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ABSTRACT

Micronutrient deficiencies are a major cause of morbidity and mortality in low- and middle-income countries worldwide. Climate change,
characterized by increasing global surface temperatures and alterations in rainfall, has the capacity to affect the quality and accessibility of
micronutrient-rich foods. The goals of this review are to summarize the potential effects of climate change and its consequences on agricultural
yield and micronutrient quality, primarily zinc, iron, and vitamin A, of plant foods and upon the availability of animal foods, to discuss the implications
for micronutrient deficiencies in the future, and to present possible mitigation and adaptive strategies. In general, the combination of increasing
atmospheric carbon dioxide and rising temperature is predicted to reduce the overall yield of major staple crops, fruits, vegetables, and nuts,
more than altering their micronutrient content. Crop yield is also reduced by elevated ground-level ozone and increased extreme weather events.
Pollinator loss is expected to reduce the yield of many pollinator-dependent crops such as fruits, vegetables, and nuts. Sea-level rise resulting from
melting of ice sheets and glaciers is predicted to result in coastal inundation, salt intrusion, and loss of coral reefs and mangrove forests, with an
adverse impact upon coastal rice production and coastal fisheries. Global ocean fisheries catch is predicted to decline because of ocean warming
and declining oxygen. Freshwater warming is also expected to alter ecosystems and reduce inland fisheries catch. In addition to limiting greenhouse
gas production, adaptive strategies include postharvest fortification of foods; micronutrient supplementation; biofortification of staple crops with
zinc and iron; plant breeding or genetic approaches to increase zinc, iron, and provitamin A carotenoid content of plant foods; and developing staple
crops that are tolerant of abiotic stressors such as elevated carbon dioxide, elevated temperature, and increased soil salinity. Adv Nutr 2022;13:80–
100.

Statement of Significance: This comprehensive review shows that climate change and its consequences are likely to affect micronutrient
malnutrition by limiting the availability of micronutrient-rich plant and animal foods rather than their micronutrient content. Various mitigating
and adaptive strategies should be considered to reduce the risk of micronutrient malnutrition in vulnerable populations in the face of climate
change.
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Introduction
Micronutrient deficiencies are a leading cause of morbidity
and mortality worldwide, especially among young children
and pregnant women. Vitamin A, zinc, and iron deficiencies
are highly prevalent in low- and middle-income countries
(LMICs) and affect an estimated 2 billion people worldwide
(1). The world population is expected to grow from 7.7
billion people in 2019 to 9.7 billion by 2050 and 10.9
billion by 2100, according to the United Nations (2). Five
different shared socioeconomic pathways (SSPs), based upon
integrated scenarios for future societal development, project

a global population that ranges from 8.5 to 9.9 billion in 2050,
depending upon scenario (3). The population projections
diverge further after 2050, with the “middle of the road”
scenario, or SPP2, predicting a world population of ∼9.0
billion by 2100 (3). Providing sufficient food and preventing
micronutrient deficiencies for this growing population will
be major challenges in the face of climate change. The
ideal goal is to meet these needs by providing food in a
sustainable manner within the boundaries of the planet (4).
Food systems face the dual challenge of increasing demand,
growing environmental pressures, and the prospect that
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climate change is influencing the quality and quantity of food
that is produced (5).

Plant foods provide a large proportion of micronutrient
intake in LMICs (6, 7). In predominantly plant-based diets,
dark-green leafy vegetables and orange and yellow fruits
are rich sources of pro-vitamin A carotenoids, and legumes,
nuts, and cereals are important sources of zinc and iron
(7). Small-scale inland capture and coastal fisheries are also
major sources of micronutrients for many populations in
LMICs (8–10). Animal-source foods, such as eggs, beef, pork,
chicken, and dairy products, are rich sources of vitamin
A, zinc, and iron, but are relatively expensive and not
regularly consumed by poorer families. Any factors that
limit the availability of staple crops such as cereals can
lead to global increases in food prices and greater vulner-
ability of poor populations to micronutrient malnutrition
(11, 12).

Climate change encompasses a broad set of environmental
processes related to rising atmospheric carbon dioxide (CO2)
and increasing global surface temperatures (13). These
processes include more frequent occurrence of extreme
weather events, degradation of the cryosphere, sea-level
rise, increase in ocean hypoxia, land degradation, elevated
ground-level ozone, and greater abiotic and biotic stress to
plants. Both the yield and the micronutrient concentrations
of foods can be affected by climate change and increase the
risk of micronutrient deficiencies in the general population
and especially in vulnerable populations. The goals of this
scoping review are to summarize the potential effects of cli-
mate change on the yield and micronutrient quality of plant
and animal foods and their implications for micronutrient
deficiencies in the future and to discuss possible mitigation
and adaptation strategies. A conceptual model for this review
is shown in Figure 1. Climate change consists of abiotic and
biotic factors that influence the quality and yield of plants and
animals that provide micronutrients in the diet.

