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a b s t r a c t 

The importance of motion correction when processing resting state functional magnetic resonance imaging (rs- 
fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude 
subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration arti- 
fact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data 
retained after frame censoring (e.g., “scrubbing ”) and more reliable correlation values. Due to the unique phys- 
iological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods 
to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect 
true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude 
head movements than adults; thus, the presence and significance of comparable respiratory artifact and the 
subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the 
consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers 
across two independent cohorts (aged 8–24 months) analyzed using different pipelines. We further demonstrate 
how removing this artifact using an age-specific notch filter allows for both improved data quality and data 
retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory- 
driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as 
a mechanism to optimize the accuracy of measured results in this population. 
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. Introduction 

Over the last decade, utilization of resting-state functional mag-
etic resonance imaging (rs-fMRI) to study infant and toddler co-
orts has shown increasing promise for understanding trajectories
f typical and aberrant functional brain development ( Azhari et al.,
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020 ; Graham et al., 2015 ; Zhang et al., 2019 ; Eyre et al., 2021 ;
in et al., 2008 .). In this population, measures of spontaneous, infra-
low ( < 0.1 Hz) fluctuations in the blood oxygen level-dependent (BOLD)
ignal have been analyzed to investigate the earliest forms of resting-
tate networks (RSNs) and provide insight into the functional architec-
ure of the developing brain ( Eyre et al., 2021 ; Eggebrecht et al., 2017 ;
myser et al., 2016 ; Smyser 2016 ; Toulmin et al., 2015 ; Doria et al.,
010 ; Smyser et al., 2010 ; Gao et al., 2009 ; Fransson et al., 2007 ).
nderstanding relationships within and across these networks holds
reat promise for characterizing typical functional brain development
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 Grayson and Fair, 2017 ), as well as the deleterious effects of neurolog-
cal and neurodevelopmental disorders, including epilepsy ( Liu et al.,
009 ), autism ( Redcay et al., 2013 ; Feczko et al., 2018 ; Ray et al.,
014 ), and attention deficit hyperactivity disorder ( Posner et al., 2014 ;
ills et al., 2018 ; Cary et al., 2017 ). 

Beginning with Biswal’s seminal report ( Biswal et al., 1995 ), adult
s-fMRI processing pipelines have undergone substantive methodologi-
al development focused on refinement and optimization ( Biswal et al.,
010 ; Lee et al., 2013 ; Luna et al., 2010 ; Mather et al., 2013 ;
atthews et al., 2006 ; Uddin et al., 2010 ), resulting in highly sophis-

icated modeling techniques and analysis methods. Across these ap-
roaches, basic preprocessing involves steps including correction for
lice-acquisition time delays and intensity differences, regression of
ead motion and tissue nuisance regressors, spatial smoothing, low-pass
ltering to remove non-neuronal signal, and atlas registration ( Lee et al.,
013 ). Of these elements, approaches for accurately and effectively
dentifying and correcting for the effects of subject motion remain an
rea of ongoing investigation, and its importance for rs-fMRI analyses
as now been well-established ( Power et al., 2012 ; Satterthwaite et al.,
012 ; Van Dijk et al., 2012 ). Critically, subject motion negatively im-
acts functional connectivity measurements, both by decreasing the
ignal-to-noise ratio (SNR) and by biasing connection strength relative
o the physical distance of connections ( Ciric et al., 2017 ). The associ-
ted downstream effects can result in inaccurate interpretations of rs-
MRI results and brain-behavior relationships. 

Recent advances in MRI scanning acquisition methods, namely si-
ultaneous multi-slice (SMS) imaging have revealed respiration as an-

ther source of problematic motion in both multiband (MB) and single-
and adult and adolescent datasets ( Fair et al., 2020 ; Gratton et al.,
020 ; Feinberg and Yacoub, 2012 ; Moeller et al., 2010 ; U ğurbil et al.,
013 ; Xu et al., 2013 ). While current motion correction techniques tar-
et the removal of all motion artifact, they fail to distinguish pertur-
ations due to respiration that, unlike spontaneous isolated head move-
ents, do not result in BOLD signal disruption. Consequently, frame mo-

ion estimates targeted for removal may include a residual respiratory
omponent that should be considered independently, often resulting in
nnecessarily reduced data retention ( Power et al., 2013 ). In recent
tudies, Fair et al., and Gratton et al., developed a technique to iden-
ify and correct for respiratory motion in BOLD data using a band-stop
lter which adequately corrects for respiratory-induced magnetic field
erturbations. In adults and adolescents, analyzing the framewise dis-
lacement (FD; a metric measuring head motion distance from frame-to-
rame) trace of MB data reveals a high-intensity frequency component in
he phase encoding direction of data collection indicative of respiratory
rtifact. Once identified, this spurious head motion can be removed by
pplying a notch filter selected based upon the frequency of respiration.
his method yields a more representative motion trace, allowing for

ncreased frame retention by targeting only perturbations driven by iso-
ated, spontaneous head movements for final frame removal ( Fair et al.,
020 ). As a result, the remaining BOLD data contain less noise and are
f higher quality. 

