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ABSTRACT
Background  Targeted therapy of patients with non-
small cell lung cancer (NSCLC) who harbour sensitising 
mutations by tyrosine kinase inhibitors (TKIs) has been 
found more effective than traditional chemotherapies. 
However, target genes status (eg, epidermal growth factor 
receptor (EGFR) TKIs sensitising and resistant mutations) 
need to be tested for choosing appropriate TKIs. This study 
is to investigate the performance of a liquid biopsy-based 
targeted capture sequencing assay on the molecular 
analysis of NSCLC.
Methods  Plasma samples from patients with NSCLC 
who showed resistance to the first/second-generation 
EGFR TKIs treatment were collected. The AVENIO ctDNA 
Expanded Kit is a 77 pan-cancer genes detection assay 
that was used for detecting EGFR TKIs resistance-
associated gene mutations. Through comparison of the 
EGFR gene testing results from the Cobas EGFR Mutation 
Test v2, and UltraSEEK Lung Panel, the effectiveness of the 
targeted capture sequencing assay was verified.
Results  A total of 24 plasma cell-free DNA (cfDNA) 
samples were tested by the targeted capture sequencing 
assay. 33.3% (8/24) cfDNA samples were positive for 
EGFR exon 20 p.T790M which leads to EGFR dependent 
TKIs resistance. 8.3% (2/24) and 4.2% (1/24) samples 
were positive for mesenchymal-epithelial transition gene 
amplification and B‐Raf proto‐oncogene, serine/threonine 
kinase exon 15 p.V600E mutations which lead to EGFR 
independent TKIs resistance. The median value of the 
p.T790M variant allele fraction and variant copy numbers 
was 2% and 36.10 copies/mL plasma, respectively. The 
next-generation sequencing test showed higher than 
90% concordance with either MassArray or qPCR-based 
methods for detecting either EGFR TKIs sensitising or 
resistance mutations.
Conclusion  The targeted capture sequencing test can 
support comprehensive molecular analysis needed for TKIs 
treatment, which is promising to be clinically applied for 
the improved precision treatment of NSCLC.

INTRODUCTION
Lung cancer is the most commonly diag-
nosed primary malignancy in Canada and is 

currently the leading cause of cancer-related 
deaths in the country.1 Non-small cell lung 
cancer (NSCLC) is the major type of lung 
cancer, which accounts for more than 80% of 
all lung cancers.2 As lung cancer patients are 
often found to have advanced disease at the 
time of initial diagnosis, palliative therapies 
with the alleviation of symptoms and exten-
sion of survival are the main objectives of clin-
ical treatments.1 Molecular analysis of tumour 
biomarker genes has become the standard of 
practice in the treatment of NSCLC. Patients 
with NSCLC who harbour sensitising muta-
tions in epidermal growth factor receptor 
(EGFR) genes can be offered small-molecule 

Key messages

What is already known on this topic
	► Liquid biopsy offers a non-invasive alternative to 
tissue biopsy for the molecular analysis-based tar-
geted therapy of non-small cell lung cancer (NSCLC), 
but a highly sensitive detection method is needed for 
efficient testing extremely low levels of target genes 
variants in cell-free DNA (cfDNA) for the precision 
treatment of NSCLC.

What this study adds
	► The performance of the target capture sequencing-
based assay on the systematic analysis of EGFR 
tyrosine kinase inhibitors (TKIs) sensitising and 
resistance mutations in the cfDNA of NSCLC were 
investigated, and compared with other leading tech-
niques (real-time qPCR and MassArray).

How this study might affect research, practice 
or policy

	► This study confirmed that the target capture se-
quencing test has the highest sensitivity and 
throughput in the systematic analysis of EGFR TKIs 
therapy related genes mutations in cfDNA, and the 
clinical application of this test is expected to improve 
the precision treatment of NSCLC by EGFR TKIs.
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tyrosine kinase inhibitors (TKIs), which are significantly 
more effective than traditional chemotherapies.3 Besides, 
other genes targeted therapies, specifically against 
sensitising mutations in ALK, ROS1 and B‐Raf proto‐
oncogene, serine/threonine kinase (BRAF) also have a 
demonstrable clinical improvement in the outcome of 
NSCLC.2–5

