Table 2.
Accuracy | Sensitivity | Specificity | PPV | NPV | F1 | AUC | |
Training: melanoma (LOOCV estimate) | |||||||
Classification trees | 0.794 | 0.840 | 0.774 | 0.667 | 0.914 | 0.753 | 0.748 |
LASSO-LR | 0.803 | 0.905 | 0.750 | 0.655 | 0.938 | 0.760 | 0.827 |
Random forest | 0.754 | 0.762 | 0.750 | 0.615 | 0.857 | 0.681 | 0.756 |
Boosted trees | 0.820 | 0.762 | 0.850 | 0.727 | 0.872 | 0.744 | 0.806 |
Test: prostate and other cancers | |||||||
Classification trees | 0.770 | 0.660 | 0.809 | 0.553 | 0.884 | 0.593 | 0.786 |
LASSSO-LR | 0.776 | 0.773 | 0.783 | 0.514 | 0.921 | 0.621 | 0.778 |
Random forest | 0.796 | 0.840 | 0.652 | 0.556 | 0.887 | 0.600 | 0.746 |
Boosted trees | 0.786 | 0.840 | 0.609 | 0.538 | 0.875 | 0.571 | 0.724 |
Test: prostate cancer | |||||||
Classification trees | 0.622 | 0.550 | 0.661 | 0.353 | 0.818 | 0.435 | 0.648 |
LASSO-LR | 0.667 | 0.667 | 0.667 | 0.400 | 0.857 | 0.500 | 0.667 |
Random forest | 0.750 | 0.815 | 0.556 | 0.500 | 0.846 | 0.526 | 0.685 |
Boosted trees | 0.750 | 0.778 | 0.667 | 0.500 | 0.875 | 0.571 | 0.722 |
Test: other cancers | |||||||
Classification trees | 0.844 | 0.719 | 0.888 | 0.687 | 0.915 | 0.710 | 0.869 |
LASSO-LR | 0.839 | 0.833 | 0.857 | 0.600 | 0.952 | 0.706 | 0.845 |
Random forest | 0.839 | 0.854 | 0.786 | 0.611 | 0.932 | 0.688 | 0.820 |
Boosted trees | 0.806 | 0.875 | 0.571 | 0.571 | 0.875 | 0.571 | 0.723 |
Results are reported for the melanoma training data (best LOOCV estimate) and the validation data.
AUC, area under the curve; F1, F1 score; LASSO-LR, LASSO-regularized logistic regression; LOOCV, leave-one-out cross validation; NPV, negative predictive value; PPV, positive predictive value.