Rising Atmospheric CO2Concentrations and
Increasing Temperature

The major greenhouse gas (GHG) arising from human
activities is carbon dioxide (14). Prior to the Industrial
Revolution, atmospheric carbon dioxide concentrations were
relatively stable at ∼280 ppm for at least 10,000 y (13).
Atmospheric carbon dioxide has increased steadily by 2–3
ppm annually (15) and is predicted to increase from 415 ppm
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in 2020 (16) to 550 ppm by 2050 (14). Without mitigating
activities, atmospheric carbon dioxide is expected to double
between now and the end of the century (14).

The accumulation of GHGs in the atmosphere alters the
balance between incoming solar radiation, which heats the
Earth’s surface, and re-emitted infrared energy, which is
absorbed by atmospheric carbon dioxide and water vapor,
with the net effect of driving surface heating, or global
warming (17). Human activities have resulted in ∼1.0◦C
of global warming above preindustrial levels, with warming
currently increasing at 0.2◦C per decade (18). Warming
above the global average is occurring more over land than
water and in the Arctic region (18). Global warming is likely
to reach 1.5◦C above preindustrial levels between 2030 and
2050 if it continues to increase at the current rate (18).

The United Nations Intergovernmental Panel on Climate
Change (IPCC) has adopted representative concentration
pathways (RCPs)—scenarios that include emissions and con-
centrations of GHGs, aerosols, and chemically active gases as
well as changes in land use over time—for climate modeling.
There were 4 original RCPs, with RCP2.6 representing low
GHG emissions and high mitigation that gives a 2 out of
3 chance to limit global warming below 2◦C by 2100, and
RCP8.5 representing a high GHG scenario with the absence
of policies to combat climate change, leading to continued
and sustained growth in GHG concentrations (19). RCP4.5
and RCP6.0 represented intermediate scenarios. The RCPs
have been used to model the effects of climate change on crop
yields and nutrient quality and to estimate future trajectories
and effects on climate change, as noted further below.

Effects of rising carbon dioxide and temperature on
major crops
As carbon dioxide concentrations rise, most plants respond
by growing faster (20). The impacts of elevated atmospheric
carbon dioxide, as an isolated factor, on plants were originally
studied using open top chambers (OTCs). Free-air carbon
dioxide enrichment (FACE), a technique in which plants
are grown under elevatedcarbon dioxide in natural and fully
open-air conditions, gradually replaced OTCs for most crop
studies (21). Plants can be distinguished into 2 groups, C3
and C4, based on the type of photosynthesis. The first stable
products of photosynthesis are either three-carbon molecules
in C3 plants or four-carbon molecules in C4 plants. C3 plants
constitute 95% of species on the planet (22) and include most
food crops such as wheat, rice, barley, potato, legumes, nuts,
fruit, and vegetables (23). The few food crops that are C4
species include maize, sugarcane, sorghum, and millet. In
general, C3 food crops have modest increases in yield when
grown under elevated atmospheric carbon dioxide using
FACE. In contrast, elevated atmospheric carbon dioxide, as
an isolated factor, has no direct effect upon carbon uptake by
C4 plants (24), but some studies suggest that yield of C4 crop
plants may increase under drought conditions (25, 26).

Elevated carbon dioxide, as an isolated factor, has been
shown to increase the agricultural yield for crops such as
wheat, rice, potato, and legumes (21, 27–29). Plants increase
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FIGURE 1 Conceptual model of climate change and micronutrient deficiencies.

the synthesis of carbohydrates when exposed to higher levels
of atmospheric carbon dioxide. The increase in carbohydrate
content with elevated carbon dioxide appears to dilute the
overall mineral content of plant tissues by 8% (28). Elevated
carbon dioxide increased the carbon content of plants
but reduced the nitrogen, potassium, phosphorus, calcium,
sulfur, magnesium, iron, zinc, and copper content (28). The
reduction in mineral content has been observed regardless
of whether determined by FACE or non-FACE studies, by
geographic location, and in plant groups or tissues (28).
Elevated atmospheric carbon dioxide also reduces canopy
transpiration and decreases nutrient uptake by the roots (30).

In contrast to elevated carbon dioxide, elevated temper-
ature is expected to have a detrimental effect upon cereal,
vegetable, and legume production. For each 1◦C increase in
temperature, the yield of wheat and barley is reduced by 5–
6% (31). Rice is sensitive to changes in temperature (32),
and grain yield of rice is reduced by global warming (33).
In Africa, rice yields are projected to drop by 24% in 2070
compared with 2000 under RCP8.5 (34), and global warming
of 2.0◦C would reduce maize yield (35). In general, most
vegetable crops require low temperature for their cultivation,
and even slight increases in temperature will reduce crop
productivity (36). Legumes are sensitive to heat stress (37)
and increasing temperatures will reduce crop yields (38).

In order to study the effect of both elevated carbon
dioxide and elevated temperature on cereals and other
crops, which is more consistent with future climate change
projections, a more recent platform has been developed
known as temperature FACE (T-FACE). This experimental
setup involves FACE combined with temperature-controlled
infrared heaters to simulate conditions of both elevated
carbon dioxide and elevated temperature that are anticipated
by the middle and end of the 21st century. OTC, FACE,
and T-FACE platforms are illustrated in Figure 2. The
experimental evidence for the effects of elevated carbon
dioxide and elevated temperature, as isolated factors, elevated
carbon dioxide and elevated temperature combined, and

other stressors on major crops is discussed in greater detail
in the following sections on rice, wheat, legumes, vegetables
and fruit, and nuts. .

