000 × 9,000 (meters). Additionally, we used simulated outcomes for the final 

year after a burn-in period of four years. The coarsest temporal extent is one year. Here, 

the temporal scale refers to time span instead of timestamp. For example, infection rates 

for 6 months denote the average over seven monthly infection rates (Jan to Jun, Feb to Jul, 

Mar to Aug, Apr to Sep, May to Oct, Jun to Nov, and Jul to Dec). Our research focuses 

on investigating the impact of input factors on not just events of dengue transmission, 

but also on a series of processes of dengue transmission. Therefore, it is more suitable to 

consider time span as a temporal scale. Each UA-GSA is performed at jointly combined 

spatiotemporal scales. Given eight spatial scales and ten temporal scales, as provided in 

Table 1, we perform 80 times of UA-GSA. For example, UA-GSA is performed at 9000 

× 9000 spatial scale with one-year temporal scale, and then, it is performed at 9000 × 
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9000 spatial scale with six months temporal scale. This way of UA-GSA would help to 

gain an improved understanding about spatiotemporal scaling effects of parameters on their 

uncertainty and sensitivity in spatially explicit agent-based modeling.

To perform UA-GSA at multiple spatiotemporal scales, we need to summarize the simulated 

dengue outbreaks at each spatiotemporal scale provided in Table 1. Figure 6 shows an 

example after pre-processing spatiotemporally explicit UA-GSA within 3000-meter spatial 

grids. The outputs from simulations are summarized at each spatiotemporal grid, as shown 

in Figure 6 (A) and (B). The table includes spatial resolution, a spatial ID representing 

the relative location where each grid is positioned, temporal resolution, a temporal ID 

representing the time span, human population, the number of dengue cases, and the infection 

rates. Because our study area is not squarely shaped, we created margins of appropriate 

size on the width (1) and height (2) (Figure 6 (C)). In Figure 6 (C), width (1) is equal to 

931.5 (= (10,000 – 8,137) / 2) meters and height (2) is 571.5 (= (10,000 – 8,857) /2) meters, 

respectively.

The UA-GSA was performed in parallel. Figure 7 illustrates an example of parallel 

processes of the spatiotemporally explicit UA-GSA within 1000-meter spatial grids. 

Although the study area was decomposed into 81 grids, households exist within only 60 

grids. Therefore, 60 grids will be run on eight processors.

60 grids
8 processors = 7 remainder 4

As there are four remainders, four separate processors are also assigned with the additional 

runs. In other words, four processors will run the UA-GSA seven times, and four processors 

will run eight times. This parallelization applies to the UA-GSA at varying spatial grids (i.e., 

9000 × 9000, 5000 × 5000, 3000 × 3000, 1000 × 1000, 500 × 500, 300 × 300, 100 ×100, 50 

× 50). Each run contains the UA-SA at varying time spans (i.e., 1 year, 6 months, 3 months, 

2 months, 1 month, 2 weeks, 1 week, 3 days, 2days, and 1 day).

To run the simulation, we employed Virtual ROGER (a cyberGIS supercomputer hosted by 

the CyberGIS Center for Advanced Digital and Spatial Studies at University of Illinois at 

Urbana-Champaign). In this study, we did not need to fully make use of cutting-edge high-

end technology for computation. Harnessing the accessible high-performance computing 

power with GPU nodes and memory enables us to perform the spatiotemporally explicit 

UA-GSA in a computationally efficient manner. The ability to utilize these resources with 

minimal effort underscores how easily accessible processing resources can be.

Our cyberGIS approach to uncertainty and global sensitivity analysis for spatially explicit 

agent-based modeling shows how the use of advance cyberinfrastructure could help to carry 

out uncertainty and sensitivity analysis at multiple spatiotemporal scales. This approach 

allows one to examine the uncertainty and sensitivity of parameters at simultaneously finer 

and coarser spatiotemporal scales. In fact, our analysis is successively performed varying 

spatial grids and time spans. Therefore, this approach conceptually contributes to expanding 
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the usefulness of CyberGIS and cyberinfrastructure in uncertainty and sensitivity analysis 

for agent-based modeling.