However, after the median treatment duration (8–10 
months), the majority of patients with NSCLC (50%–
60%) will acquire a novel EGFR mutation in exon 20 
known as p.T790M, which confers resistance to the first-
generation and second-generation TKIs’ treatment.6 
Osimertinib can be alternatively used to treat patients 
with the acquired EGFR exon 20 p.T790M mutation.7 
Acquired EGFR exon 20 p.C797S mutation which medi-
ates resistance to the third-generation EGFR TKIs treat-
ment may also develop in EGFR exon 20 p.T790M-positive 
patients with NSCLC.8 Non-EGFR-dependent mecha-
nisms of acquired TKIs resistance, such as gene copy 
number amplification of mesenchymal-epithelial transi-
tion (MET) gene and human epidermal growth factor 
receptor 2 gene, mutations of phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha and BRAF 
genes have been reported as well.9–12 It is critical to 
systematically monitor the TKIs-based targeted therapy-
associated gene mutations in patients with NSCLC for 
the improved outcome of targeted therapy.

Liquid biopsy offers a cost-effective and low-risk alterna-
tive to tissue biopsy for testing tumour biomarker genes in 
patients with NSCLC.13 14 The concordance between the 
testing of EGFR mutations in tumour DNA and cell-free 
DNA (cfDNA) of patients with NSCLC has been reported 
as 79%, though the mutation rates detected in plasma 
cfDNA reflect approximately 20% of that detected from 
tumour tissues.15 16 Liquid biopsy has been clinically used 
as a complementary assay to tissue biopsy for testing EGFR 
mutations in patients with NSCLC.17 Next-generation 
sequencing (NGS) was found to be able to detect EGFR 
exon 20 p.T790M in the liquid biopsy samples of patients 
with NSCLC with percentages of 0.3%–21.0%.18 More 
importantly, NGS technology-based assays are superior 
to currently used PCR-based assays with the capacity to 
simultaneously test multiple genes in one assay.19 20 Thus, 
more target genes can be tested by NGS to match patients 
with appropriate NSCLC treatment drugs for improved 
precision treatment.21–23

This research project aims to investigate the perfor-
mance of an optimised hybridisation capture-based 
NGS assay (AVENIO ctDNA expanded kit, Roche Diag-
nostics, Canada) on testing somatic mutations in the 
plasma cfDNA for targeted treatment of patients with 
NSCLC. Based on the EGFR testing results, the concor-
dance of the NGS test with clinically validated MassArray 
(UltraSEEK Lung Panel, Agena Bioscience, USA) and 
qPCR-based (Cobas EGFR Mutation Test v2) assays was 
evaluated.

MATERIALS AND METHODS
Patient and public involvement
Patients or the public were not involved in the design, 
or conduct, or reporting, or dissemination plans of our 
research.

Patients and samples collection
NSCLC patients in advanced stages who experienced 
disease progression after the targeted treatment with 
first or second-generation EGFR TKIs were randomly 
included in this study. Ten millilitre peripheral blood was 
collected into Streck tubes. The plasma specimen was 
separated within 4 hours from peripheral blood collec-
tion by two rounds of centrifugation at 20°C, with 10 min 
at 1600× g and 3000× g respectively, and stored at −80°C 
before DNA extraction. Twenty-four plasma samples 
were collected and tested by the NGS test. Due to the 
availability of sample amount, 23 samples were tested by 
the MassArray-base assay as a replicate detection and 12 
samples were tested by the qPCR-based assay as a second 
replicate detection.

Testing pan-cancer genes mutations in cfDNA by NGS
The AVENIO ctDNA expanded kit (Roche Diagnostics) is 
a hybridisation capture sequencing-based 77 genes pan-
cancer assay (online supplemental table S1). AVENIO 
cfDNA Isolation Kit (Roche Diagnostics) was used to 
extract cfDNA from plasma according to the user’s 
manual. The extracted cfDNA was analysed by Agilent 
High Sensitivity DNA Analysis Kit (Agilent Technologies, 
California, USA) and Qubit dsDNA HS Assay Kit (Ther-
moFisher Scientific, California, USA) for quality control, 
and then used for library preparation with 10–50 ng 
cfDNA input. Prepared libraries were sequenced on the 
NextSeq 500 500/550 High Output Kit V2 (300 cycles) 
on Illumina NextSeq sequencing platform (Illumina, 
California, USA) and analysed by the AVENIO oncology 
analysis software V.2.0.0 (Roche Diagnostics) according 
to manufacturer’s instructions.24 25