Rice.
Rice is the staple food of ∼3.5 billion people worldwide
(39). Milled rice production worldwide in 2019 was 755
million tons (40). The 10 countries with the largest con-
sumption of rice as a fraction of total available calories
are Bangladesh, Cambodia, China, Indonesia, Lao People’s
Democratic Republic, Madagascar, Myanmar, Philippines,
Thailand, and Vietnam (41). Rice provides up to 50% of
the dietary caloric supply and a substantial part of protein
intake for >500 million people living in poverty in Asia
(39). Rice consumption is steadily growing in sub-Saharan
Africa, the Caribbean, and Latin America (39). The leading
producers of rice worldwide are China and India, followed
by Indonesia, Bangladesh, Vietnam, Myanmar, Thailand, and
the Philippines (40).

The impact of elevated carbon dioxide on overall grain
yield and upon zinc and iron concentrations in rice grains
has been studied in OTC, FACE, and T-FACE studies
conducted in Asia, Europe, and Australia (42–58). There is
considerable heterogeneity in the type of study, number of
replicates, number of growing seasons, cultivars utilized, and
geographic location of the testing sites (Supplemental Table
1). Most studies showed that elevated temperature reduced
the yield of rice, with a range of 7–21% reductions observed
compared with ambient temperature (43, 47, 49, 50). The
combination of elevated carbon dioxide and temperature
generally reduced the yield of rice (47–52) (Table 1). A meta-
analysis suggested that the combination of elevated carbon
dioxide and temperature may increase the yield of rice by
10.1% (59); however, the analysis was limited to only 5 studies
and did not include 1 OTC study (48) and 2 more recent T-
FACE studies (43, 44).

Elevated carbon dioxide concentrations have been
shown to decrease (45, 46, 48, 54, 58), increase (53),
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FIGURE 2 Platforms for assessing plant growth and yield in
controlled environments: (A) open-top chamber (OTC), (B) free-air
carbon dioxide enrichment (FACE), (C) temperature free-air carbon
dioxide enrichment (T-FACE).

or have no effect (57) on zinc concentrations, and to
decrease (46, 48), increase (53), or have no effect (45,
56, 58) on iron concentrations in rice grains (Table 1).
Elevated carbon dioxide concentrations have been
shown to increase the yield of rice grains (43, 47–51,
55–58). Two independent meta-analyses show that elevated
carbon dioxide reduces zinc concentrations by 3% and
iron concentrations by 5% in rice grains compared with
ambient carbon dioxide levels (60, 61). It is not possible to
conclude on the basis of these meta-analyses that climate
change will have an adverse impact upon zinc and iron
concentrations in rice in the future, since these meta-
analyses only addressed the effect of elevated carbon dioxide
alone. T-FACE experiments show that the combination of
elevated carbon dioxide and temperature will increase rice
grain concentrations of both iron and zinc when compared
with current conditions (42, 43). Although elevated carbon
dioxide reduces zinc and iron concentrations in rice grains,
elevated temperatures increase zinc and iron concentrations,
offsetting the reductions due to elevated carbon dioxide (43).
The combination of elevated carbon dioxide and temperature

increased the concentrations of cadmium and lead in rice
grains, raising potential issues about metal toxicity in rice in
the future with climate change (43).

Wheat.
Wheat (Triticum aestivum) is the second most important en-
ergy source for humans and has an annual global production
of ∼762 million tons (40). In some micronutrient-deficient
populations, wheat is the dominant staple in the diet, provid-
ing >50% of daily energy intake (62). The impacts of elevated
carbon dioxide and elevated temperature on wheat yield
and on zinc and iron concentrations in wheat grains have
been studied in Europe, Turkey, China, and Australia (43,
63–70) (Table 2), with considerable heterogeneity between
studies (Supplemental Table 2). Elevated carbon dioxide
concentrations, as an isolated factor, have been shown to
increase (43, 64, 65, 71, 72) or to have no effect (50, 63, 69)
on the yield of wheat. Elevated carbon dioxide concentrations
have been shown to decrease (66–68, 71, 73, 72, 74) or
have no effect (69, 75, 76) on zinc concentrations, and to
decrease (67, 69, 71, 73, 75, 74) or have no effect (66, 77,
76) on iron concentrations in wheat grains (Table 2). An
early review concluded that elevated carbon dioxide reduced
wheat grain zinc and iron by 13% and 18%, respectively (78).
Two independent meta-analyses showed that elevated carbon
dioxide, as an isolated factor, reduces zinc concentrations by
9% and iron concentrations by 5–7% in wheat grains (60, 79).

