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Deep learning-based automatic tumor burden 
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Abstract
Background.  Longitudinal measurement of tumor burden with magnetic resonance imaging (MRI) is an essential 
component of response assessment in pediatric brain tumors. We developed a fully automated pipeline for the 
segmentation of tumors in pediatric high-grade gliomas, medulloblastomas, and leptomeningeal seeding tumors. 
We further developed an algorithm for automatic 2D and volumetric size measurement of tumors.
Methods. The preoperative and postoperative cohorts were randomly split into training and testing sets in a 4:1 
ratio. A 3D U-Net neural network was trained to automatically segment the tumor on T1 contrast-enhanced and 
T2/FLAIR images. The product of the maximum bidimensional diameters according to the RAPNO (Response 
Assessment in Pediatric Neuro-Oncology) criteria (AutoRAPNO) was determined. Performance was compared to 
that of 2 expert human raters who performed assessments independently. Volumetric measurements of predicted 
and expert segmentations were computationally derived and compared.
Results.  A total of 794 preoperative MRIs from 794 patients and 1003 postoperative MRIs from 122 patients were 
included. There was excellent agreement of volumes between preoperative and postoperative predicted and 
manual segmentations, with intraclass correlation coefficients (ICCs) of 0.912 and 0.960 for the 2 preoperative and 
0.947 and 0.896 for the 2 postoperative models. There was high agreement between AutoRAPNO scores on pre-
dicted segmentations and manually calculated scores based on manual segmentations (Rater 2 ICC = 0.909; Rater 
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3 ICC = 0.851). Lastly, the performance of AutoRAPNO was superior in repeatability to that of human raters 
for MRIs with multiple lesions.
Conclusions.  Our automated deep learning pipeline demonstrates potential utility for response assessment 
in pediatric brain tumors. The tool should be further validated in prospective studies.

Key Points

1.	 A deep learning pipeline for automatic pediatric brain tumor segmentation was 
built.

2.	Excellent agreement between predicted and human segmentation volumes (ICC ≥ 
0.9).

3.	Excellent agreement between manual and automatic 2D measurements (ICC > 
0.85).

Tumors of the central nervous system (CNS) are the 
second most common pediatric malignancy, and tumors 
of the brain are the most common cause of cancer-related 
deaths in children.1 Medulloblastomas (MBL), primitive 
neuroectodermal tumors of cerebellar origin, represent 
up to 20% of all malignant pediatric brain tumors.1 The 
standard therapeutic strategy for MBL typically follows a 
mixed approach of surgical resection of the primary mass 
followed by radiation and chemotherapy; complete or near-
total primary tumor resection is associated with improved 
outcomes.2,3 High-grade gliomas (HGG) are difficult to treat 
given their biological and histological heterogeneity.4 HGG 
comprise approximately 8%-12% of pediatric CNS tumors 
and are the leading cause of cancer-related death in those 
younger than 19 years.4 While the standard of care remains 
surgical resection with or without adjuvant chemotherapy 
or radiotherapy, 5-year progression-free survival remains 
low.1,5,6 For those with recurrent HGG, overall survival 
with treatment is 5.6  months.7 Calculating the size of the 
postresection residual tumor allows for the most accurate 
prediction of prognosis.1,5

Treatment response and tumor progression are as-
sessed in MBL and other leptomeningeal seeding tumors 
by taking the sum of the products of perpendicular diam-
eters of up to 4 measurable contrast-enhanced lesions on 
T1-weighted imaging sustained for at least 4 weeks.3 The 
most recent RAPNO (Response Assessment in Pediatric 

Neuro-Oncology) criteria for pediatric HGG are similar, al-
though a maximum of 3 target lesions is recommended.4 
Magnetic resonance imaging (MRI) for response assess-
ment during clinical trials is performed at a minimum 
interval of 3  months for MBL and recently diagnosed 
(<1  year) HGG.3,4 For relapsing HGG, MRIs may be per-
formed every 2  months.4 Although the manual method 
of 2-dimensional tumor size determination is the current 
standard, several adult, and pediatric studies have shown 
that this approach demonstrates considerable inter-
observer variability.8–12 Moreover, manual delineation is 
time-consuming and labor-intensive.13 While volumetric 
segmentation has recently been recognized as superior to 
traditional 2D linear measurements, existing methods are 
poorly validated.14