Infant and toddler rs-fMRI processing pipelines provide unique
hallenges and must effectively account for several technical factors
ue to the rapidly changing environment of the developing brain
 Turesky et al., 2021 ; Raschle et al., 2012 ). Key differences include vari-
tions in the size, shape, and hemodynamic response of the brain, as well
s unique motion and sleep patterns ( Cusack et al., 2018 ). Movement is
f particular interest because, unlike in adult studies, it is typically im-
ractical to regulate the movement of young children during data collec-
ion, especially during natural sleep. Motion patterns in sleeping infants
nd toddlers differ from those observed in alert adults, often limiting
he ability to acquire large quantities of low motion rs-fMRI data. Thus,
t is important to understand and develop motion correction pipelines
2 
hat address these unique motion patterns inherent to this population.
t was previously uncommon to correct for respiratory motion in in-
ant and toddler processing pipelines. This was in part due to the fact
hat younger individuals (from 6 months to 11 years) breathe at faster
ates than adults (20–30 bpm versus 12–18 bpm) ( Kliegman and Nel-
on, 2011 ), and until the arrival of SMS imaging, these high frequency
hanges were aliased to a lower frequency making them indiscernible
n head motion estimates ( Fair et al., 2020 ). Further, due to differences
n body size and habitus, these subjects’ head movements are charac-
erized by lower amplitude head and trunk displacement during respi-
ation, which were assumed to have little to no effect on the B0 field
f the scanner. For these reasons, the necessity and utility of a filter-
ng approach for respiratory artifact similar to that employed by Fair
nd colleagues in adults and adolescents remains unexplored in this age
ange. 

In this report, we demonstrate the effects of respiratory-driven move-
ent artifact in infant and toddler rs-fMRI data across two independent

ohorts analyzed using independent analysis pipelines. We first confirm
he presence of respiratory artifact in both cohorts, illustrating its com-
arable effects as an important source of colored noise in data from both
roups. We then demonstrate respiratory artifact-driven filtering of the
D trace as a critical mechanism to improve rs-fMRI data retention and
uality. Finally, we test the utility of customizing filters by age group to
chieve optimal data quality across toddler rs-fMRI studies. 

. Materials and methods 

.1. Data Collection 

.1.1. Baby Connectome project (BCP) 

MRI data from 141 scanning sessions collected from 96 infants
nd toddlers aged 8–24 months (age = 14.3 ± 4.2 months, female
 = 46, white N = 75) as part of the Baby Connectome Project (BCP;
owell et al., 2019 ) were used in these analyses. The BCP study was ap-
roved by the University of Minnesota and University of North Carolina
nstitutional Review Boards and informed consent was acquired from
he parents of all participants. This project aims to understand brain
evelopment through structural and functional connectivity during the
rst 5 years of life. 

Participants were scanned on a Siemens 3T Prisma scanner with
 32-channel head coil. T1-weighted (TR = 2400 ms, TE = 2.22 ms,
.8 mm isotropic), T2-weighted (TR = 3200 ms, TE = 563 ms, 0.8 mm
sotropic), spin echo fieldmaps (SEFM) (TR = 8000 ms, TE = 66 ms,
 mm isotropic, MB = 1), and rs-fMRI data were collected. rs-fMRI data
TR = 800 ms, TE = 37 ms, 2 mm isotropic, MB = 8) were collected in
oth anterior →posterior (AP) and posterior →anterior (PA) phase encod-
ng directions. Each BOLD run consisted of 420 frames (5.6 min) with a
aximum of 4 runs (22.4 min) collected per scanning session. A subset

f early scans ( N = 60) were collected with a TR = 720 ms; all analy-
es were performed with TRs separated and combined. All scans were
erformed during natural sleep without the use of sedating medications.

.1.2. Early life adversity, biological embedding (eLABE) 

A total of 36 24-month-old toddlers (age = 25.9 ± 2.8, female
 = 15, white N = 7) from the Early Life Adversity, Biological Embed-
ing (eLABE) study were used in this analysis. This study was approved
y the Washington University Institutional Review Board. Informed con-
ent was obtained from the parents of all participants. This project ex-
lores the relationship between maternal experiences during pregnancy
nd brain and neurodevelopment outcomes during early childhood. Par-
icipants were scanned on a Siemens 3T Prisma with a 64-channel head
oil using an identical acquisition protocol to the BCP cohort (including
OLD TR = 800 ms). BOLD runs were collected in the AP direction with
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 maximum of 8 runs (44.8 min) per scanning session. As in the BCP
ohort, all scans were performed during natural sleep without the use
f sedating medications. 