When the combined effects of both elevated carbon
dioxide and temperature were studied together, elevated tem-
perature offset the reductions of zinc and iron concentrations
in wheat grains (43, 77). The combination of elevated carbon
dioxide and temperature increased the concentrations of
cadmium and lead in wheat grains, raising similar issues
about metal toxicity as with rice with regard to climate change
(43). Elevated carbon dioxide and temperature reduced the
yield of wheat (43, 52, 65, 70), suggesting that the main effect
of climate change on zinc and iron deficiencies will be to limit
the yield of wheat rather than alter the zinc and iron content
of wheat grains alone.

Legumes.
Legumes, an important source of iron, zinc, B-complex
vitamins, and protein, are generally consumed worldwide,
with the highest consumption in Latin America and the
Caribbean, sub-Saharan Africa, and South Asia (80). Soy-
bean accounts for nearly three-quarters of global legume
production; however, most soybean is used as animal feed
and cooking oil, and only ∼6% is used directly as food for
humans (80). Other legumes of importance in the human diet
include peanut, common bean, field pea, chickpea, cowpea,
fava bean, lentil, pigeon pea, lupin, and Bambara bean (80).
Both chickpea and lentil are cool-season legumes that are
more sensitive to the effects of global warming (81, 82).

The impacts of elevated carbon dioxide, elevated tempera-
ture, and other conditions upon zinc and iron concentrations
and total yield of legumes have been examined in studies
conducted in the United States, Brazil, Asia, and Australia
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(64, 83–94) (Table 3). These studies have been limited to
a small number of legume species (Supplemental Table
3). Elevated carbon dioxide concentrations, as an isolated
factor, increase the yield of soybean (92), chickpea (64), lentil
(88), and common bean (93, 94). Elevated temperature alone
decreases the yield of peanuts (95). In chickpeas, elevated
carbon dioxide alone reduced zinc concentration but had
no impact upon iron concentration (90). Elevated carbon
dioxide alone reduced zinc and iron concentrations in both
lentils and fava beans (85). Zinc concentrations were reduced
by elevated carbon dioxide alone in some soybean cultivars
(86). A meta-analysis showed that elevated carbon dioxide
reduced zinc and iron concentrations in both soybeans
and field peas (61). Elevated carbon dioxide and elevated
temperatures combined had no impact upon zinc and iron
concentrations in soybean (83). The overall yield of legumes
is threatened by climate change, as elevated carbon dioxide
and elevated temperatures combined have been shown to
reduce the yield of soybean (84), lentil (88), peanut (91),
and common bean (94). Currently, the common bean is
cultivated by smallholder farmers in Zambia, Zimbabwe,
Tanzania, western Malawi, and northern Mozambique. A
study using the EcoCrop model developed by United Nations
FAO predicts that most of this region will no longer
be suitable for cultivation of the common bean by 2050
given climate change and predicted drought conditions
(96).

Vegetables and fruit.
Dark-green leafy vegetables and orange and yellow fruits
are important plant sources of provitamin A carotenoids.
Vegetables provide a substantial amount of iron and zinc
among populations with a high intake of plant-based foods.
The impact of elevated carbon dioxide upon overall yield
and zinc, iron, and carotenoid concentrations in vegetables
and fruit has been studied in Asia, Europe, the United States,
and Australia, mostly using OTCs, growth chambers, or
greenhouses (45, 97–113) (Table 4). The effect of climate
change has been studied only in a limited number of
vegetables and fruit species and cultivars (Supplemental
Table 4). Meta-analyses and systematic reviews show that
elevated carbon dioxide alone increases the yield of veg-
etables by 34% (114) and fruit by 38% (95); however,
elevated temperature attenuates the stimulation and yield
by elevated carbon dioxide (95). Elevated carbon dioxide,
as an isolated factor, generally reduces the iron and zinc
content of vegetables, although there can be differences
by cultivar and soil conditions (Table 4). The impact of
elevated carbon dioxide alone upon the carotenoid content of
crops has not been consistent. Elevated carbon dioxide had
no effect upon carotenoid concentrations in sweet pepper
(100), spinach (105), and sweet potato (113), but reduced
carotenoid concentrations in lettuce (108) and canola (111).
A meta-analysis suggests that elevated carbon dioxide, as an
isolated factor, reduces the carotenoid concentration of plants
by 15% (115). This meta-analysis was based upon a diversity
of plants, including non-crop plants, and it is unclear if these
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results can be generalized to vegetables and fruits that are
important sources of provitamin A carotenoids.

Mango, an important source of vitamin A in many LMICs,
is sensitive to rainfall and temperature (116). Climate change
is already affecting the cultivation and production of mango,
with shifts to higher elevations and higher latitudes that are
more amenable to flowering and fruit development (116,
117). Potato yields are expected to decline across India with
climate change (118).

Nuts.
The potential impact of elevated carbon dioxide and el-
evated temperature upon micronutrient quality and yield
of nuts has not been well characterized (95). Temperate
nut species require exposure to chilling conditions in the
winter in order to break dormancy and to produce higher
yields (119). Climate change is affecting winter chill and is
expected to adversely affect nut production in some regions.
Analysis of historic chill records and modeling of future
chill estimates show that the production of almonds and
pistachios in central Tunisia may no longer be viable in the
future because of insufficient chilling (120). These findings
suggest that temperate nut production in other parts of
the Mediterranean region may be similarly affected. Other
areas of temperate nut production that may be affected
by chill losses include southern Brazil and South Africa
(119). Tropical nut production is also likely to be affected
by climate change. Cashew is sensitive to rainfall and
temperature, particularly during flowering, and is considered
highly susceptible to climate change (121). Elevated carbon
dioxide and temperature are expected to adversely impact
coconut production in areas of India (122).