3.3.2 UA-GSA—In the case of the dengue virus transmission model, the model output 

is spatiotemporal point patterns of dengue cases. The output could be aggregated to 

derive school population infection rates (Endy et al., 2002) or community-level cluster 

investigations as reported by Yoon et al. (2012). Due to the uncertainty in model inputs and 

the stochastic nature of ABMs (Rahmandad & Sterman, 2008), there is output variability. 

The uncertainty in model inputs may also be responsible for difficulties in understanding 

relationships between model inputs and outputs.

For addressing this issue, UA-GSA helps to quantitatively assess the variation in the model 

outputs and the contributions of model inputs to the variation (Crosetto & Tarantola, 2001; 

Hu et al., 2017). UA examines uncertainty in model outputs, which are attributed to model 

inputs. As a result, UA demonstrates the variability in model outputs. On the other hand, 

GSA investigates how the variability in model outputs depend on the model inputs (Saltelli 

et al., 1999). In the literature, SA is categorized into local and global approaches. A local 

SA approach is also called one-at-a-time (OAT). By varying a parameter within ± 10 – 20 

%, a local SA examines how such input variation contributes to changes in model outputs. 

However, a local SA approach is not able to quantify the effects of interactions between 

multiple input factors on model outputs (Crosetto, Tarantola, & Saltelli, 2000). For example, 

in communicable disease models, infections require at least collocations of infectious and 

susceptible humans, which are specified by parameters related to agent state transitions 

(i.e., incubation period; duration after which a human become infectious) and interactions 

between agents (i.e., contract rate; the effectiveness of contact for infection transmission) 

(Mao & Bian, 2010). In addition, the model outcomes in ecological models, such as egg 

productions, are also related to agent state transition (i.e., life-stage; egg, yolk-sac larvae, 

larvae, juvenile or adult) and the interactions between agents and their environment (i.e., 

temperature) (Boyd, Roy, Sibly, Thorpe, & Hyder, 2018). To account for these factors, 

another type of SA needs to be performed.

Variance-based GSA is well suited to ABMs that are inherently associated with nonlinearity. 

GSA helps to decompose the variance in model outputs into first-order effects and higher 

order effects resulting from interactions between input factors (Saltelli et al., 1999). The 

results from GSA provide the magnitude of impacts of input factors on the variability of 

model outputs. A GSA can be described using the following equation:

V = ∑
i

V i + ∑
i < j

V ij + ∑
i < j < k

V ijk + V 12…m

where V denotes the variance in model outputs, Vi stands for the first order effects of V 
due to input parameter i. Vij represents the second order effects of V due to the interaction 

between input factor i and j. Vijk denotes the third order effects of V contributed by the 

interactions among input factor i, j, and k. V12…m denotes the highest order effects of 

V explained by the interactions between all input factors used in GSA. m represents the 

number of input factors.
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A first order sensitivity index (Si) explains the decoupled effects of a single input factor on 

variance in model outputs. Based on the decomposition of variance, the first-order sensitivity 

index can be derived in the following way:

Si =
V i
V

The first-order sensitivity index for a given input factor ranges from zero to one, and the 

sum of the first-order indexes of all input factors are less than or equal to one. If the 

sum of the first-order indexes equals one, it means there are no interaction effects among 

input parameters. On the other hand, if the sum of the first-order indexes is less than one, 

interaction effects are present. Therefore, the effects of interaction among input factors are 

derived as follows:

Interaction effects = 1 − ∑iSi

The total sensitivity index (STi) describes the effects of a given input factor (i) to V, and 

is composed of both a single effect of the factor and its interaction effects with other input 

factors. The total sensitivity index is derived based on the following equation:

STi = Si + Sij + Sik + Sijk

where Si is first-order sensitivity index of factor i. Sij is second-order sensitivity index of 

the interaction effects between i and j. Sijk is third-order sensitivity index of the interaction 

effect among i, j, and k.

