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Abstract
Aims/hypothesis Weaimed todevelopanartificial intelligence (AI)-baseddeep learningalgorithm(DLA)applyingattributionmethods
without image segmentation to corneal confocal microscopy images and to accurately classify peripheral neuropathy (or lack of).
Methods The AI-based DLA utilised convolutional neural networks with data augmentation to increase the algorithm’s
generalisability. The algorithm was trained using a high-end graphics processor for 300 epochs on 329 corneal nerve images
and tested on 40 images (1 image/participant). Participants consisted of healthy volunteer (HV) participants (n = 90) and
participants with type 1 diabetes (n = 88), type 2 diabetes (n = 141) and prediabetes (n = 50) (defined as impaired fasting
glucose, impaired glucose tolerance or a combination of both), and were classified into HV, those without neuropathy (PN−) (n
= 149) and those with neuropathy (PN+) (n = 130). For the AI-based DLA, a modified residual neural network called ResNet-50
was developed and used to extract features from images and perform classification. The algorithm was tested on 40 participants
(15 HV, 13 PN−, 12 PN+). Attribution methods gradient-weighted class activation mapping (Grad-CAM), Guided Grad-CAM
and occlusion sensitivity displayed the areas within the image that had the greatest impact on the decision of the algorithm.
Results The results were as follows: HV: recall of 1.0 (95% CI 1.0, 1.0), precision of 0.83 (95% CI 0.65, 1.0), F1-score of 0.91
(95% CI 0.79, 1.0); PN−: recall of 0.85 (95% CI 0.62, 1.0), precision of 0.92 (95% CI 0.73, 1.0), F1-score of 0.88 (95% CI 0.71,
1.0); PN+: recall of 0.83 (95% CI 0.58, 1.0), precision of 1.0 (95% CI 1.0, 1.0), F1-score of 0.91 (95%CI 0.74, 1.0). The features
displayed by the attribution methods demonstrated more corneal nerves in HV, a reduction in corneal nerves for PN− and an
absence of corneal nerves for PN+ images.
Conclusions/interpretation We demonstrate promising results in the rapid classification of peripheral neuropathy using a single
corneal image. A large-scale multicentre validation study is required to assess the utility of AI-based DLA in screening and
diagnostic programmes for diabetic neuropathy.
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Abbreviations
AI Artificial intelligence
CCM Corneal confocal microscopy
CNFL Corneal nerve fibre length
CNN Convolutional neural network
DLA Deep learning algorithm
ENA Early Neuropathy Assessment
Grad-CAM Gradient-weighted class

activation mapping
HV Healthy volunteer
PN+ Participants with peripheral neuropathy
PN– Participants without peripheral

neuropathy

Introduction

Diabetes mellitus had an estimated worldwide prevalence in
2017 of 451 million which is expected to rise to 693 million
people by 2045 [1]. Neuropathy affects ~50% of people with
diabetes and diabetes is the leading cause of neuropathy
worldwide [2]. It results in neuropathic pain which impacts
on quality of life and may lead to foot ulceration and
amputation, with an excess premature mortality rate.
Peripheral neuropathy has also been demonstrated in

approximately 10% of individuals with prediabetes [3].
Given that prediabetes is projected to affect up to 587 million
people (8.3% of the global adult population) by 2040, this
represents a major burden on healthcare. Early diagnosis of
diabetic neuropathy is essential to prevent progression [4] and
subsequent morbidity and mortality rate [2]. A robust
screening programme that incorporates reliable state-of-the-
art technologies and biomarkers is required to deploy targeted
screening for neuropathy in prediabetes and diabetes.