Effects of ground-level ozone on major crops
In preindustrial times, the concentration of ground-level
ozone was <20 ppb. Ground-level ozone is formed through
photochemical reactions with products of anthropogenic
emissions such as carbon monoxide, nitrogen oxides,
methane, and non-methane volatile organic compounds. The
rate of ground-level ozone formation increases with elevated
atmospheric temperature (123). Current ground-level ozone
concentrations in the northern mid-latitudes are ∼30 to 50
ppb (124). Since the 1950s, ground-level ozone levels have
increased in the Northern Hemisphere by 1–5 ppb per decade
and in the Southern Hemisphere by 1–2 ppb per decade
(124). Geographic regions with higher ground-level ozone
include northeastern India, eastern China, west and southern
Africa, and the eastern United States (125). Ozone adversely
affects plants by reducing photosynthesis and yield (124,
126).

A meta-analysis of wheat quality showed that elevated
ground-level ozone, as an isolated factor, increases the zinc
concentration of wheat grains but has no effect on the iron
concentration (127). There has been a paucity of studies
examining the impact of elevated carbon dioxide and ele-
vated ozone combined upon micronutrient concentrations in
crops. Elevated carbon dioxide and elevated ozone had no
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effect on the zinc content of rice (54), reduced the zinc and
iron content of potato (104), and increased the carotenoid
content of spinach (105). The impact of ozone on crop
yields is more well established. Current levels of ground-level
ozone are already causing yield loss in major food crops.
In a meta-analysis that compared the yield of 6 major food
crops grown at ozone levels of ≤26 ppb compared with the
current 31–50 ppb, elevated ozone reduced the yield of rice,
wheat, and barley by 17.5%, 9.7%, and 8.9%, respectively
(128). Elevated ozone reduced the yield of soybean, common
bean, and potato by 7.7%, 19%, and 5.3%, respectively
(128). Elevated ozone threatens the food supply in the Indo
Gangetic Plain of South Asia and the eastern coastal region
of China (124). In a study that modeled global data on
ozone and wheat production, elevated ground-level ozone
reduced wheat yields by an estimated 9.9% in the Northern
Hemisphere and 6.2% in the Southern Hemisphere in 2010–
2012 (129). In China, during 2015–2018, elevated ground-
level ozone concentrations reduced the production of winter
wheat by an estimated 20–33%, maize by 5–6%, and rice by
4–9%, representing a total economic loss of US$23–45 billion
(130).

Future changes in crop yields due to elevation in temper-
ature and ground-level ozone conditions have been modeled
for 2050 compared with 2000 using the Community Earth
System Model (CESM) (131). CESM includes a climate
change model to simulate the Earth’s system consisting of
atmosphere, atmospheric chemistry, ocean, ice, land surface,
carbon cycle, and other components (132). The production
of wheat, maize, and soybean under the RCP8.5 scenario is
projected to have a global decrease while rice production
is unchanged in 2050 compared with 2000 (131). Ozone
regulation under the RCP4.5 scenario has the potential to
reduce the warming impact and increase wheat production
in China and the United States, but reduce wheat production
in South Asia by up to 40% (131). Under RCP4.5, maize in
the United States, Europe, and South America, and soybean
in South America, would decrease by 40–50% mostly due to
higher and more frequent extreme temperatures regardless
of trends in ozone (131). A systematic review showed that a
25% increase in ozone was associated with an 8.9% reduction
in the yield of vegetables and legumes (133).

Limitations of crop modeling studies
There is considerable heterogeneity between studies (Sup-
plemental Tables 1–4), which limits the generalizability of
the findings from experimental studies of the effects of
carbon dioxide, temperature, and other conditions on crop
yield and micronutrient content. Major limitations of the
agronomic studies have been the lack of standardization in
study design, experimental setup, number of replicates, and
reporting of results. There are differences in cultivars, soils,
and agronomic practices that may limit the generalizability
of findings. The field may benefit from establishing standards
of study design and reporting to facilitate interpretation and
comparison of the results across studies. In addition, power
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calculations are lacking from nearly all agronomic studies
reported in this review.

Pollinator loss
Climate change is associated with the phenological disrup-
tion of plant–pollinator mutualisms (134). A recent compre-
hensive review of the impact of climate change on pollinator
decline shows that increasing ambient temperature, extended
length of growing season, frequent extreme weather events,
and winter weather fluctuations drive the homogenization
of pollinator biodiversity, leading to long-term loss of
resilience and greater susceptibility to collapses of pollinator
communities (135). Rising temperature can cause changes
in the development rates of plants such that first flowering
comes at a different time than the emergence of their
pollinators. Historical modeling shows that global change
over the last 120 y degraded the interaction network between
flowering plants and their pollinators, leading to a loss of bee
species (136). Climate-driven shifts in plant ranges, habitat
loss and fragmentation due to land-use changes, and high
use of pesticides have further reduced pollinator populations
(134, 137). Large declines in bumble bee populations have
been recorded in North America and Europe (138). The
global expansion of agricultural monoculture is associated
with a limited pollinator supply and reduced pollination
(139).