.2. Data analysis 

.2.1. fMRI analysis 

.2.1.1. Functional data pre-processing - BCP. Data processing steps from
he BCP cohort resembled that of the Adolescent Brain Cognitive Devel-
pment (ABCD) cohort as described in Feczko et al., 2021 . The struc-
ural T1-weighted image is processed through FreeSurfer (version 6.0;
ischl, 2012 ), providing a brainmask. Additionally, the T2-weighted im-
ge was used to better inform FreeSurfer segmentations. This refined
rainmask was registered to an MNI template using the ANTs com-
ressible fluid deformation algorithm ( Fonov et al., 2011 ). Using this
ransformation, the rs-fMRI timecourses were also registered to the MNI
emplate. Standard preprocessing steps were first performed beginning
ith demeaning/detrending across time. Next, denoising is performed
sing a general linear model. Denoising regressors include signal and
otion variables. Signal regressors include mean timeseries, white mat-

er, cerebrospinal fluid (CSF), and global signal based off FreeSurfer seg-
entations. Motion regressors include volume-based translational and

otational components and their 24P Volterra expansion (Friston et al.,
996). Bandpass filtering was then performed using a second order But-
erworth filter in the range of 0.008 to 0.09 Hz. 

Motion correction then was performed for both standard preprocess-
ng and for downstream construction of the parcellated timeseries. FD
as defined as the sum of absolute values of the differences in motion

stimates between each frame. Frames were censored during demean-
ng/detrending if their FD value exceeded 0.2 mm. Consequently, the
enoised beta values only included the remaining low motion frames. To
void aliasing caused by missing timepoints during the bandpass filter-
ng step of preprocessing, interpolation is used to replace missing frames
nd residuals are pulled from the denoising general linear model. Fur-
her, when extracting timeseries data for analysis, only data with FD
ess than 0.2 mm was used. T1 -weighted, T2 -weighted, and BOLD im-
ges were visually inspected for quality by experienced raters (at least 2
ndependent raters per image). Sessions with less than 75% aggregated
assing rate on either anatomical or functional images were excluded. 

.2.2. Functional data pre-processing - eLABE 

Data were processed through a standard toddler EPI
BOLD) preprocessing pipeline using the 4dfp tool suite
ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/; Shulman et al.,
010 ) to remove non-neuronal variance. Functional data were first
lice timing corrected and debanded to correct for asynchronous slice
ime shifts and systemic interleaved intensity differences between
ven and odd slice acquisitions according to the methods described in
ower et al., 2012 . Inter-volume motion was corrected using 4dfp’s
ross_realiagn3d_4dfp, and bias field correction was performed using
SL tools ( Jenkinson et al., 2012 ). Additionally, readout distortion
orrection was estimated using FSL’s topup on each participant’s
ndividual SEFM, and applied to the BOLD data using applytopup.
ovement analysis was performed using rigid body motion correction

o correct the timeseries for head motion within runs. T1 -weighted MRI
mages were registered and resampled to an age-specific atlas target.
his volumetric timeseries was then registered to a representative adult
tlas target in Talairach space (711–2B). The first frame of the rs-fMRI
imeseries was registered to this corrected T1 -weighted image through
ffine transformation and combined with the transformation to atlas
pace to result in a timeseries of 3 mm isotropic voxels. Normalization
as performed to scale the whole brain mode intensity to 1000 using
ne constant for each rs-fMRI run ( Smyser et al., 2010 ). The regis-
ration of the T1 -weighted image, atlas target, and rs-fMRI timeseries
ere manually inspected by experienced raters to ensure accuracy of

ndividual processing result. 
3 
Additional standard functional processing steps were performed.
rame censoring was performed, where only data with FD less than
.2 mm were used. Nuisance waveforms were regressed out of the time-
eries including retrospective motion correction from the 24-Friston pa-
ameters, gray matter global signal, and regions of non-interest and their
rst derivative (white matter, ventricular, and extra-axial CSF). The data
ere then bandpass filtered in the range of 0.005 to 0.1 Hz to eliminate
on-BOLD frequencies, and spatially smoothed. 

.2.3. Calculation of framewise displacement (FD) trace 

Movement analysis performed during rigid body motion correction
llowed for tracking of head position and motion across all volumes
cross both data sets. This involved a 6-parameter transformation, track-
ng translational displacements along the X, Y, and Z axes, and rotational
isplacements across these three planes (pitch, yaw, and roll). Instanta-
eous frame displacement was defined as the sum of absolute values of
he differences between frame-to-frame changes of these 6 parameters. 