Current screening methods for diabetic neuropathy rely on
neurological examination or 10 g monofilament which detect
moderate to severe neuropathy affecting the large nerve fibres,
yet small nerve fibres are the earliest to be damaged. Skin
biopsy with quantification of intra-epidermal nerve fibres is
the current reference standard to detect small fibre damage [4],
but this method is invasive [5] and there are limited specialist
clinical laboratories undertaking this procedure, making it
unsuitable for population-level screening of peripheral
neuropathy. In vivo corneal confocal microscopy (CCM) is
a non-invasive, rapid and reiterative ophthalmic imaging
technique that can quantify small nerve fibres in the cornea
[4, 5]. Indeed, corneal nerve loss occurs in subclinical diabetic
neuropathy [6], increases with the severity of diabetic
neuropathy [7] and predicts incident diabetic neuropathy [8].
A large body of published data has shown that CCM can be
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used to diagnose and monitor progression of diabetic
neuropathy [4, 9, 10]. Additionally, CCM detects nerve fibre
regeneration in clinical trials of patients with diabetic
neuropathy [5, 10], which precedes improvements in
symptoms and neurophysiology [11]. Normative ranges have
been established [12] and the corneal subbasal nerve plexus
remains stable in healthy individuals over 3 years [13].

However, quantitative analysis of the subbasal nerve
plexus requires reliable extraction of image features [14],
and although manual segmentation of corneal nerve fibres is
sensitive [15] and reproducible [16], it is operator-dependent
and laborious. Dabbah et al. [14] developed an automated
image analysis system using a dual model feature descriptor
combined with an artificial neural network which correlated
highly with manual measurements [17]. Chen et al. [18]
further refined the automated software using either a neural
network or random forest for classification and achieved a
performance equivalent to that of manual annotation,
combined with greater reproducibility and speed. More
recently, advanced convolutional neural networks (CNNs), a
class of deep learning algorithm (DLA), have been developed
to enhance feature detection [19] and quantification of corneal
nerve fibre morphology and have produced promising results
[20–23]. Williams et al. [22] compared an artificial
intelligence (AI)-based DLA with ACCMetrics [18] and
demonstrated more consistent quantification of corneal nerve
morphology with a superior diagnostic performance [22]. In a
small dataset, Scarpa et al. [21] utilised a CNN on corneal
nerve images (without segmentation) and classified
individuals who were healthy or had diabetic neuropathy with
an accuracy of 96%.

Despite providing accurate decisions comparable to human
experts, the deployment of AI into medical practice has been
partly hindered by its ‘black-box’ nature and the inability to
provide the logic for the decision to end users. Thus,
identifying the features by which the AI-based DLA classifies
disease, in addition to the quantitative algorithmic
performance, is key to promoting acceptance within
healthcare and by physicians [24]. The primary modality used
to explicate AI-based DLA within medical imaging
diagnostics is attribution based, where the contribution to the
output decision of each input feature is determined, allowing
the generation of heat-maps known as attribution maps [24].
Gradient-weighted class activation mapping (Grad-CAM),
Guided Grad-CAM and occlusion sensitivity are extensively
used attribution methods which generate visual outcomes via
attribution maps [25, 26].

The aim of this study was to develop and refine an AI-
based DLA utilising image classification to identify healthy
volunteer (HV) participants and individuals with prediabetes
and diabetes with and without neuropathy, without using
image segmentation. Grad-CAM, Guided Grad-CAM and
occlusion sensitivity attribution methods were implemented

to provide transparency and explanation of the AI-based
DLA decision-making process.

Methods

Participants All participants provided informed valid consent
prior to assessments and the study was conducted in
accordance with the Declaration of Helsinki. Ethical and
institutional approvals were obtained before the participants
completed the scientific protocol including CCM imaging.
Other causes of peripheral neuropathy (except for diabetes/
prediabetes) were excluded based on a comprehensive
medical and family history and blood tests (immunoglobulins,
anti-nuclear antibody, vitamin B12 levels, thyroid function
tests). Prediabetes was defined using standard international
criteria (WHO/ADA) (impaired fasting glucose, impaired
glucose tolerance or a combination of both). Peripheral
neuropathy was defined according to the Toronto Consensus
on diabetic neuropathy, which defined confirmed diabetic
neuropathy as a combination of an abnormality of nerve
conduction studies and a symptom(s) and/or sign(s) of
neuropathy [27]. Participant data upon which the peripheral
neuropathy diagnosis was originally confirmed were available
in 360/369 participants. These data were independently
assessed by two authors (UA and MF) to determine the
diagnosis. For any disagreement between authors, a third
author (INP) made the final decision. The Cohen’s κ score,
which measures inter-rater reliability, between UA and MF
was 0.962, demonstrating almost perfect agreement.