Building accurate, reproducible, and efficient automated 
tools to segment tumor volume for MRI-based assessment 
of treatment response is an essential step in facilitating 
the use of 3D tumor volume as an endpoint in clinical 
trials. Given recent advances in computing power, deep 
learning has emerged as the most promising approach 
for automating the segmentation of medical images.15,16 
Deep learning is superior to radiomics and other machine 
learning approaches, which rely on hand-crafted fea-
tures.17 The convolutional neural network (CNN), which is 
the basis of deep learning, can be trained with raw image 
data to predict defined outputs. Recent work by our group 

Importance of the Study

Longitudinal measurement of tumor burden with MRI is 
essential for response assessment in pediatric tumors 
of the brain. Current practice requires human experts 
to manually estimate the size based on bidimensional 
diameters. This process is subject to intra- and 
interrater variability, especially when done on patients 
with multiple complex lesions. In this study, we devel-
oped an algorithm based on deep learning that auto-
matically segments tumors on pre- and postoperative 

MRIs and estimates tumor volume and the product of 
maximum bidimensional diameters according to the 
RAPNO criteria (AutoRAPNO). The models demon-
strated excellent performance, with high repeatability 
and agreement with human raters. This tool has been 
released as open-source so that it may be utilized in 
clinical trials and routine clinical practice to accurately 
and efficiently assess treatment response after further 
validation.

and colleagues using this approach has succeeded in de-
veloping accurate and reproducible volumetric segmen-
tations of pre- and postoperative gliomas in adults.18–20 
Whether a similar approach can be successfully used in pe-
diatric gliomas, MBL, and other pediatric leptomeningeal 
seeding tumors has not yet been determined.

Materials and Methods

Patient Cohort

We retrospectively collected imaging and clinical data 
from pediatric patients with intracranial brain tumors for 
our preoperative cohort from January 2011 to December 
2018 and admitted them to 4 large academic hospitals 
in Hunan Province, China and from January 2005 to 
December 2019 and admitted them to the Children’s 
Hospital of Philadelphia (CHOP). For our postoperative co-
hort, similar data were collected for pediatric patients spe-
cifically with HGG, MBL, or other leptomeningeal seeding 
tumors from the 4 hospitals in Hunan. Leptomeningeal 
seeding tumors were defined as tumor subtypes that fre-
quently metastasize throughout the CNS and included 
MBL, glioblastomas, anaplastic astrocytomas, embry-
onal tumors, germ cell tumors, and choroid plexus papil-
lomas in our study. Inclusion criteria for HGG, MBL, and 
leptomeningeal seeding tumors were only applied to the 
postoperative cohort as this is the target population for re-
sponse assessment. Patients were excluded if they were 
over 18 years of age, had missing pathological reports, in-
complete imaging data or sequences, or insufficient clin-
ical follow-up information. The preoperative cohort was 
defined as the baseline brain MRI scans performed before 
receiving surgical resection, radiotherapy, chemotherapy, 
or chemoradiotherapy. The postoperative cohort was de-
fined as the follow-up brain MRI scans performed every 
2-3  months after treatment until progression or last fol-
low-up date. The institutional review boards of all involved 
institutions approved this study, and the requirement for 
informed consent was waived.

In the preoperative cohort, axial T2-weighted turbo spin 
echo (T2) and contrast-enhanced axial T1-weighted turbo 
spin echo (T1ce) sequences were used. For the postop-
erative cohort, axial FLAIR (fluid-attenuated inversion re-
covery), T1ce, and nonenhanced axial T1-weighted turbo 
spin echo (T1) sequences were used. MRI acquisition 
parameters are shown in Supplementary Figures 1–3.