.2.4. Power Spectra of head motion estimates 

In order to determine if the respiratory-driven head motion artifact
as present in this age group, we used the approach described in Fair,

t al., to visualize the time traces of the movement parameters in the
requency domain to reveal high intensity frequency artifacts indicative
f respiration rate. The individual subject frequency spectra were an-
lyzed to inform the central peak and notch size for band-stop filters
nder consideration. Specifically, the median high intensity component
or each subject was used to inform the group cutoff frequencies. For
he BCP data, this analysis was completed for sessions with TR = 800 ms
nd TR = 720 ms separately (see Supplemental Information (SI) “BCP TR
eplication ” SI Fig. 1 ). Filtering was applied in Matlab using the iirnotch
BCP) and butter (eLABE) functions based on institutional availability. 

.2.5. Determining Filter cutoffs 

To determine the appropriate notch filter cutoffs for each cohort,
rst the individual median high intensity components were identified.
rom this, the median value across participants determined the central
utoff frequency and the second and third quartiles set the bandwidth
or each cohort independently. Given the stability of respiratory rate
rom 1 to 11 years ( Kliegman and Nelson, 2011 ), frequency cutoffs for
he BCP cohort were calculated by combining all ages. 

.2.6. Evaluating functional connectivity (FC) estimates 

To obtain the fc values for regions throughout the brain, a pairwise
orrelation between the average BOLD timeseries within a standard-
zed set of 333 cortical parcels ( Gordon et al., 2016 ) was performed.
hese values were arranged into a connectivity matrix based upon age-
pecific RSN assignments that were determined using previously pub-
ished methods ( Wheelock et al., 2019 ; Eggebrecht et al., 2017 ). Briefly,
he pairwise fc data from the 94 BCP subjects were averaged, produc-
ng a single 333 ×333 correlation matrix. The averaged connectome
cross BCP subjects was thresholded and binarized across a range of
dge density thresholds (1% to 10% sparsity) and ROIs were assigned to
unctional modules using the Infomap community detection algorithm
 Rosvall and Bergstrom, 2008 ). To obtain a general measure of RSN
onnectivity, the average correlation value of all parcels within and/or
etween networks was calculated. A connectivity matrix was created for
ach RSN using timeseries data from both before and after application
f the respiratory notch filter. A paired t -test was performed for both
he full connectivity matrix at the parcel level, as well as for each net-
ork average cell in the matrix to quantify improvement of fc estimate
agnitude after application of the respiratory filter. 

To further assess the effect of filtered FD on functional connectiv-
ty, a split-half protocol was implemented. Here, the BOLD runs for an
ndividual subject were split into the first and second half of the total
sable data defined at each FD threshold, thus each matrix consisted of
qual amounts of data. For the BCP data, each half was made up of one



S. Kaplan, D. Meyer, O. Miranda-Dominguez et al. NeuroImage 247 (2022) 118838 

A  

a  

T  

r  

s

3

3

 

t  

t  

t  

d  

(  

d  

l  

e  

d

3

 

f  

F

d

B
b
t
l
b
c
n
i
p
g

d  

i  

P  

h  

F  

o  

w  

d  

r  

t  

s  

t  

o  

r  

A  

m

3

 

i  

r  

9
 

u  
P and one PA run. Connectivity matrices were calculated for each half,
nd spatially correlated with one another across various FD thresholds.
his approach was repeated for data with and without application of the
espiratory FD filter to demonstrate how filtering increases or decreases
plit-half reliability across BOLD runs. 

. Results 

.1. Presence of respiratory artifact in infants and toddlers 

Power spectra plots demonstrating the frequency representation of
he head motion estimates are presented in Fig. 1 for both cohorts. In
hese results, a spike in power at the respiratory rate of toddlers (be-
ween 0.2 and 0.6 Hz) would indicate that the artifact is present in the
ata. The red band at this rate in both the BCP ( Fig. 1 a) and eLABE
 Fig. 1 b) data with TR = 800 ms, indicated by the black arrow in the y
irection plot, shows that the artifact is consistently present in data col-
ected in this population. Note, the power also spikes in the non-phase
ncoding directions at this frequency, indicated by a red arrow in the z
irection, which is likely respiratory motion leak (see Discussion). 