Image dataset and dataset preparation The dataset (Early
Neuropathy Assessment [ENA] group, University of
Manchester, UK) consisted of images of the corneal subbasal
nerve plexus from HV participants and participants with
prediabetes and diabetes (n = 369). The CCM images were
captured, using a standard, internationally accepted protocol
developed by the ENA group, at 400 × 400 μm (384 × 384
pixels) using a Heidelberg Retina Tomograph III using the
Rostock Corneal Module (RCM; HRTII32-RCM) confocal
laser microscope (Heidelberg Engineering, Heidelberg,
Germany). To enable compatibility with the image analysis
software, the images were exported in the BMP file format.
The images used were from: HV (n = 90); type 1 diabetes
with neuropathy (n = 39); type 1 diabetes without neuropathy
(n = 49); type 2 diabetes with neuropathy (n = 67); type 2
diabetes without neuropathy (n = 74); prediabetes with
neuropathy (n = 24); prediabetes without neuropathy (n =
26). There were 90 HV participants, 149 participants with no
peripheral neuropathy (PN−) and 130 participants with
peripheral neuropathy (PN+) (Fig. 1). Neuropathy data for
each of the three groups are detailed in Fig. 1. In keeping with
the neuropathic phenotype, people with confirmed peripheral
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neuropathy had greater neuropathic deficits with more signs
(higher neuropathy disability score) and symptoms (higher
neuropathy symptom profile), higher vibration perception
threshold, and lower peroneal and sural nerve conduction
velocities and amplitudes, corneal nerve fibre length
(CNFL), corneal nerve branch density and corneal nerve fibre
density. As expected, people with peripheral neuropathy were
older and, in those with diabetes, there was a longer duration
of disease.

Each of the CCM images was labelled with its respective
class, ‘control’, ‘no neuropathy’ or ‘neuropathy’, allowing
supervised training to occur. Out of a total of 369 CCM images,
245 (66%) were used in the training set, 84 (23%) in the
validation set and 40 (11%) in the test set. Electronic
supplementary material (ESM) Table 1 demonstrates the
breakdown of participant groups within the training, validation

and test sets. The distribution between groups was allocated
randomly, using the Python package ‘random’ to generate a
random number for each image. A random number was
generated between 0 and 1; if it was between 0 and 0.1, the
image was put into the test dataset; if it was between 0.1 and
0.3, it was put into the validation dataset; and if it was between
0.3 and 1, it was put into the training dataset. Each participant
had up to seven CCM images; however, when all the images
were used the AI-based DLA suffered significantly from
overfitting. Therefore, a single image for each participant was
selected at random. Data augmentation strategies were
employed in the training of the algorithm, having been
previously shown to increase the generalisability of AI-based
DLAs [28], where additional training images were generated
via images being either rotated between 0 and 90 degrees or
flipped on their horizontal axis.