Manual Tumor Segmentation and RAPNO 
Measurements

For the preoperative cohort, manual segmentation of 
T2 hyperintensity was performed by a neuro-oncologist 
(H.Z., Rater 1) with 9 years of experience, and manual seg-
mentation of contrast-enhancing tumor was performed 
by another neuro-oncologist (J.P., Rater 2)  with 7  years 
of experience, using the Level Tracing and Threshold 
tools in 3D Slicer (v.4.10). For the postoperative cohort, 
segmentation of FLAIR hyperintensity, segmentation of 
contrast-enhancing tumor, and RAPNO measurements 
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Longitudinal measurement of tumor burden with MRI is 
essential for response assessment in pediatric tumors 
of the brain. Current practice requires human experts 
to manually estimate the size based on bidimensional 
diameters. This process is subject to intra- and 
interrater variability, especially when done on patients 
with multiple complex lesions. In this study, we devel-
oped an algorithm based on deep learning that auto-
matically segments tumors on pre- and postoperative 

and colleagues using this approach has succeeded in de-
veloping accurate and reproducible volumetric segmen-
tations of pre- and postoperative gliomas in adults.18–20 
Whether a similar approach can be successfully used in pe-
diatric gliomas, MBL, and other pediatric leptomeningeal 
seeding tumors has not yet been determined.

Materials and Methods

Patient Cohort

We retrospectively collected imaging and clinical data 
from pediatric patients with intracranial brain tumors for 
our preoperative cohort from January 2011 to December 
2018 and admitted them to 4 large academic hospitals 
in Hunan Province, China and from January 2005 to 
December 2019 and admitted them to the Children’s 
Hospital of Philadelphia (CHOP). For our postoperative co-
hort, similar data were collected for pediatric patients spe-
cifically with HGG, MBL, or other leptomeningeal seeding 
tumors from the 4 hospitals in Hunan. Leptomeningeal 
seeding tumors were defined as tumor subtypes that fre-
quently metastasize throughout the CNS and included 
MBL, glioblastomas, anaplastic astrocytomas, embry-
onal tumors, germ cell tumors, and choroid plexus papil-
lomas in our study. Inclusion criteria for HGG, MBL, and 
leptomeningeal seeding tumors were only applied to the 
postoperative cohort as this is the target population for re-
sponse assessment. Patients were excluded if they were 
over 18 years of age, had missing pathological reports, in-
complete imaging data or sequences, or insufficient clin-
ical follow-up information. The preoperative cohort was 
defined as the baseline brain MRI scans performed before 
receiving surgical resection, radiotherapy, chemotherapy, 
or chemoradiotherapy. The postoperative cohort was de-
fined as the follow-up brain MRI scans performed every 
2-3  months after treatment until progression or last fol-
low-up date. The institutional review boards of all involved 
institutions approved this study, and the requirement for 
informed consent was waived.

In the preoperative cohort, axial T2-weighted turbo spin 
echo (T2) and contrast-enhanced axial T1-weighted turbo 
spin echo (T1ce) sequences were used. For the postop-
erative cohort, axial FLAIR (fluid-attenuated inversion re-
covery), T1ce, and nonenhanced axial T1-weighted turbo 
spin echo (T1) sequences were used. MRI acquisition 
parameters are shown in Supplementary Figures 1–3.

Manual Tumor Segmentation and RAPNO 
Measurements

For the preoperative cohort, manual segmentation of 
T2 hyperintensity was performed by a neuro-oncologist 
(H.Z., Rater 1) with 9 years of experience, and manual seg-
mentation of contrast-enhancing tumor was performed 
by another neuro-oncologist (J.P., Rater 2)  with 7  years 
of experience, using the Level Tracing and Threshold 
tools in 3D Slicer (v.4.10). For the postoperative cohort, 
segmentation of FLAIR hyperintensity, segmentation of 
contrast-enhancing tumor, and RAPNO measurements 

were performed by Rater 2 and repeated independently by 
a separate neuro-oncologist (X.Z, Rater 3) with 6 years of 
experience to assess interrater variability. RAPNO meas-
urements were conducted as delineated in the RAPNO 
criteria.3

Deep Learning-Based T2/FLAIR Hyperintensity 
and Contrast-Enhancing Tumor Segmentation

The preoperative and postoperative cohorts were ran-
domly split into training and testing sets using a 4:1 ratio. 
About 20% of the training set was used as the validation 
set. Images were split such that scans from the same pa-
tient were in the same cohort. The training set was only 
used for training the model, while all model metrics were 
assessed on the testing set.