In this paper, spatiotemporally explicit UA-GSA comprises examining the uncertainty in the 

environment, the interactions between agents, agents’ behaviors, and agent state transitions. 

In this model, the parameter explicitly referring to the interactions between agents and the 

environments does not exist. Seven parameters are drawn from a uniform distribution within 

50% variation from a baseline value (Table 2). We conducted 16,000 model experiments 

using a Monte Carlo approach, using the following settings: Introduction Rates (IR) U ~ 

[1.0e−6, 1.0e−5], Probability of Infection from Mosquito to Person (PMP) U ~ [0.125, 0.375], 

Probability of Infection from Person to Mosquito (PPM) U ~ [0.05, 0.15], Daily Movement 
Probability of Mosquito (MR) U ~ [0.075, 0.225], Movement Distance of Mosquito (MD) 

U ~ [15, 45], Extrinsic Incubation Period of Mosquito (EIP) U ~ [5.5, 16.5], and Incubation 
Period of Human (IP) U ~ [3, 9].

The total number of simulation runs are derived from Tang and Jia (2014), as follows:

Nrun = (2 ∗ k + 2) ∗ nmc

where k is the number of input factors used in GSA and nmc is the number of Monte Carlo 

runs associated with the sampling. It is suggested that nmc be set within the range of [20, 

100] (Tang & Jia, 2014). In this paper, we ran 1,000 Monte Carlo runs to create sufficient 
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samples of each input factor used in UA-GSA. Therefore, with seven input factors, the total 

number of simulation runs is 16,000.

4. Results

4.1. Spatiotemporally explicit UA

Spatiotemporally explicit UA illustrates how the mean and standard deviation (SD) of 

infection rates vary depending on spatiotemporal scales. As examples, Figures 8 and 9 show 

that uncertainty in infection rates depends on varying spatial or temporal scales. In these 

examples, the points represent the centroids of spatial grids. When it comes to uncertainty 

in infection rates by varying spatial scales, the average of infection rates at each spatial 

grid does not look dramatically change at each spatial grid, but there are apparent changes 

in standard deviation (Figure 8). As the spatial scale becomes finer, the SD at each grid 

becomes larger (Figure 9). The variability between simulations is generally larger when 

geographic areas and correspondingly populations at risk are smaller.

With varying temporal scales, large changes in the averages and SD of infection rates 

appear. Overall, both averages and SD become smaller as the temporal scales become 

smaller. Both Figures 8 and 9 show scale-dependent uncertainty. To understand which input 

factors may be responsible for such scale-dependent uncertainty in infection rates, spatially 

explicit GSA should be performed.

4.2. Spatiotemporally explicit GSA

The results from the spatiotemporally explicit GSA provide a better understanding of the 

associations between model inputs and outputs. Particularly, our GSA helps in identifying 

influential factors related to the variability of infection rates at each spatiotemporal scale. 

The GSA results in Si and TSi. S explains the effect of a given factor on variance of infection 

rates at a particular spacetime scale. TS represents the impact of a given factor and its 

interactions with other factors on variance of infection rates at a particular spacetime scale. 

Following Ligmann-Zielinska and Sun (2010), S and TS can be interpreted as follows: 1) a 

relatively higher S indicates that the impact of a given factor on variability of infection rates 

is relatively greater than other factors, and 2) a relatively higher TS means that the impact of 

a given factor involved in interactions with other input factors on the variability of infection 

rates is relatively greater than other factors.

Based on first-order sensitivity indices, we found that the interaction between all factors was 

the most influential to the variance in infection rates. While single factor impacts decrease, 

the effect of between-factor interactions on the variability of infection rates increases. As 

shown in Figure 10, within 1000-meter grids, all seven input factors have weaker impacts on 

variability in model outputs, which means 1–34 % of the variability can explain the variance 

in infection rates at each grid cell. In other words, about 66 – 99% of the variability is 

attributed to interaction among seven factors (i.e., IR, PMP, PPM, IP, EIP, MD, and MR). 