Total participants
(n=369)

HV participants
(n=90)

Type 1 
diabetes
(n=49)

Type 2 
diabetes
(n=74)

Prediabetes
(n=26)

Participants with no
peripheral neuropathy

(n=149)

Type 1 
diabetes
(n=39)

Type 2 
diabetes
(n=67)

Prediabetes
(n=24)

Participants with peripheral 
neuropathy

(n=130)

Clinical characteristics

Age: 42.4±15.2 years
Female: 53%

–
NSP: 0 (0–0)
NDS: 0 (0–0)

VPT: 5.2±4.0 volts
CNFD: 35.5±6.1 no./mm2

CNBD: 86.7±35.7
no./mm2

CNFL: 25.7±5.32
mm/mm2

SAmp: 21.4±9.4 µV
SNCV: 50.9±4.0 m/s
PAmp: 5.4±2.0 mV

PNCV: 49.1±3.4 m/s

Clinical characteristics

Age: 54.6±15.1 years
Female: 43%

Diabetes duration: 16.4±12.4
years

NSP: 2 (0–5)
NDS: 2 (0–4)

VPT: 10.9±8.4 volts
CNFD: 26.9±7.8 no./mm2

CNBD: 62.6±38.6 no./mm2

CNFL: 21.0±6.6 mm/mm2

SAmp: 12.2±7.3 µV
SNCV: 47.4±5.9 m/s
PAmp: 3.8±2.8 mV

PNCV: 45.5±5.0 m/s

Clinical characteristics

Age: 62.7±10.9 years
Female: 32%

Diabetes duration: 25.5±17.0
years

NSP: 4 (2–9)
NDS: 5 (2–7)

VPT: 22.3±12.0 volts
CNFD: 23.3±8.6 no./mm2

CNBD: 50.0±35.1 no./mm2

CNFL: 18.6±7.2 mm/mm2

SAmp: 7.1±6.5 µV
SNCV: 41.0±7.4 m/s
PAmp: 2.7±2.2 mV

PNCV: 39.3±7.1 m/s

Fig. 1 Flowchart of participant groups and clinical characteristics within
HV participants, participants with no peripheral neuropathy and
participants with peripheral neuropathy. Data are mean ± SD for age,
diabetes duration, CNFD, CNBD, CNFL, VPT, SAmp, SNCV, PAmp
and PNCV. Data are median (interquartile range) for NSP and NDS.
People with confirmed peripheral neuropathy had greater neuropathic
deficits with more signs (NDS) and symptoms (NSP), higher VPT and
lower CNFD, CNFL, CNBD, SNCV, PNCV, SAmp and PAmp. People

with peripheral neuropathy were older and those with diabetes had a
longer duration of disease. CNBD, corneal nerve branch density;
CNFD, corneal nerve fibre density; NDS, neuropathy disability score
(score out of 10); NSP, neuropathy symptom profile (score out of 38);
SAmp, sural nerve amplitude; SNCV, sural nerve conduction velocity;
PAmp, peroneal nerve amplitude; PNCV, peroneal nerve conduction
velocity; VPT, vibration perception threshold (score out of 50)
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Network architecture ResNet is a residual neural network
proposed by He et al. [29] at the 2015 ImageNet competition,
where it achieved first place in the classification task. A
ResNet network was developed as it overcomes the ‘vanishing
gradient problem’ [30] by introducing skip (or shortcut)
connections, where input from a previous layer can be
transferred to the next layer without modification, allowing
ResNet to have up to 152 layers [29]. Our ResNet-50 model
comprises 50 layers, which culminate in a dense layer of 1000
neurons that has an applied softmax activation function. Two
types of shortcut modules allow the ResNet-50 model to
employ skip connections: convolution blocks and identity
blocks. Convolution blocks contain a convolutional layer
within the skip connection which results in the input
dimensions being smaller compared with the output
dimensions. Identity blocks do not contain a convolutional
layer within the skip connection, meaning input and output
dimensions are the same. In both shortcut modules, a 1 × 1
convolutional layer begins and ends the module, employing a
bottleneck design to enable the reduction of parameters
without degrading network performance.

A modified version of the ResNet-50 architecture (Fig. 2)
was used to extract features from the images and perform
classification. Modifications involved replacing the dense
layer of 1000 neurons with one of 2048 neurons, adding a
dropout layer with a rate of 0.6 after this layer and ending with
a final dense layer of three neurons with the softmax activation
function being applied to it, since there were three classes. The

largest probability of three classes’ predictions (e.g., argmax)
was used to determine the class label. The dropout layer was
added to reduce overfitting, achieving this by randomly
dropping layers and their connections during training,
preventing layers from co-adapting, where one corrects the
mistakes of other layers, but does not generalise to new data
[31]. The initial weights of the model were pre-trained on the
‘ImageNet’ dataset [32], with weights in all the layers being
set to be trainable.