.2. Filtering FD trace to remove respiratory artifact 

Conventional motion censoring techniques remove high motion
rames above a given threshold in an effort to mitigate BOLD signal
ig. 1. Frequency domain representations of multiband rs-fMRI timeseries 

ata. (A) Power spectra for scans with TR = 800 ms ( N = 81 sessions) from the 
CP cohort and (B) 36 subjects from the eLABE cohort. Subjects are ordered 
y mean FD, with the lowest motion subjects organized at the top. Frequency 
ransforms are computed across all directions for motion analysis, namely trans- 
ation (X, Y and Z) and rotation (pitch, yaw, and roll). The red elevated power 
and between 0.3 and 0.5 Hz (indicated by the black arrow) in the phase en- 
oding direction (Y) is evidence of respiratory artifact. The power spike in the 
on-phase encoding direction at this frequency (indicated by the red arrow) 
s likely a combination of true head motion and respiratory motion leak. High 
ower motion artifact is suppressed in higher motion subjects, indicated by the 
radual decline in the red high power band moving vertically down this plot. 
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4 
isruptions induced by motion. BOLD signal disruptions can be visual-
zed as vertical lines in ‘gray plots’ such as Fig. 2 ( Power et al., 2014 ).
lotted along with the motion trace, these signal disruptions align with
igh motion frames as described in Power et al. (2014) . However, in
ig. 2 a, there are also many frames that cross the typical FD thresh-
ld of 0.2 mm that do not result in a BOLD signal disruption. This is
here the factitious respiratory artifact described in Fair et al., is evi-
ent. As previously reported by Fair and colleagues, the artifact can be
emoved by applying a notch filter at the frequency of respiration to
he movement trace ( Fair et al., 2020 ). Filtered head movement data
hown in Fig. 2 b demonstrates that frames with high FD due to spon-
aneous head motion continue to be censored using a typical threshold
f 0.2 mm ( Power et al., 2013 ), whereas frames with motion due to
espiration alone are now retained. See SI “Motion Artifact Reduction
nalyses ” and SI Fig. 2 for additional validation of spontaneous head
otion artifact reduction. 

.3. Filtering Increases data retention and improves fc estimates 

Shown in Fig. 3 , implementing filtered FD resulted in a substantial
ncrease in the amount of usable (i.e., ‘low motion’, < 0.2 mm FD) data
etained (from 1.8 ± 2.5 to 13.9 ± 5.2 min in the BCP cohort and from
.6 ± 5.3 to 19.4 ± 5.2 min in the eLABE cohort). 

Further, for each individual participant, increasing the number of
sable frames results in higher magnitude fc measurements, and the
arcels that make up a given RSN have more uniform connectivity struc-
ure within and between RSNs. This is depicted in Fig. 4 , where we see
tronger, less noisy within and between RSN connectivity when going
rom unfiltered ( Fig. 4 a) to filtered FD ( Fig. 4 b). The differences in fc
stimates that occur and their directionality are represented by the t-
tatistic in the regions identified in Fig. 4 c when using the conventional
D cutoff of 0.2 mm. Stronger red cells indicate higher magnitude fc
stimates when filtering data. 

In addition to stronger connectivity values, Fig. 5 shows that filter-
ng the FD trace increases the reliability of estimated fc values. The plot
epicts the mean correlation between split-half connectivity matrices
enerated with both filtered and unfiltered FD. In these results, filtered
D data converges to higher correlation values for lower FD thresholds
ndicating increased reliability. The reliability curve for the eLABE co-
ort likely converges to a higher correlation value than the BCP cohort
ince the eLABE cohort contains more usable data in each matrix. 

.4. Notch filter cutoffs differ by age 

Initially, the ABCD notch filter cutoffs from Fair et al., were ap-
lied to the toddler data. However, after examining the power spectra
n Fig. 6 , it was noted that the ABCD cutoffs did not fully encapsulate
he spike in signal power caused by respiration in the toddlers. This is
ecause there are higher, more variable respiratory rates at this age, and
hus different filtering parameters would better suit this cohort. 

Subsequently, data-driven cutoffs, defined as the second and third
uartile frequency peaks of the BCP power spectra, were determined
o be 0.28 and 0.48 Hz, and were applied to data from both cohorts.
hown in Fig. 6 b, there were several subjects in the eLABE dataset that
ad lower respiratory rates, and as a result these participants would lose
 significant number of frames due to respiratory motion when apply-
ng the more narrow BCP filter. In order to fully capture the variability
n respiratory rates of this age range, the optimal filter cutoffs for the
ntire age group were marginally extended to 0.25 and 0.50 Hz. When
he slightly wider filter is applied, the respiratory artifact is removed,
hereby increasing the number of frames retained. Further still, choosing
 wider than necessary filter results in power loss in the overall trace,
s seen in Fig. 7 , where the overall signal is shifted to lower FD values
s the width of the notch filter increases. 
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Fig. 2. Grayordinate intensity plot for an individual subject. (A) Data are shown before and (B) after the application of a notch filter in the range of respiration. 
Grayordinate representation for a single subject tracking the spatial root mean square of the derivative of the timeseries (DVARS), the whole brain signal, the FD 