To train the model, segmentations by Rater 3 were ran-
domly selected over segmentations by Rater 2 to use as the 
ground truth for loss function minimization. Performance 
of the model, however, was determined by comparing the 
model predictions to both rater’s segmentations on an in-
dependent test set.

Preprocessing, Model Training, and 
Postprocessing

Preprocessing, model training, and postprocessing were 
performed using DeepNeuro (v2) with Tensorflow 2.0 
backend.21 Images were preprocessed before training and 
predicting. Images were first reoriented to right, anterior, 
inferior (RAI) orientation, resampled to isotropic resolu-
tion, and co-registered to the same anatomical template 
using 3D Slicer (v4.10). BSpline interpolation was used for 
image resampling, while nearest neighbor was used for 
ground truth segmentation resampling. Skull stripping was 
then performed with Robust Brain Extraction (ROBEX)22 
(Supplementary Figure 4) and N4 bias correction was ap-
plied with Advanced Normalization Tools (ANTs).23 Finally, 
images were normalized.

A 3D U-Net neural network architecture with 5 levels was 
used (Supplementary Figure 5).24 Four neural networks 
were created: (1) T2 sequences as input for preoperative, 
T2 hyperintensity segmentation, (2) T1ce and T2 sequences 
as input for preoperative, contrast-enhancing tumor seg-
mentation, (3) FLAIR and T1ce sequences as input for post-
operative, FLAIR hyperintensity segmentation, and (4) 
FLAIR, T1ce, and T1 sequences as input for postoperative, 
contrast-enhancing tumor segmentation. AdamW opti-
mizer25 was used for training with an initial learning rate 
of 0.0001 and initial weight decay of 0.00002, and Cosine 
Annealing26 was used as a learning rate scheduler. Models 
optimized a soft Dice loss function on the validation set:

D(p, g) =
2Σipigi

Σi(pi + gi) + α

where D is the dice, ρ is the probability output of the 
model, g is the ground truth, and ⍺ is a constant. Max 
pooling and rectified linear unit (ReLU) activation function 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab151#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab151#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab151#supplementary-data
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was applied at each layer. Upsampling was performed 
with Trilinear interpolation,27 and normalization was per-
formed using Group Normalization.28 At every iteration of 
training, 2 patches of size 128 × 128 × 128 were extracted 
with a 25% bias to tumor lesions from each input im-
aging modality and subjected to scaling, rotation, shear, 
translation, and left/right patch flipping data augmenta-
tions to artificially increase the training set and reduce 
overfitting.29 During validation and testing, the full image 
with each respective imaging modality was inputted into 
the model for prediction. Models returned a probability 
map connecting each voxel to the probability of region of 
interest (ROI). A probability cutoff of 0.5 was used for bi-
nary ROI labeling. All models were trained using a 16 GB 
NVIDIA V100 Tensor Core graphical processing unit (GPU).

After prediction, predicted segmentations were 
resampled back to their original resolutions for compar-
ison with the manual segmentation.

AutoRAPNO Algorithm

To further streamline the pipeline, an algorithm was devel-
oped to automatically calculate the product of the 2D diam-
eters given a contrast-enhancing tumor segmentation. First, 
the algorithm looked for connected lesions and calculated 
bidimensional measurements for each connected lesion. 
To do this, the algorithm did an exhaustive search for the 
largest line segment consisting entirely of tumor and its 
respective perpendicular (tolerance  =  ±5  degrees) at each 
axial slice. Following criteria for measurable lesions, lengths 
were zeroed if either bidimensional measurements were 
≤8 mm (2× slice thickness).3 Bidimensional measurements 
were then multiplied, and the largest product was selected 
as the cross-sectional area for this connected lesion. If more 
than one connected lesion existed, up to the top 4 products 
were summed and returned as the RAPNO score.3

Statistical Analysis

Model segmentation outputs were evaluated using the 
Sørensen-Dice coefficient. As the main objective of auto-
matic segmentation is for response assessment, volumes 
and RAPNO measurements were also evaluated by the 
Spearman rank correlation coefficient ρ and intraclass cor-
relation coefficient (ICC). Spearman rank correlation coef-
ficient was calculated using the Scipy Stats package from 
Python 3.7.9.30,31 A 2-way model assessing agreement and 
returning single score ICCs from the Interrater Reliability 
and Agreement (IRR) package in R 4.0.2 was used to gen-
erate ICC values.32–35 With response assessment being 
correlated to the amount of change in tumor size, the ICC 
values of the delta volumes and RAPNO scores, defined as 
the change in amount since the prior visit, were also calcu-
lated for the postoperative cohort.