Additional models Further experiments were conducted to
allow comparison of the modified ResNet-50 model. We
adopted the backbone of MobileNet and MobileNetV2 [33]
to perform the comparison experiments under the same
experimental setting. Note that the same modification was
done with respect to the model structure. Compared with
ResNet-50, MobileNet and MobileNetV2 are lightweight
models that contain relatively fewer model parameters. This
choice was made to demonstrate the effectiveness of model
size in this work.

Implementation details Before training the model, we
undertook pre-processing on input images. For example, we
resized the image from 384 × 384 to 224 × 224 with the
bilinear interpolation method. We increased the image
channel from 1 to 3 through replicating along the channels.
Additionally, we first scaled the image pixel values into [0–1]
and then normalised the values in the range of [−1, 1] by using

Fig. 2 Diagram of the modified ResNet-50 architecture. Each pink
rectangle corresponds to a convolutional layer, with the filter size given
within. Each purple rectangle corresponds to a pooling layer, either
maximum pool or global average pool. Each green rectangle corresponds

to a convolution block. Each blue rectangle corresponds to an identity
block. Each black rectangle corresponds to a dense layer. Each red
rectangle corresponds to a dropout layer (dropout = 0.6). Avg, average;
Conv, convolutional; Max, maximum; ReLU, rectified linear unit
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a mean value of 0.5 and an SD of 0.5 for three channels. The
underlying motivations are threefold: First, due to the limited
GPU graphic memory, we resized the input image into a lower
size for training. Second, given the limited dataset size in this
work, overfitting may be a potential issue during the model
training. To address this issue, we increased the image channel
size for fitting a pre-trained model on ImageNet [32]. Third,
normalisation of pixel values can stabilise the training process
and benefit optimisation [34].

The model was trained for 300 epochs (passes of the entire
dataset) on the training datasets and evaluated on the
validation datasets. The model was trained (245 images) and
then used to predict the class of images in the validation
dataset (84 images) to determine the validation accuracy.
After each epoch, the model’s weights were altered via
backpropagation and gradient descent, with the weights of
the model achieving the highest validation accuracy being
saved and applied to the test set (40 images—equal to 40
participants) to perform classification. Experiments were
conducted with a batch size of 12, 24 and 36; learning rate
of 0.01, 0.001 and 0.0001; and dropout rate of 0.6, 0.4 and 0.2.
Hyperparameters were empirically set with a batch size of 12,
learning rate of 0.001 and dropout rate of 0.6. The optimiser
was stochastic gradient decent (SGD), and the loss function
was cross entropy. Early stopping was set to monitor
validation accuracy, which discontinued training if an
improvement in validation accuracy did not occur after 100
epochs.

The model was developed, tested and trained within
Python 3.7 (https://www.python.org/), Tensorflow 2.2.0
(https://www.tensorflow.org/; Google, Mountain View, CA,
USA) and Keras 1.0.8 (https://keras.io/) on a high-end
graphics processor, NVIDIA GeForce GTX 960M
(NVIDIA, Santa Clara, CA, USA).

Performance evaluationA confusion matrix was developed to
ascertain the AI-based DLA performance, displaying the true
image classifications against the classifications predicted by
the AI-based DLA. Using the confusion matrix, a
classification report was produced displaying the widely used
performance metrics precision, recall (also known as
sensitivity) and F1-score. Precision is the proportion of true
positive cases out of all the predicted positives which

measures the effects of false-positives. Recall is the ratio of
the predicted positives and total actual positives. F1 =
2 (precision × recall)/(precision + recall) and measures the
trade-off between precision and recall. 95% CIs were
generated to show statistical significance. In detail, 2000
samples of Clopper–Pearson interval [35] were used for
precision, recall and F1. Fivefold cross-validation was done
across all experiments to provide more robust results; the
performance is reported as the mean of fivefold results.