In addition, within 500-meter grids (Figure 11), only about 0–21 % of variability can be 

explained by input factors taken singly. The interaction of all seven input factors can explain 

approximately 78–100% of variability.
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Because individual factors (first-order sensitivity indices) cannot directly explain the 

variability in infection rates, total effect sensitivity indices need to be used to account for 

the variance in model outputs. The normalized TS describes both the impact of a given 

factor and its interactions with other factors. Spatial patterns of the normalized TS of each 

factor look to be spatially randomly distributed (Figures 12 and 13). There seems to be no 

particularly general patterns in the normalized TS. However, it is shown that each input 

factor has spatially varying effects on outcomes at different spatial locations (Figures 12 and 

13).

Particularly, TS of mosquito movement distance (MD) is related to household density 

(Figure 14 (A)). The spatial patterns of TS for MD look similar to the spatial configuration 

of household density (Figure 14 (B)). Spearman’s rank correlation coefficient was used due 

to the right-skewed distribution of household density. Spearman’s correlation coefficient 

between household counts and TS of MD is equal to 0.56 (p <0.001). As Kang and 

Aldstadt (2017) highlight, the spatiotemporal patterns of dengue outbreaks are likely to 

be related to the spatial configurations of buildings in which mosquitoes can reside in and 

travel between. Therefore, a higher household density results in more possible mosquito 

destinations, which in turn may lead to more dengue infections in nearby households. In 

addition, TS of introduction rates (IR) is also moderately related to household density 

(Figure 14 (C)). Spearman’s’ correlation coefficient between household counts and TS of IR 

is equal to 0.352 (p<0.001). When pathogens are introduced to a dense area, dengue may be 

increasingly transmitted within the region since there are more human hosts. Although all 

regions do not have significant relationships between the household density and TS of MD 

and TS of IR, some regions at higher household density (highlighted with red-circle in the 

Figure 14) show relatively higher impacts of MD and IR.

Greater impacts of MD were also found at very fine spatial scales (i.e., 100-meter spatial 

grids and 50-meter spatial grids). Figure 15 illustrates TS at the spatial grid cell in which 

households were the most spatially clustered within 100-meters. Figure 15 shows TS at 

sub-spatial grids of the spatial grid shown in Figure 16. At a 100-meter scale, MD was the 

most influential to infection rates, and IR was moderately influential. Compared to these two 

factors, MD and IR, the other five factors relatively have a weaker effect on the variability of 

infection rates in each spatial grid.

Interestingly, although MD has the greatest effect on outcomes at a 100-meter scale, the 

effect at 50-meter sub-grids (spatial ID 13930, 14107, and 14108) was not as great as that at 

a 100-meter scale. Instead, it is shown that MR and EIP greatly affect model outputs at the 

finer resolution. This result is consistent with the often-observed clustering of household-

level dengue infections. For example, Yoon et al. (2012) found spatially clustered patterns 

of infections; 35% of household members of infected children were also infected in the 

same time period, which means these focal successive dengue infections are not influenced 

by mosquito movement distances. Therefore, mosquito movement distances had relatively 

less impact on dengue outbreaks in the 50m cells. When the pathogen is introduced into 

these small areas, MR and EIP are more important in determining the intensity of successive 

infections in the same household.
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The magnitude of TS varies depending on temporal scale. In general, the magnitudes are 

similar to those of 1 year, 2 weeks, 1 week, 3 days, 2 days, and 1 day, while those of 6 

months, 3 months, and 2 months are different from the rest. This pattern may be related to 

seasonality in dengue epidemics and the time period of successive transmission of dengue 

virus (two to three weeks (Aldstadt, 2007)). Due to seasonality in mosquito density (Figure 

3), dengue outbreaks frequently occur during summer, such as for 4 months (April to July) 

or 6 months (April to September). Given that we used the averages of infection rates as a 

statistic in UA-GSA, these time spans may contribute to such different TS results at some 

temporal scales (6 months, 3 months, 2 months and 1 month).