value and finally the grayordinate plot across the duration of the acquisition. With an FD threshold of 0.2 mm, indicated by the horizontal orange line, any frames that 
surpass this minimum motion level across the subject timeseries are targeted for removal. Real motion should correspond with an interruption in the grayordinate 
plot (indicated by red arrow), which is not the case before the application of a respiratory notch filter for many identified frames (marked by black arrows). After 
the filter is applied, many frames show a decrease in FD and are no longer targeted for frame removal. However, high motion frames caused by spontaneous subject 
motion and that correspond to an interruption in the grayordinate plot are still targeted for frame removal. 

Fig. 3. Linked line representation of data 

retention by cohort. Minutes of usable data 
before and after application of a notch filter ap- 
plied in the range of respiration in the (A) BCP 
and (B) eLABE cohorts. In both cohorts, appli- 
cation of the filter greatly increases the aver- 
age usable minutes of data (from 1.8 ± 2.5 to 
13.9 ± 5.2 in the BCP cohort and from 9.6 ± 5.3 
to 19.4 ± 5.2 in the eLABE cohort). 
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. Discussion 

In this work, we have shown that respiratory-driven motion artifact
s present in MB BOLD data of populations as young as 8 months of
ge and must be appropriately addressed when processing fMRI data in
his age range. Critically, we have shown that filtering of FD traces to
emove this artificial head motion can be successfully and effectively im-
lemented in infants and toddlers. Further, we have demonstrated these
fforts are most successful when using an age-specific filter design that
ppropriately captures differences in respiratory rate. Successful appli-
ation of this filtering approach results in both increased data retention
nd improved data quality including higher magnitude fc measures, il-
ustrating its critical importance in investigations utilizing this modality
n this age group. 
5 
.1. Motion in adult and toddler rs-fMRI data 

In adult rs-fMRI investigations, spontaneous motion during data col-
ection has been shown to bias connection strength based upon physical
istance, introducing colored noise into measured results ( Power et al.,
012 ; Satterthwaite et al., 2012 ; Van Dijk et al., 2012 ). One common
ay to address this has been by implementing frame censoring (i.e.,

scrubbing ”) in rs-fMRI post-processing. In scrubbing, head motion es-
imates are used to identify frames with spontaneous motion greater
han a designated FD threshold (typically ∼0.2 mm), which are then
emoved from the dataset. However, important recent work using both
dult and adolescent data has additionally shown head motion caused
y respiratory efforts manifests in the tracings used to identify motion-
orrupted frames in MB BOLD data. However, unlike spontaneous head
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Fig. 4. Functional connectivity within and between brain networks. (A) Functional connectivity strength across defined cortical parcellations (top row) and 
their network averages (bottom row) is demonstrated in the BCP cohort for unfiltered data. (B) Functional connectivity matrices in the same BCP subjects after 
application of the notch respiratory filter across identical functional networks. (C) Statistical analysis using a paired t -test comparing the two approaches (unfiltered 
vs filtered) across functional networks. Here, stronger red indicates higher magnitude fc estimates when filtering data. Networks include: motor, temporal lobe 
(Temp), posterior frontoparietal (pFPN), posterior cingulate cortex (PCC), lateral visual (lVIS), medial visual (mVIS), dorsal attention (DAN), anterior frontoparietal 
(aFPN), cingulo-opercular (CO), default mode (DMN), and unassigned (Usp). 

Fig. 5. Reliability of within subject connectivity across FD thresholds. Demonstration of mean spatial correlation for FC values using a split-half protocol (shaded 
regions represent ∼2 standard deviations from the mean). This approach evenly split individual subject data into two groups. A corresponding connectivity matrix 
was created for each group, with the spatial correlation across various FD thresholds then computed for both unfiltered and filtered data. Greater spatial correlation 
is observed across all FD thresholds for the filtered timeseries, indicating greater reliability of functional connectivity. 
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n  
otion, this respiratory-driven head motion does not bias fMRI correla-
ion strength between regions based upon anatomic distance, and thus
hould not be incorporated when identifying frames for motion censor-
ng ( Fair et al., 2020 ). Thus, traditional censoring approaches which
onflate respiratory motion with spontaneous motion in the FD traces
ay result in unnecessary censoring of large quantities of data thereby

educing the power of fc analyses. This has led to the recent advent of
6 
requency-based filtering approaches which successfully identify frames
or removal due to spurious head motion only ( Fair et al., 2020 ). This
s critical as it has been shown that increased amounts of rs-fMRI data
esult in more reliable measures of connectivity ( Gordon et al., 2017 ;
aumann et al., 2015 ). 