Testing EGFR variants in cfDNA by qPCR and MassArray
Cobas EGFR Mutation Test v2 (Roche Diagnostics), a 
real-time qPCR-based in vitro diagnostics assay, was used 
for testing EGFR variants in 2 mL plasma of patients with 
NSCLC. A clinically validated UltraSEEK Lung Cancer 
Panel (Agena Bioscience) was also used as a reference 
method for testing EGFR mutations in 10 ng input cfDNA. 
Detailed information about these testing methods is 
provided in online supplemental file 1.

Statistical analysis
AVENIO ctDNA Analysis Software (Roche Diagnostics) 
was used for sequencing data analysis and generating 
diagnostic reports.26 With the data of abundance for 
different biomarker gene variants, the distribution of 
gene variants’ abundance is shown in box plots and the 
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median value was calculated by using an R-based statis-
tical data analysis tool (BoxPlotR).27

RESULTS
EGFR gene testing by NGS
Plasma cfDNA is composed of fragmented double-
stranded DNA circulating in the blood, which is mainly 
generated from the apoptotic and necrotic cells.28 29 The 
quality of extracted cfDNA samples was checked on the 
Bioanalyzer (Agilent Technologies). The major peak 
of the extracted cfDNA sample was typically located at 
160–200 bp (online supplemental figure S1A,B). Several 
distinguishable cfDNA peaks with a size shift were 
observed, confirming the successful ligation of adapters 
to target gene fragments (online supplemental figure 
S1C,D). The library prepared by the AVENIO ctDNA 
Expanded Kit (Roche Diagnostics) typically showed the 
primary cfDNA peak at  ~300 bp with additional small 
cfDNA peaks of larger size present (online supplemental 
figure S1C,D).

In this study, a total of 24 plasma cfDNA samples were 
tested by the NGS assay. The metrics of the NGS testing 
are shown in online supplemental table S2. After align-
ment analysis, the average ratio of mapped reads, and 
the on-target rate were 94.31% and 71.62% (online 
supplemental figure S2A). The typical median value of 
coverage uniformity was higher than 99% (online supple-
mental figure S2B). It can be observed that the high-
quality sequencing data showed a very low error rate, 
excellent sequencing depth for target genes and high 
coverage uniformity, which also lead to a high theoretical 
sensitivity with a median value of 98.71% (online supple-
mental figure S2A).

The sequencing detection showed that 66.7% (16/24) 
ctDNA samples were positive for EGFR sensitising muta-
tions, and 50.0% (8/16) of which were also positive for 
the first-generation and second-generation TKIs resis-
tance mutation (p.T790M) (online supplemental table 
S3). The percentage of different EGFR sensitising muta-
tions is shown in figure 1. The range of variant allele frac-
tion for EGFR sensitising mutations was 0.11%–45.16% 
with the median value of 4% (figure  1A). It can be 
observed that exon 21 p.L858R and exon 19 dels are the 
main EGFR sensitising mutations detected in the plasma 
cfDNA, the percentages of which were 81.25% (13/16). 
And p.E746_A750del was the main exon 19 dels variant 
detected which compromise 62.5% (5/8) of all detected 
exon 19 dels variants (online supplemental table S3). And 
the variant allele fraction for EGFR exon 20 p.T790M was 
0.08%–8.28% with the median value of 2% (figure 1A). 
The range of variant copy numbers for EGFR sensitive 
mutations was 1.79–4950 with the median value of 135.00 
copies/mL plasma (figure 1B). And the range of variant 
copy numbers for EGFR exon 20 p.T790M was 0.68–561 
with the median value of 36.10 copies/ mL plasma 
(figure 1B).