5. Conclusion

Although much effort on UA-GSA have been made to understand uncertainty in ABM 

results arising from model inputs, the research question about how the impacts of modeling 

inputs on the variability in modeling outputs vary at each space-time scale remains to 

be solved. In this study, we attempted to answer the research question by measuring the 

scale-specific effects (spatial, temporal and spatiotemporal) on modeling outputs. Our case 

study used a spatially explicit ABM of dengue virus transmission from Kang and Aldstadt 

(2019b). We performed variance-based GSA to measure the contributions of input factors to 

infection rates at various spatiotemporal scales. The input factors that were tested include 

introduction rates, the probability of transmission from mosquito to human, the probability 

of transmission from human to mosquito, the human incubation period, the extrinsic human 

incubation period, mosquito movement distance, and mosquito movement rates.

The results from the UA-GSA particularly show that input factors have scale-varying 

impacts on variability in model outputs. In other words, input factors may have relatively 

large impacts in certain regions, but there may not be significant effects at other regions. 

Such spatial effects also vary between temporal scales. Sensitivity indices are correlated 

with the spatial configurations of places that govern where agents can reside and travel to. 

For example, the sensitivity of parameters about agent movement (i.e., MD) are strongly 

influenced by spatial scales. The cyberGIS approach has the primary benefit of reducing the 

runtime for UA-SA, showing promise for enabling computationally intensive spatiotemporal 

analytics.

A cyberGIS approach to spatiotemporally explicit UA-GSA provides an improved 

understanding of the associations between model inputs and outputs at a range of 

spatiotemporal scales. By performing UA-GSA in parallel manner leveraging high-

performance computing power, provided by advanced cyberinfrastructure we were able 

to cope with computational intensity that is still challenging for personal computing. The 

multiple spatiotemporal scales of UA-GSA also well reflect the POM paradigm (Grimm 

& Railsback, 2012; Grimm et al., 2005) that has already been advocated for evaluating 

and validating spatially explicit ABMs. The POM paradigm could serve as a guide for 

initializing models (Fedriani et al., 2018; Liukkonen et al., 2018). Following the POM, 

the patterns of modeling outputs can also be used as an indicator for validating a model’s 

underlying assumptions (Kang & Aldstadt, 2019b) and evaluating parameters (Kang & 
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Aldstadt, 2019a). This study advances the usefulness space-time patterns to measure the 

effects of a model’s parameters on modeling outputs from local to global scales.

Importantly, based on the results from performing GSA at very fine spatial scales, we found 

that the proper spatiotemporal scale may need to be selected based on the research questions 

being addressed. Given that ABMs are often used to examine various scenarios by varying 

input parameters, the way that UA-GSA are presented in this paper would be helpful for 

investigating the effectiveness of particular policies at multiple space-time scales. In detail, 

the relatively greater effects of mosquito movement at regions in which households are 

highly clustered underscore the potential utility of mosquito removal to control dengue virus 

transmission, as highlighted by previous studies (Achee et al., 2015; Scott & Morrison, 

2010). In addition, the greater sensitivity in mosquito movement distance also indicates 

the importance of proper parameterization of agent movement. Where greater effects of 

introduction rates are found, proper levels of surveillance for people who travel outside the 

community needs to be considered for better prevention and control of dengue outbreaks. 

Our spatiotemporally explicit UA-GSA may also help in investigating the effects of input 

factors on model outcomes that are particularly spatially and temporally clustered, such as 

violence and communicable disease transmission.