It was previously assumed that this respiratory motion artifact was
ot present in toddler rs-fMRI data given that their smaller chest sizes
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Fig. 6. Frequency domain representations of multiband rs-fMRI timeseries data with notch frequency cutoffs. Power spectra representation in the Y-direction 
of the (A) BCP cohort and (B) eLABE cohort organized by FD with lowest motion subjects at the top. The red band between 0.25 and 0.5 Hz indicates respiratory- 
related artifact. Filter cutoffs suggested by Fair et al., based on the ABCD cohort are marked in dashed purple. This range does not fully encapsulate the respiratory 
band for all subjects in either cohort, with the red band often extending beyond the ABCD filter cutoff. The cutoff generated from the BCP data is marked in black, 
offering a more suitable range that captures the respiratory band for most subjects. In order to most effectively remove the variable respiratory artifact in this age 
group, a slightly wider filter of 0.25 to 0.5 Hz should be applied for subjects age 8–24 months. 

Fig. 7. FD trace resulting from application of various 

notch filters. The FD trace for a single subject is presented 
with various notch filter cutoffs represented. The tested ranges 
offer the maximum and minimum values of the high power 
band for BCP and eLABE subjects in the Y-direction indicat- 
ing respiratory artifact. Across all tested filters, application re- 
duces the power of FD as seen by a downward shift in the 
mean FD value. The filter with a wider cutoff range of 16–
35 bpm (lime) shows a more dramatic FD shift (compared to 
the narrower filter presented in red from 20 to 30 bpm), with 
much smaller FD oscillations in the resulting trace. However, 
across all ranges, FD spikes indicative of spontaneous motion 
still surpass the FD threshold and would be targeted for frame 
censoring. 
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nd faster breathing rates were thought to have minimal effects on
he B0 field ( Power et al., 2019 ). Moreover, prior studies of toddlers
rimarily utilized single band rs-fMRI sequences ( Eggebrecht et al.,
017 ; Smyser et al., 2016 ; Toulmin et al., 2015 ; Doria et al., 2010 ;
myser et al., 2010 ; Gao et al., 2009 ; Fransson et al., 2007 ), which were
hown in Fair et al., to be impacted by respiration to a lesser extent
han MB data due to the lower in sampling rate. Subsequently, inves-
igation for the presence and severity of this artifact in this population
7 
as not been previously undertaken. However, herein we have shown
cross two independent cohorts that, similar to adult data, head motion
ue to respiration is indeed prevalent in FD traces and significantly al-
ers frame censoring results in infants and toddlers. While the artifact is
ost pervasive in the phase encoding direction, it can “leak ” into other
lanes by means discussed in Fair et al., and mix with true head mo-
ion in parameter estimates. This makes it difficult to disentangle real
ead motion from artifact in the non-phase encoding planes, so filtering
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Fig. 8. Comparison of on-line (FIRMM) and off-line (cross_realign3d_4dfp) motion estimation. The FD trace computed scanner-side for a representative eLABE 
subject (A) without filtering and (B) with filtering. Percentage of usable frames for all eLABE participants determined using on-line calculated FD estimates compared 
to off-line calculated FD estimates using both (C) unfiltered and (D) filtered data. 
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ust be applied in all directions. Since there are multiple ways in which
espiratory artifact can corrupt BOLD data, further work is needed to
eparate individual components. Critically, accurately identifying and
orrecting for this artifact using frequency-specific filters during frame
ensoring leads to significant increases in data retention and the relia-
ility and strength of fc measures that are comparable to results in older
opulations ( Fair et al., 2020 ; Gratton et al., 2020 ). This is of particu-
ar importance given that large amplitude, spontaneous movements are
elatively common in sleeping toddlers and multiple scanning sessions
re often impractical, factors which can make acquiring large quantities
f rs-fMRI data challenging and frame retention increasingly important
n these analyses. 

.2. Filter Selection to remove respiratory artifact 

There are several filter types that can achieve removal of respiratory
rtifact, including bandpass, low pass, and notch filters. Both bandpass
nd low pass filters decrease the overall power of the FD trace, which
hifts the entire trace to lower FD values. This is something to be cog-
izant of with frame censoring, as the conventional 0.2 mm threshold
or the identification of low motion frames may no longer be applica-
le. In order to keep with established convention and to filter out only
 narrowly defined frequency range, a notch filter is likely most suit-
ble. When selecting notch filter cutoffs, it is important to consider the
idth of the filter. Similar to bandpass and low pass filters, increas-

ng the width of the notch too far may also decrease the power of the
race. Therefore, it is important to limit the width of the notch cutoffs
o maintain applicability of conventional scrubbing thresholds. For 8 to
4 months of age, we recommend using a slightly wider cutoff of 0.25
8 
o 0.5 Hz in order to fully capture the spectrum of respiratory rates for
his particular age group without substantial power loss. Though in prin-
ipal the cutoff frequencies could be calculated on the individual level,
rior work has shown doing so is challenging in practice and provides no
dditional advantage over the group-level estimates ( Fair et al., 2020 ). 

