Skip to main content
. 2022 Jan 31;10(2):e003625. doi: 10.1136/jitc-2021-003625

Table 2.

Performance measures for the four classifiers

Accuracy Sensitivity Specificity PPV NPV F1 AUC
Training: melanoma (LOOCV estimate)
 Classification trees 0.794 0.840 0.774 0.667 0.914 0.753 0.748
 LASSO-LR 0.803 0.905 0.750 0.655 0.938 0.760 0.827
 Random forest 0.754 0.762 0.750 0.615 0.857 0.681 0.756
 Boosted trees 0.820 0.762 0.850 0.727 0.872 0.744 0.806
Test: prostate and other cancers
 Classification trees 0.770 0.660 0.809 0.553 0.884 0.593 0.786
 LASSSO-LR 0.776 0.773 0.783 0.514 0.921 0.621 0.778
 Random forest 0.796 0.840 0.652 0.556 0.887 0.600 0.746
 Boosted trees 0.786 0.840 0.609 0.538 0.875 0.571 0.724
Test: prostate cancer
 Classification trees 0.622 0.550 0.661 0.353 0.818 0.435 0.648
 LASSO-LR 0.667 0.667 0.667 0.400 0.857 0.500 0.667
 Random forest 0.750 0.815 0.556 0.500 0.846 0.526 0.685
 Boosted trees 0.750 0.778 0.667 0.500 0.875 0.571 0.722
Test: other cancers
 Classification trees 0.844 0.719 0.888 0.687 0.915 0.710 0.869
 LASSO-LR 0.839 0.833 0.857 0.600 0.952 0.706 0.845
 Random forest 0.839 0.854 0.786 0.611 0.932 0.688 0.820
 Boosted trees 0.806 0.875 0.571 0.571 0.875 0.571 0.723

Results are reported for the melanoma training data (best LOOCV estimate) and the validation data.

AUC, area under the curve; F1, F1 score; LASSO-LR, LASSO-regularized logistic regression; LOOCV, leave-one-out cross validation; NPV, negative predictive value; PPV, positive predictive value.