Given that the usefulness of variance-based GSA in implementing parsimonious ABMs 

(Ligmann-Zielinska, 2018; Ligmann-Zielinska et al., 2014), simplification of the ABMs 

would be an apparent next step. The parsimonious ABMs of dengue virus transmission 

within advanced cyberinfrastructure may help to explore the dynamic nature of dengue virus 

transmission in a computationally efficient way. The investigation on the non-quantifiable 

uncertainty of the modeling parameters at an initial stage of modeling would be also one 

of the future directions. In this paper, we only used infection rates at each spatiotemporal 

scale. Given that various spatio-temporal statistics, such as the Knox Test (Knox, 1964), 

the incremental Knox test (Aldstadt, 2007), and the Getis-Ord GI* statistic (Getis & Ord, 

1992) are useful for detecting spatially and temporally clustered dengue patterns, it would 

be interesting to use such indicators as a statistic in UA-GSA. The results would assess how 

such input factors impact not only simple aggregate measures (i.e., dengue infection rates), 

but also the spatiotemporal clustering of simulated patterns. A cyberGIS approach would 

also help to resolve a computational intensity that may be faced with carrying out such 

spatio-temporal statistics for analyzing modeling outputs.
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Figure 1. 
Spatiotemporal scaling of model outputs
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Figure 2. 
Agent’s movement. (A) human agent’s movement; (B) mosquito agent’s movement
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Figure 3. 
Seasonal mosquito population estimated per building
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Figure 4. 
Spatial distribution of households in the study area
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Figure 5. 
Workflow of cyberGIS-approach spatiotemporally explicit UA-GSA
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Figure 6. 
Pre-processing. (A) spatial extents; (B) summary table; (C) spatial margins
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Figure 7. 
An example of a parallel process of spatiotemporally explicit UA-GSA within 1,000-meter 

spatial grids. The numbers above dots denote which processors will perform UA-GSA.
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Figure 8. 
Uncertainty variation across spatial scales
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Figure 9. 
Uncertainty variation across temporal scales
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Figure 10. 
First-order indices of input factors at 1000-meter grid for a 1-year time span
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Figure 11. 
First-order indices of input factors at 500-meter grid for 1-year time span
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Figure 12. 
Total sensitivity indices of input factors within a 1000-meter grid for 1-year time span
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Figure 13. 
Total sensitivity indices of input factors at a 500-meter grid for a 1-year time span
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Figure 14. 
Relationship between TS of MD and IR, and household density: (A) household density 

within 500-meter spatial grids, (B) TS of MD within 500-meter spatial grids, and (C) TS of 

IR within 500-meter spatial grids. The red circles represent the regions at higher household 

density.
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Figure 15. 
TS within a finer spatial grid (100 meters)
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Figure 16. 
TS within a finer spatial grid (50 meters). The number on the top of the lower figure denotes 

the spatial ID.

Kang et al. Page 32

Ann Am Assoc Geogr. Author manuscript; available in PMC 2022 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kang et al. Page 33

Table 1.

Spatiotemporal extents

Scales Units

Spatial Scales 9000 × 9000, 5000 × 5000, 3000 × 3000, 1000 × 1000, 500 × 500, 300 × 300, 100 ×100, 50 × 50 (meters)

Temporal Scales 1 year, 6 months, 3 months, 2 months, 1 month, 2 weeks, 1week, 3 days, 2 days, 1 day
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Table 2.

The ranges of input parameters used in Monte Carlo simulations

Parameters Descriptions (Units) Lower Baseline Upper

Environment IR Introduction rate of dengue outside study area (person per 
person)

1.5e−6 (−50%) 1.0e−5 1.5e−5 (+50%)

Agent Interaction PMP Probability of infection from mosquito to person (case per 
case)

0.125 (−50%) 0.25 0.375 (+50%)

PPM Probability of infection from person to mosquito (case per 
case)

0.05 (−50%) 0.1 0.15 (+50%)

Agent Behavior MR Daily movement rate of mosquito (1/day) 0.075 (−50%) 0.15 0.225 (+50%)

MD Movement distance radius of mosquito (meter) 15 (−50%) 30 45 (+50%)

Agent State Transition EIP Extrinsic incubation period of mosquito (day) 5.5 (−50%) 11 16.5 (+50%)

IP Incubation period (day) 3 (−50%) 6 9 (+50%)
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