Concordance of NGS, qPCR and MassArray on EGFR gene 
testing
The qPCR detection showed 75.0% (9/12) and 33.3% 
(3/9) cfDNA samples were positive for EGFR sensitising 
mutations and EGFR exon 20 p.T790M (online supple-
mental table S3). Except for one inconclusive sample, 
the MassArray-based assay detected 56.5% (13/23) 
cfDNA samples that were positive for EGFR sensitising 
mutations, and 61.5% (8/13) of which were also positive 
for the EGFR exon 20 p.T790M (online supplemental 
table S3). The NGS-based assay showed 91.3% (21/23) 
concordance with the MassArray-based test for detecting 
either EGFR sensitising or EGFR TKIs resistant mutation 
(table  1). The qPCR assay showed 83.3% (10/12) and 
100% (12/12) concordance with the MassArray-based 
test for testing EGFR sensitising mutations and exon 20 
p.T790M variant, respectively (table  1). The concord-
ance of the three assays on testing EGFR variants in the 
plasma cfDNA from patients with NSCLC was 83.3% 
(10/12) (table 1).

Figure 1  Detection of EGFR sensitising and TKIs 
resistance variants in plasma cell-free DNA (cfDNA) of 
patients with NSCLC by the NGS-based Avenio panel. (A) 
Variant allele fraction of the EGFR gene in plasma cfDNA; 
(B) molecular concentration of different EGFR variants 
in the plasma of patients with NSCLC. EGFR, epidermal 
growth factor receptor; NGS, next-generation sequencing; 
NSCLC, non-small cell lung cancer; TKI, tyrosine kinase 
inhibitor.
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Testing pan-cancer genes for improved TKIs resistance 
analysis
Of the cfDNA samples tested by the sequencing 
assay,66.7% (16/24) cfDNA samples were positive for 
EGFR mutations, 33.3% (8/24) were positive for TP53 
mutations, 12.5% (3/24) were positive for PTCH1 and 
PTEN mutations, 8.3% (2/24) were positive for PMS2 
mutations, 4.2% (1/24) were positive for NTRK1, RB1, 
ROS1, BRAF, GNAS, ERBB2, CTNNB1 genes mutations 
(table 2) (figure 2). The range of variant allele fraction 
for EGFR was 0.08%–45.16% with the median value of 2% 
(figures 1A and 2A). And the range of variant allele frac-
tion for TP53 was 0.23%–12.65% with a median value of 
4% (figures 2A and 3A). The range of variant copy number 
for EGFR was 0.679 copies/mL to 4950 copies/mL with 
the median value of 66.70 copies/mL plasma (figures 1B 
and 2B). And the range of variant copy numbers for TP53 
was 12.2 copies/mL to 1110 copies/mL with the median 
value of 133.00 copies/mL plasma (figures 2B and 3B). 
In addition, the median value of variant allele fraction 

for NTRK1, RB1, PMS2, PTCH1, GNAS was 3%, 8%, 46%, 
2% and 1%, respectively. And the median value of variant 
allele fraction for ROS1, BRAF, ERBB2, CTNNB1, PTEN 
was less than 1% (figure 2A) (table 2). The median value 
of variant copy number for NTRK1, RB1, PMS2, PTCH1, 
GNAS, CTNNB1 was 225.00, 598.00, 465.00, 22.50, 21.20, 
63.00 copies/mL plasma (figure  2B) (table  2). And 
the median value of variant copy numbers for ROS1, 
BRAF, ERBB2, PTEN was less than 10 copies/ mL plasma 
(table 2).

According to the sequencing data analysis process for 
the Avenio ctDNA kit (Roche Diagnostics), the copy 
number variant (CNV) score is statistically calculated 
by accounting for the log2 ratio to normal gene copy 
number, and the higher CNV score indicates the higher 
confidence value. The NGS detection showed that the 
copy number amplification variants were detected on 
EGFR and MET genes. Statistically, the range of the CNV 
scores for EGFR gene variants was from 4.14 to 29.06 with 
a median value of 14.45. And the range of the CNV scores 

Table 1  Concordance of EGFR testing results from NGS, MassArray and qPCR

Mutations Variants NGS vs MassArray NGS vs qPCR MassArray vs qPCR

EGFR sensitising mutations Exon 18 p.G719A 100% (23/23) 100% (12/12) 100% (12/12)

Exon 20 p.S768I 100% (23/23) 100% (12/12) 100% (12/12)

Exon 21 p.L858R 95.7% (22/23) 100% (12/12) 91.7% (11/12)

Exon 21 p.L861Q 100% (23/23) 100% (12/12) 100% (12/12)

Exon 19 deletions 95.7% (22/23) 91.7% (11/12) 91.7% (11/12)

TKIs resistant EGFR mutation Exon 20 p.T790M 91.3% (21/23) 91.7% (11/12) 100% (12/12)

EGFR, epidermal growth factor receptor; NGS, next-generation sequencing; TKI, tyrosine kinase inhibitor.