.3. Necessity of age-specific rs-fMRI acquisition and analysis methods 

Application of rs-fMRI in infants and toddlers has provided unique
nsights into the functional architecture of the developing brain and
nabled characterization of both normal and disordered brain devel-
pment ( Eyre et al., 2021 ; Azhari et al., 2020 ; Graham et al., 2015 ;
hang et al., 2019 ; Eggebrecht et al., 2017 ; Marrus et al., 2018 ;
ao et al., 2009 ; Fransson et al., 2007 ; Lin et al., 2008 ). However, when
etermining optimal data acquisition and processing approaches for use
n these age group, special attention must be paid to the unique char-
cteristics of this target population. Principle among these are differ-
nces across key variables including motion patterns during data col-
ection, head size, and tissue contrasts. There have now been numerous
trategies developed to specifically address the unique challenges in-
erent to studying this age group ( Kim et al., 2013 ; Zhang et al., 2016 ;
azlett et al., 2017 ). For example, age-specific techniques to minimize

ubject motion during data collection (i.e., collecting sleep scans with
mmobilization) have been developed and applied ( Howell et al., 2019 ).
urther, age-specific atlases which address differences in head size, tis-
ue contrast properties, and relative growth patterns have been created
o facilitate successful image registration procedures. In this investiga-
ion, we demonstrate that age-specific methods for identifying, charac-
erizing, and removing the effects of subject motion during rs-fMRI data
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rocessing, including those driven by respiratory artifact, are another
ritical element of these procedures. 

.4. FIRMM for real-time head motion estimation 

Given the challenges of acquiring low motion rs-fMRI data in
ounger populations ( Turesky et al., 2021 ; Raschle et al., 2012 ), it may
e highly valuable to obtain an accurate assessment of data quality dur-
ng the scan. The results shown here, including the use of population
pecific respiratory and head circumference settings, can be readily im-
lemented using FIRMM (Framewise Integrated Real-Time MRI Moni-
oring) ( Dosenbach et al., 2017 ), a scanner-side software platform that
rovides real-time head motion estimates throughout the entirety of the
tudy for both unfiltered and filtered FD. These estimates match closely
ith what is estimated in post-scanner processing, shown for a repre-

entative eLABE subject in Fig. 8 . 

.5. Limitations 

When comparing across the BCP and eLABE cohorts, there were some
ollection differences that could not be corrected for post-acquisition.
amely, some BCP rs-fMRI acquisitions were collected with a TR of
20 ms, while the majority were collected with a TR of 800 ms. Despite
hese differences, the respiratory artifact high power band was observed
cross all TR ranges (SI Fig. 1 ), indicating that this phenomenon may
xtend beyond only cohorts with specific acquisition protocols. Further,
s shown in SI Fig. 1 , application of the respiratory filter effectively
emoves respiratory artifact in each TR group independently. In addi-
ion, application of the respiratory filter was completed using two differ-
nt functions in MATLAB (iirnotch and butter) based upon institutional
vailability of software packages. Again, there was no observable dif-
erence between these two approaches, demonstrating flexibility when
pplying the suggested filter. 

This work was completed using data collected from two healthy in-
ant and toddler cohorts; therefore, best practices for application of these
ethods in non-normative population studies requires further investiga-

ion. Additionally, this work was limited to children down to 8 months
f age. Further investigation into even younger populations also remains
ecessary due to the higher sampling rate required to avoid aliasing into
ower frequencies caused by an increase in respiratory rate. 

. Conclusion 

This work has shown that apparent head motion due to respiration
s present in rs-fMRI data in infants and toddlers. Critically, this artifi-
ial head motion spuriously decreases the amount of usable (i.e., low
otion) rs-fMRI data. Applying an age-specific notch filter to the FD

race can readily and effectively remove this artifact, thereby optimizing
rame retention and increasing fc measure reliability. Critically, these
pproaches can be readily and successfully applied in younger popula-
ions using existing software applications both in real-time at the scan-
er during data collection and in off-line post-processing. When work-
ng with data from younger populations, it is important to adjust notch
lter cutoffs appropriately for the population being studied in a data-
riven manner. Successful application of these approaches is necessary
or both improving understanding of early functional brain development
nd defining brain-behavior relationships during this critical develop-
ental window. 
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