Attributionmaps The attributionmethodGrad-CAMutilises the
gradients entering the final convolutional layer to generate a
coarse attribution map, which demonstrates the areas in the
image that have impacted the decision most [25]. Grad-CAM
can be further combined with the fine-grained image to generate
a high-resolution class-discriminative visualisation known as
Guided Grad-CAM [25]. Occlusion sensitivity systematically
occludes different areas of the input image with a grey patch,
and monitors the effect of this on the classification [26]. A grey
patch of 48 pixels was used in this study. Grad-CAM, Guided
Grad-CAM and occlusion sensitivity were employed to generate
attribution maps for each of the test images.

Results

ResNet-50 classification performance The confusion matrix
generated after the trained AI-based DLA had classified the
test dataset (n = 40) is displayed in Table 1. All HV images (n
= 15) were correctly detected by the AI-based DLA. Out of
the PN− images (n = 13), 11 were correctly detected by the
AI-based DLA, and two misclassified as HV images. Of the
PN+ images (n = 12), ten were correctly detected, with one
misclassified as PN− and one as HV.

Using the data demonstrated in the confusion matrix, a
classification report (Table 2) was produced with the
performance metrics described previously. In detecting HV
images, the AI-based DLA had a recall of 1.0 (95% CI 1.0,
1.0), precision of 0.83 (95%CI 0.65, 1.0) and F1-score of 0.91
(95% CI 0.79, 1.0); for PN− images, the AI-based DLA had a
recall of 0.85 (95% CI 0.62, 1.0), precision of 0.92 (95% CI
0.73, 1.0) and F1-score of 0.88 (95% CI 0.71, 1.0); and for
PN+ images, the AI-based DLA had a recall of 0.83 (95% CI

Table 1 Confusion
matrix report from
modified ResNet-50 in
HV, PN− and PN+

True class Predicted class

HV PN− PN+

HV 15 0 0

PN− 2 11 0

PN+ 1 1 10

Table 2 Classification report from modified ResNet-50 in HV, PN−
and PN+

Class Recall (Sensitivity) Precision F1-score

HV 1.0 (1.0, 1.0) 0.83 (0.65, 1.0) 0.91 (0.79, 1.0)

PN− 0.85 (0.62, 1.0) 0.92 (0.73, 1.0) 0.88 (0.71, 1.0)

PN+ 0.83 (0.58, 1.0) 1.0 (1.0, 1.0) 0.91 (0.74, 1.0)

Note: 95% CIs are given in brackets
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0.58, 1.0), precision of 1.0 (95% CI 1.0, 1.0) and F1-score of
0.91 (95% CI 0.74, 1.0).

MobileNet and MobileNetV2 classification performance
Confusion matrices were also generated for MobileNet
(ESM Table 2) and MobileNetV2 (ESM Table 3).
Classification reports were produced based on these confusion
matrices for both MobileNet (ESM Table 4) and
MobileNetV2 (ESM Table 5). In detecting HV images,
MobileNet had a recall of 1.0 (95% CI 1.0, 1.0),
precision of 0.68 (95% CI 0.50, 0.87) and F1-score of
0.81 (95% CI 0.67, 0.93); for PN− images, MobileNet
had a recall of 0.54 (95% CI 0.25, 0.82), precision of
0.88 (95% CI 0.57, 1.0) and F1-score of 0.67 (95% CI
0.36, 0.87); and for PN+ images, MobileNet had a
recall of 0.75 (95% CI 0.46, 1.0), precision of 0.90
(95% CI 0.67, 1.0) and F1-score of 0.82 (95% CI
0.58, 0.96). In detecting HV images, MobileNetV2 had
a recall of 0.87 (95% CI 0.67, 1.0), precision of 0.72
(95% CI 0.50, 0.93) and F1-score of 0.79 (95% CI
0.60, 0.92); for PN− images, MobileNetV2 had a recall
of 0.62 (95% CI 0.33, 0.90), precision of 0.67 (95% CI
0.36, 0.92) and F1-score of 0.64 (95% CI 0.38, 0.84);
and for PN+ images, MobileNetV2 had a recall of 0.75
(95% CI 0.46, 1.0), precision of 0.90 (95% CI 0.67,
1.0) and F1-score of 0.82 (95% CI 0.57, 0.97).