Table 2  Testing tumour biomarker genes (other than epidermal growth factor receptor and TP53) variants in cell-free DNA by 
the next-generation sequencing test

SNV gene Variant Coding change Variant description
Allele 
fraction (%) Variant depth

Molecular mutant 
per mL (n)

NTRK1 Exon 17 p.I737I c.2211C>T Synonymous variant 2.97 119/4007 225

RB1 Exon 19 p.V654M c.1960G>A Missense variant 7.91 286/3616 598

ROS1 Exon 41 p.L2157V c.6469C>G Missense variant 0.28 4/1417 2.1

PMS2 Exon 11 p.A660A c.1980C>T Synonymous variant 44.08 901/2044 425

PMS2 Exon 3 p.D70G c.209A>G Missense variant 47.13 345/732 505

PTCH1 Exon 17 p.N929N c.2787C>T Synonymous variant 46.50 1789/3847 4490

PTCH1 Exon 14 p.R665C c.1993C>T Missense variant 1.32 44/3332 12.7

PTCH1 Exon 22 p.A1247A c.3741G>A Synonymous variant 1.57 32/2034 22.5

BRAF Exon 15 p.V600E c.1799T>A Missense variant 0.08 2/2561 1.3

GNAS Exon 8 p.R202C c.604C>T Missense variant 1.32 35/2655 21.2

ERBB2 Exon 23 p.K937R c.2810A>G Missense variant 0.21 5/2390 4.5

ERBB2 Exon 26 p.R1111Q c.3332G>A Missense variant 0.61 12/1961 13.1

CTNNB1 Exon 3 p.S33Y c.98C>A Missense variant 0.07 3/4597 63

PTEN Exon 5 p.H93Y c.277C>T Missense variant 4.32 157/3633 162

PTEN Exon 8 p.N323fs c.968dupA Frameshift variant 0.12 1/841 0.9

PTEN Exon 8 p.N323fs c.968dupA Frameshift variant 0.11 1/892 1.2
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for MET gene variants was 9.19–20.35 with a median value 
of 18.31 (figure 4). Twenty-five per cent (6/24) cfDNA 
samples were positive for the EGFR copy number ampli-
fication mutation, including 50% (3/6) cfDNA samples 
were also positive for MET amplification mutation. Fifty 
per cent (3/6) of EGFR amplification positive cfDNA 
samples and 66.7% (2/3) MET amplification positive 
cfDNA samples showed EGFR p.T790M negative results.

DISCUSSION
EGFR gene is the most important tumour biomarker to 
be tested for the targeted treatment of NSCLC because 
EGFR-TKIs treatment is the first-line therapy method for 
patients with NSCLC with sensitising EGFR mutations. 
It can be observed that some cfDNA samples showed a 
low EGFR variant allele fraction which can be lower than 
0.1%, the testing of baseline EGFR p.T790M variant is 
critical for clinical NSCLC treatment.30 31 EGFR testing 
method with LOD lower than 0.1% should be applied for 
sensitive detection of EGFR variants in the plasma cfDNA 
of patients with NSCLC.

As shown in online supplemental table S4, the cfDNA 
samples which showed mismatch results from different 
assays were investigated. EGFR sensitising mutations 
with variant allele fractions less than 0.2% were easily 
missed in the MassArray-based test. And EGFR exon 20 
p.T790M mutation with variant allele fraction less than 
5% were missed by both the MassArray and qPCR-based 
assays. Though the variant allele fraction (EGFR exon 20 
p.T790M) at 0.42% normally can still be caught by the 
MassArray and qPCR-based assays, the low copy number 
of variant alleles (4.45 copies/mL plasma) may be the 
reason for missing detected (online supplemental table 
S4). Besides the variant allele fraction, the copy number 
of gene variants can also be an important factor that 
can impact the sensitivity of assays on testing tumour 
biomarker genes in plasma cfDNA.

As a high-throughput testing method, the NGS assay has 
the advantages of simultaneous testing of multiple tumour 

Figure 4  Testing of gene copy number variants in the 
plasma cell-free DNA of patients with non-small cell lung 
cancer by using next-generation sequencing-based Avenio 
panel. EGFR, epidermal growth factor receptor; MET, 
mesenchymal-epithelial transition.