Of 150 of the world’s leading crops, the proportions of
vitamin C, vitamin A, folate, and iron in the food supply
that are estimated to come from animal-pollinated crop
plants are 98%, 70%, 55%, and 29%, respectively (140). The
top pollinator-dependent crops that are sources of vitamin
A include carrot, sweet potato, spinach, pumpkin, melon,
and mango in many areas where vitamin A deficiency is
highly prevalent, and in specific regions, such as okra in
India; tropical fruits such as guava, jackfruit, passionfruit
in India and Thailand; apricot and sour cherry in Iran;
and peach in Mexico (141). A modeling analysis of food
supplies and 156 countries suggests that complete removal
of pollinators would cause a global decrease in the supply of
fruit, vegetables, and nuts and seeds by 22.9%, 16.3%, and
22.1%, respectively (142). There would be a large decline in
the vitamin A supply, with 71 million people in low-income
countries becoming newly deficient in vitamin A (142).

Extreme weather events
Climate change is leading to the increased frequency,
magnitude, and duration of extreme weather events such
as drought, tropical cyclones, and heat waves (143). The
risk of drought is predicted to increase for the entire
African continent, with greater severity in central African
countries (144). Climate change is predicted to increase the
frequency of high-intensity tropical cyclones, with the most
damage in North America, East Asia, and the Caribbean–
Central American region (145). Extreme weather events
can adversely impact agriculture. High groundwater levels
in river flows can persist, increasing the susceptibility of
flooding with later storms (143). Reduction in soil moisture

can amplify the effects of heat waves (143). Extreme weather
events have direct impacts upon agriculture and global food
production, disrupt the food supply chain, and reduce the
access to food (146).

Rising sea level and crops
Rising sea level has great potential to alter coastal ecosystems
and destroy productive agricultural land. Ice sheets or
glaciers cover ∼10% of the Earth’s surface and are affected
by climate change (19). The Greenland ice sheet and the ice
sheets of Antarctica contain enough water to raise global
mean sea level (GMSL) by 7.4 m (147) and 58 m (148),
respectively. Glaciers, exclusive of Greenland and Antarctica,
cover ∼706,000 km2 worldwide and have the potential to
raise GMSL by 0.4 m (149). The ocean contains 97% of water
on Earth and currently covers 71% of the Earth’s surface (19).

Surface air temperature is projected to increase at the
average rate of 0.3◦C per decade (19). Atmospheric warming
is the main driver of glacier recession and ice sheet loss
worldwide (19). GMSL is rising and accelerating from
1.4 mm/y in 1901–1990, to 2.1 mm/y in 1993–2015, and to
3.6 mm/y in 2006–2015 (19). The dominant source of GMSL
is the sum of melt water from glaciers and the Greenland
and Antarctic ice sheets. Between 1992 and 2018, Greenland
has lost 3800 billion tons of ice (150). Satellite observations
show that, from 1992 to 2017, the Antarctic ice sheet lost
2720 billion tons of ice, raising mean sea level by 7.6 mm
(151). Mountain glaciers have lost ∼250 billion tons of ice per
year between 1901 and 2009, or a loss of 21% of the glaciated
volume of glaciers worldwide, excluding Antarctica (152).
GMSL has risen by 0.43 to 0.84 m by 2010 relative to 1986–
2005 (19). Sea-level rise by the end of the century is projected
to be faster under all RCP emissions scenarios, including
those compatible with the temperature goal of the Paris
Agreement (19). Extreme sea-level events (episodic coastal
inundations caused by a combination of high tides, waves,
and storm surges) that are historically rare are expected to
become commonplace by 2100 (19).

Sea-level rise has the greatest impact on the low eleva-
tion coastal zone (LECZ), defined as the contiguous and
hydrologically connected zone of land along the coast and
below 10 m of elevation. The LECZ comprises 2.3% of the
total land area of all coastal countries (153). Currently, ∼680
million people, or 10% of the 2010 global population, inhabit
the LECZ, and this population is projected to reach >1
billion people by 2050 (19). The populations in the LECZ
with the greatest exposure to sea-level rise are mostly in
low-income countries (154). The countries with the largest
number of rural poor in the LECZ are India, Bangladesh,
Myanmar, Cambodia, Nigeria, Pakistan, Iraq, Mozambique,
Senegal, Brazil, China, Indonesia, the Philippines, Vietnam,
and Thailand (154).

Rising sea level alters coastal ecosystems, agriculture, and
the habitability of coastal communities. Erosion, flooding,
and salinization accompany rising sea level in low-lying
coastal areas. Sea water intrusion is a major cause of salin-
ization and soil degradation. Rice production in coastal areas
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is especially susceptible to rising sea level and increasing
soil salinity (155, 156). Sea-level rise is predicted to reduce
global rice production by 1.6% to 2.7% accompanied by
global rice price increases of 7.1% to 12.8% by 2080 (157).
Rice production in Bangladesh, Japan, Taiwan, Egypt, Myan-
mar, and Vietnam is especially vulnerable to sea-level rise
(157).