The ResNet-50 model had the lowest number of
misclassifications (n = 4), followed by MobileNet (n = 9)
and MobileNetV2 (n = 10). The ResNet-50 model also
performed better than MobileNet and MobileNetV2 in all
performance metrics across all classes. For instance, in
detecting PN+, ResNet-50 achieved 10.7%, 11.1% and
11.0% higher recall, precision and F1-score than both
MobileNet and MobileNetV2.

ResNet-50 attribution maps Figure 3 shows six example
CCM images from the test set that were correctly detected,
and the resulting Grad-CAM, Guided Grad-CAM and
occlusion sensitivity images generated. The attribution maps
for correctly detected HV (Fig. 3a,b) highlighted the presence
of corneal nerves, focusing on the main nerve segment,
emphasised by the Guided Grad-CAM. PN− images that were
correctly detected (Fig. 3c,d) had attribution maps which
highlighted areas of corneal nerves but displayed shorter
segments on the Guided Grad-CAM. Attribution maps
from correctly detected PN+ images (Fig. 3e,f)
highlighted areas with absence of corneal nerves.
Compared with occlusion sensitivity maps, Grad-CAM
and Guided Grad-CAM were able to indicate the
attribution of the image more clearly. ESM Fig. 1 and
ESM Fig. 2 display the attribution maps generated from
MobileNet and MobileNetV2, respectively.

Guided 

Grad-CAM

a b e fc d

Grad-CAM

Original

HV PN+PN-

Occlusion 

sensitivity

Fig. 3 Attribution map results from ResNet-50. Example images from correctly predicted HV (a, b), PN– (c, d) and PN+ (e, f). First row, original
images; second row, Grad-CAM images; third row, Guided Grad-CAM images; and fourth row, occlusion sensitivity images
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Discussion

CCM is a non-invasive ophthalmic imaging modality which
may serve as a bona fide biomarker of diabetic neuropathy
[36]. It has been posited as a game changer in the screening
and diagnosis of diabetic and peripheral neuropathies [37].
Our study demonstrated two main findings: (1) the successful
development of an AI-based algorithm without the need for
nerve segmentation; and (2) it established accurate
classification of individuals with and without peripheral
neuropathy and healthy individuals. This is the first study to
utilise an AI-based DLA for the classification of peripheral
neuropathy with the addition of attributionmethods to provide
transparency and explanation of the decision-making process.

A number of studies have developed automated software or
neural networks for the segmentation of CCM images [14, 23,
38, 39]. Dabbah et al. [14] proposed an automated system that
quantified the nerve fibres and used them as feature vectors to
enable classification via random forest and neural network
classifiers, producing results that matched the expert manual
annotation. Colonna et al. [38] proposed a U-Net-based CNN
for automated tracing of corneal nerves, achieving 95%
sensitivity compared with the manual tracing. Zhou et al. [23]
also developed an improved U-Net architecture, achieving
superior results compared with baseline and a super performance
with existing DLA for segmentation. Zhao et al. proposed a
noise-constrained Retinex model to first enhance the CCM
image and used exponential curve estimation as the tortuosity
measure to outperform previously usedmethods, and their results
were comparable to human experts [39]. More recently, Mou
et al. [40] proposed a curvilinear structure segmentation network
validated using six different imaging modalities including CCM,
using both 2D and 3D images, outperforming a number of other
state-of-the-art algorithms [40].