Figure 2  Percentages of tumour biomarker genes variant 
alleles located in different ranges of fraction ratio and copy 
numbers. (A) Distribution of tumour biomarker genes variant 
alleles in different ranges of fraction ratio; (B) distribution of 
tumour biomarker genes variant alleles in different ranges 
of copy numbers.

Figure 3  Testing of TP53 gene in the plasma cell-free DNA 
(cfDNA) of non-small cell lung cancer (NSCLC) patients by 
next-generation sequencing-based Avenio panel. (A) TP53 
gene’s variant allele fraction in plasma cfDNA of NSCLC; 
(B) molecular concentration of TP53 gene variants in the 
plasma of NSCLC.
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biomarker genes in one test, interrogating both known and 
unknown gene variants. This makes it superior to qPCR and 
MassArray-based assays on gene detection efficiency.19 32 It 
was observed that the NGS-based assay showed high sensi-
tivity in testing tumour biomarker genes in plasma cfDNA 
as gene allele variant fraction of less than 0.1% and the 
copy number of gene allele variant of less than 1 copy/mL 
plasma were also successfully detected (figures  1 and 3). 
This confirms other studies in which the deep sequencing 
approach showed higher detection sensitivity in testing 
tumour biomarker gene variants in cfDNA than qPCR and 
MassArray-based assays.30 32 33

Although EGFR exon 20 p.T790M mutation is the 
most possible reason for the resistance of NSCLC to 
the first-generation and second-generation EGFR TKIs, 
approximately 50% of resistance cases are caused by 
other molecular mechanisms such as the amplification 
of ERBB2, MET, and the mutation of BRAF, PI3K and 
KRAS.34–36 Also, other EGFR mutations such as exon 20 
p.C797S, oncogenic fusions such as FGFR3-TACC3, and 
oncogene amplification such as MET and ERBB2 can also 
cause the resistance of NSCLC to the third generation 
TKIs.35 This study found that the detection of oncogenic 
amplification mutations can help clarify the resistance 
of NSCLC cases to the EGFR-TKIs by 12.5% (figure 4). 
Besides monitoring the EGFR status, it is necessary to 
comprehensively test other TKIs treatment-associated 
genes for choosing the most appropriate targeted treat-
ment method. In this study, 4.2% (1/24) sample showed 
BRAF exon 15 p.V600E positive but EGFR p.T790M nega-
tive which helped clarify the EGFR independent TKIs 
resistance in NSCLC (table 2).37 12.5% (3/24) and 4.2% 
(1/24) samples showed mutations in PTEN and ERBB2, 
respectively (table 2), which may contribute to the resis-
tance of NSCLC to TKIs as well, because ERBB2 amplifi-
cation and PTEN loss have been found to activate PI3K/
Akt pathway that is involved NSCLC progression.34 It was 
observed that the PTEN mutation (exon 8 p.N323fs) was 
only detected in patients with NSCLC without EGFR muta-
tions. However, further studies need to be performed 
to confirm the relationship between PTEN and ERBB2 
mutations and TKIs resistance.

CONCLUSION
All three methods (NGS, MassArray and qPCR-based 
assays) can effectively detect EGFR variants in the plasma 
cfDNA of patients with NSCLC and the concordance of 
these assays on testing EGFR variants was 83.3% (10/12). 
Based on the findings from this study, cfDNA testing 
methods with the LOD (lower than 2% and less than 
102 copies/mL plasma) for target gene variants can 
detect more than 50% of EGFR mutation-positive plasma 
samples from patients with NSCLC. Compared with the 
MassArray and qPCR tests, the AVENIO ctDNA expanded 
kit (Roche Diagnostics) possesses the highest sensitivity 
and throughput on testing tumour biomarker genes 
in plasma cfDNA which shows high competitiveness to 

be clinically used for targeted therapy of NSCLC. The 
targeted capture sequencing assay is an excellent tool for 
comprehensive molecular analysis of NSCLC targeted 
therapy associated genes, which can help improve the 
precision treatment of NSCLC by TKIs. Considering the 
sample size used in this study is limited, further studies 
are needed to confirm the findings.
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