Impact of climate change on fisheries
Marine fish are rich in micronutrients and have been
suggested as a potential solution to prevent micronutrient
deficiencies in coastal populations of LMICs (158). Realizing
such potential in the face of degradation of fisheries and
climate change may be a challenge. Global fisheries peaked
at 130 million tons in 1996 and have been steadily declining
since that time (159). Ocean warming and declining oxygen
levels in ocean and coastal waters are having an adverse
impact upon global fisheries and shifting viable habitats and
species ranges (160, 161). Industrial fishing is dominated by
wealthy countries (162). Fishing fleets from the European
Union, Russia, and East Asia, which have paid for access
to fish in the exclusive economic zone (EEZ) of poorer
countries, have led to local fish scarcity (163). In addition,
countries such as China have built industrial fish meal–
processing plants that convert local fresh fish primarily
into animal feed (163). If the decline in the marine fish
supply continues, an estimated 845 million people, or an
additional 11% of the current global population, will become
deficient in micronutrients such as zinc, iron, and vitamin A
(164).

Another potential consequence of climate change is an
adverse effect upon local coastal fisheries in low-income
countries. Coral reefs are found in at least 150,000 km of
coastline in >100 countries (19). Coral reefs are an important
source of fish for poor communities relying upon small-scale,
artisanal, or subsistence fishing. Worldwide, there are an
estimated 6 million reef fishers in 99 countries and territories
with coral reefs (7). Sea-level rise is predicted to elevate water
depths beyond the vertical growth capacity of coral reefs,
thus jeopardizing local fish supplies for coastal communities
(165). Mangrove forests cover 138,000 to 152,000 km2 in
tropical and subtropical coasts of ∼120 countries (19) and
provide an ecosystem that supports near-shore subsistence,
artisanal, and small-scale commercial fisheries (9). There
are an estimated 4.1 million mangrove-associated fishers
locally, with the highest number found in Indonesia, India,
Bangladesh, Myanmar, and Brazil (9). Large-scale mortality
of mangroves has occurred since the 1960s, with ∼70% of
reported mangrove loss from natural causes occurring due
to low-frequency, high-intensity weather events such as heat
waves and tropical cyclones (166). Satellite mapping shows
that natural causes, such as extreme weather, are currently
a greater driver than human causes, such as farming and
aquaculture, in causing mangrove loss (167). Sea-level rise is
altering the distribution of mangroves inland and poleward
(19). Small-scale fisheries that rely upon mangroves are
important in providing protein and micronutrients to local

populations, and degradation of mangrove-associated fish-
eries may jeopardize this dietary source of micronutrients.

Inland capture fisheries and aquaculture contribute >40%
to global finfish production (168). The total inland fisheries
catch was 11.5 million tons in 2015, or >12% of global
capture fishery production (169). Most of this catch comes
from LMICs in Africa and Asia; a large proportion of these
fish are destined for local human consumption and are an
important source of micronutrients for developing world
populations (8). Climate change and freshwater warming
are predicted to alter freshwater ecosystems, including
species composition, number, and geographic range (169).
Freshwater ecosystems are sensitive to climate-related shocks
and variability (169). A vulnerability assessment of Africa’s
freshwater fishes showed that nearly 40% of fish species were
vulnerable to climate change due to the highly specialized
habitat and life-cycle requirements, especially in the African
rift valley lakes, the Congo River drainage, and coastal rivers
of West Africa (170).

Animal agriculture and climate change
Meat consumption is projected to increase in LMICs due
to large population sizes, high population growth rates,
and rising incomes (171). Global consumption of meat is
expected to grow between 2020 and 2029 by 12%, with
developing regions accounting for ∼80% of the growth
in meat production (171). Meat production is a major
source of GHG emissions, water use, and deforestation (172–
174). In addition, arable land that produces plant foods
for human consumption is converted to produce animal
feed (175). Some LMICs are adopting the industrial food
animal production (IFAP) model, which requires intensive
use of feed and water (176). In some countries with scarce
resources, IFAP may be reducing food security by producing
grains for animal feed rather than humans (176). Meat can
contribute micronutrients such as iron, zinc, and vitamin B-
12 to the diet, but health and environmental concerns have
been raised about excessive consumption of meat if LMICs
adopt the dietary pattern of industrialized countries (177).