Previously, Williams et al. [22] presented a novel DLA for
estimation of CNFL, which achieved an AUC of 0.83,
specificity of 87% and sensitivity of 68% for the diagnosis
of peripheral neuropathy. A recent study by Oakley et al.
[41] utilised a CNN in macaque CCM images with the
advantage of being retrained for additional in vitro [42] and
in vivo [43] corneal imaging modalities. For both Williams
et al. [22] and Oakley et al. [41], deep learning outperformed
ACCMetrics, the current most commonly utilised programme
for CNFL estimation. However, the development of such AI-
based systems requires the acquisition of large image/datasets
with human-graded (ground truth) annotations as a reference
standard to train the algorithm [44]. Our study validates the
use of an AI-based DLA to diagnose peripheral neuropathy
without image segmentation prior to classification. The lack of
requirement of manual or automated annotation to train the
AI-based DLA allows the utilisation of larger datasets as only
unannotated CCM images are required [45]. Without reliance
on predetermined features and variables, our method enables

the AI-based DLA to learn the features it considers of
importance, allowing a more complex image analysis. In our
study, two non-neuropathic images which were classified as
healthy, suggesting a lack of subclinical small fibre loss,
essentially denoting the correct classification was determined
(lack of disease) and further adding to the method’s validity.

In general, there is a paucity of studies demonstrating the
accurate classification (without segmentation) of peripheral
neuropathy based on CCM images. As discussed, our AI-based
DLA does not rely on traditional methods of image
segmentation. Scarpa et al. [21] also employed an AI-based
DLA to classify CCM images without image segmentation
utilising a CNN, which analysed three non-overlapping images
of each eye per individual, classifying them as either healthy or
pathological [21]. Our AI-based DLA achieved comparable
results in participants with diabetic neuropathy, but additionally
differentiated healthy people from individuals with prediabetes
or diabetes without neuropathy, indicating that our AI-based
DLA detects early subclinical neuropathy in a real-world clinical
setting. Recently, Salahouddin et al. [46] developed a novel
automated AI-based analysis system which rapidly quantified
CNFL and classified patients with diabetic neuropathy using an
adaptive neuro-fuzzy inference system, achieving an AUC of
0.95 (92% sensitivity/80% specificity) for discriminating patients
with andwithout diabetic neuropathy.We propose the instigation
of a screening programme for diabetic neuropathy utilising CCM
alongside diabetic retinopathy screening [47]. The Food and
Drug Administration (FDA) has recently approved the first
autonomous AI-based DLA to screen for diabetic retinopathy
[48]. In Scotland, an AI-based algorithm was used in a real-
world screening service and demonstrated good sensitivity and
specificity for detecting high-risk retinopathy, which halved the
workload for human graders [49].

Our study was based on a relatively small dataset (N = 369
participants), resulting in wide CIs, but nevertheless achieved
reasonable classification accuracy. Furthermore, only one
image from each participant was used, unlike previous studies
[18, 21, 22, 46] which have used multiple images. Indeed,
despite defining diabetic neuropathy using the Toronto criteria
[27], which rely on abnormal nerve conduction [5], our AI-
based DLA, which identifies small fibre pathology known to
precede large fibre involvement, still achieved reasonable
outcomes. Further refining the model by including additional
clinical and demographic data may help to further improve the
diagnostic performance. This AI-based DLA needs to be
validated in a larger study utilising small fibre measures to
identify neuropathy and prospectively in a large-scale clinical
population. If validated, cost-effectiveness models need to be
established to ascertain its health economics impact.

In conclusion, our AI-based DLA achieved a good
classification between HV participants and people with
prediabetes and diabetes with and without neuropathy, and
the addition of attribution methods aids transparency in the
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decision making. This AI-based DLA, if validated in a larger
study, has considerable potential to be adopted into a
screening programme for diabetic neuropathy.
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