Mitigation and adaptation strategies
The most fundamental mitigation strategy to prevent de-
clines in crop yields and ensure food security is to reduce
GHG emissions, the main driver of climate change (19).
Short of this goal, which requires international cooperation
and compliance, a variety of adaptive strategies have been
proposed to improve the micronutrient quality of plants
or increase crop yields in the face of climate change. Iron
and zinc biofortification of rice may be achieved through
agronomic practices such as applying zinc or iron to soil
or foliage (178–180). Plant-breeding approaches, whether
conventional breeding approaches or genetic engineering,
may be used to obtain higher zinc and iron concentrations
in rice (178, 179, 181). Challenges to zinc fortification of rice
include low uptake, transport, and loading of zinc into the
rice grain (182). Both rice and wheat have extremely low iron
concentrations, and most iron is present mainly in the outer
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TABLE 5 Potential impacts of climate change on food sources of micronutrients

Climate change factor Biological consequences Impact on food sources of micronutrients

Increasing carbon dioxide and rising temperature
combined

Reduced photosynthesis
Altered plant mineral metabolism
Loss of suitable growing region

Decreased yield of rice, wheat, barley, legumes,
vegetables, fruits, nuts

Ground-level ozone Reduced photosynthesis
Altered plant mineral metabolism

Reduced yield of rice, wheat, barley, corn, legumes,
potato

Increased extreme weather events Water scarcity
Water excess
Wind damage
Soil loss

Reduced yield of crops
Loss of crops

Pollinator loss Reduced pollination Reduced yield of pollinator-dependent crops: fruits,
vegetables, nuts

Sea-level rise Coastal inundation
Salt intrusion
Coral reef loss
Mangrove loss

Loss of coastal rice production
Loss of coastal fisheries

Ocean warming and declining oxygen Shifts in range of fish
Decline in suitable habitat

Reduced ocean fisheries catch

Freshwater warming Altered freshwater ecosystems
Decline in suitable habitat

Reduced inland fisheries catch

bran layers (183). Conventional breeding may be difficult as
an approach to increase iron in rice or wheat, since iron-rich
rice and wheat germplasms are not available (183). Iron and
zinc biofortification of wheat is also being developed using
fertilizers and plant breeding (59, 184). Stable isotope studies
show that zinc absorption from agronomically biofortified
wheat is similar to post-harvest fortified wheat in humans
(185). Plant-breeding approaches have been proposed to
make legumes more resistant to elevated temperatures using
insights from proteomic studies (37).

Climate change is altering environmental factors that
affect both the geographical range of plants and growing
season. Adaptive approaches to ensure crop productivity
include shifting the location and elevation where crops are
grown and increasing the length of the growing season
where possible (186). The adverse impact of ozone upon
rice and wheat yields may be countered by breeding plants
that are more ozone-resistant (129, 187, 188). Similarly, the
development of rice cultivars that are more salt tolerant may
help adapt to salt intrusion in areas of coastal rice production
(189). Policy changes are needed to ensure sustainability
and better management of marine fisheries (162). Countries
that have coastal fisheries that provide an important source
of micronutrients for populations in LMICs could enact
more protective legislation to regulate foreign fleets in their
EEZ (163). Greater efforts could be taken to protect inland
fisheries from competition with other water uses (168). The
characterization of sustainable healthy diets, defined by FAO
and WHO as “dietary patterns that promote all dimensions
of individuals’ health and wellbeing; have low environmental
pressure and impact; are accessible, affordable, safe and
equitable; and are culturally acceptable” (190), with low to
modest amounts of animal-source foods may help limit
GHGs and other environmental impacts of animal agricul-
ture in LMICs (191). The development of crops that are

adapted to climate change may take a considerable amount
of time and investment. More immediate approaches such
as national micronutrient supplementation programs, post-
harvest fortification of staple foods, and initiatives to increase
dietary diversity and promote micronutrient-rich foods are a
major priority.

Conclusions
Climate change has great potential to increase the risk
of micronutrient malnutrition in vulnerable populations
through many different pathways (Figure 1), with impacts
as summarized in Table 5. The combination of increasing
atmospheric carbon dioxide and rising temperature is pre-
dicted to reduce the overall yield of major staple crops, fruits,
vegetables, and nuts, rather than affect the micronutrient
content of the foods themselves. In addition, the yield
of crops is reduced by increased ground-level ozone and
an increase in extreme weather events. Pollinator loss is
expected to reduce the yield of many pollinator-dependent
crops such as fruits, vegetables, and nuts. Sea-level rise
resulting from melting of ice sheets and glaciers is predicted
to result in coastal inundation, salt intrusion, and loss of
coral reefs and mangrove forests, with an adverse impact
upon coastal rice production and coastal fisheries. Global
ocean fisheries catch is predicted to decline because of ocean
warming and declining oxygen. Freshwater warming is also
expected to alter ecosystems and reduce inland fisheries
catch. A decrease in the availability of micronutrient-rich
foods (i.e., major staple crops, fruits, vegetables, nuts, and
fish) may lead to global increases in food prices and
increased vulnerability of poor families to micronutrient
malnutrition (11, 12, 192). The impacts of climate change on
the availability of micronutrient-rich foods are likely to vary
by region and capacity for adaptation.
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In addition to limiting GHG production, a variety of
mitigation strategies will be required to ensure reduction in
the risk of micronutrient malnutrition, such as post-harvest
fortification of foods; micronutrient supplementation; bio-
fortification of staple crops with zinc and iron; plant breeding
or genetic approaches to increase zinc, iron, and provitamin
A carotenoid content of plant foods; and developing staple
crops that are tolerant of abiotic stressors such as elevated
CO2, elevated temperature, and increased soil salinity.
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