Code Availability

The code used for preprocessing/postprocessing, model 
training/predicting, and AutoRAPNO are available on 

https://github.com/naddan27/AutoPNeuro. The 4 pre-
trained models are also available. Accessed April 5, 2021.

Results

Patient Cohort

T2 hyperintensity segmentation of the preoperative co-
hort was available on 794 T2 brain MRIs from 794 pa-
tients. Eighty-five of these patients were from the 4 
hospitals in Hunan, while 709 were from CHOP. T1ce 
segmentation of the preoperative cohort was available 
on 683 T1ce brain MRIs from 683 patients (85 Hunan, 
598 CHOP) among the above 794 patients. There were 
111 patients from CHOP without T1ce MRI sequences. In 
the cohort for preoperative T1ce segmentation, 39 pa-
tients were excluded due to skull stripping failure that 
removed the image at the ROI, and 6 were excluded due 
to co-registration failure, for a final T1ce preoperative pa-
tient cohort size of 638.

Nineteen FLAIR hyperintensity segmentations of the 
postoperative cohort were incomplete and therefore ex-
cluded. FLAIR hyperintensity segmentation was available 
on 492 FLAIR brain MRIs from 122 patients. T1ce segmen-
tation of the postoperative cohort was available on 511 
T1ce brain MRIs from 122 patients. All data comprising the 
postoperative cohort were from the 4 hospitals in Hunan. 
Characteristics of patients from the postoperative cohort 
are shown in Table 1. The characteristics of patients from 
the preoperative cohort are shown in Supplementary 
Tables 1–3.

Deep Learning-Based T2/FLAIR Hyperintensity 
and Contrast-Enhancing Tumor Segmentation

For T2 hyperintensity segmentation of the preopera-
tive cohort, the mean Dice score of the model was 0.724 
(95% confidence interval [CI]: 0.684-0.764), the median 
Dice score was 0.819 (interquartile range [IQR]: 0.711-
0.879), and the volume ICC value was 0.912 (P < .001). 
For contrast-enhancing tumor segmentation of the 
preoperative cohort, the mean Dice score was 0.724 
(95% CI: 0.672-0.775), the median Dice score was 0.843 
(IQR: 0.677-0.909), and the volume ICC value was 0.960  
(P < .001).

For FLAIR hyperintensity segmentation of the post-
operative cohort, the volume ICC was 0.947 (P < .001). 
For contrast-enhancing tumor segmentation of the 
postoperative cohort, the volume ICC was 0.896 (P < 
.001). Comparisons between automatically and manu-
ally derived volumes are shown across all 4 models in 
Figure 1.

Examples of model output are shown in Figure 2A and 
B. Examples from the postoperative cohort were spe-
cifically chosen over those in the preoperative to dis-
play as these lesions tend to be more complex in shape 
and have necrosis in the middle, therefore depicting 
uncompromised model performance despite such 
challenges.

https://github.com/naddan27/AutoPNeuro
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab151#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab151#supplementary-data


293Peng et al. Deep learning for pediatric brain tumor burden
N

eu
ro-

O
n

colog
y

Interrater Agreement for RAPNO Scores

There was high agreement between manually and auto-
matically calculated RAPNO scores on the postoperative 
cohort. The ICC value between AutoRAPNO scores on pre-
dicted segmentations and AutoRAPNO scores on manual 
segmentations was greatest at 0.933 (P < .001) (Figure 3A). 
The ICC value between RAPNO scores from Rater 2 and 
from Rater 3 was 0.909 (P < .001) (Figure 3B). The ICC value 
between AutoRAPNO on the predicted segmentation and 
Rater 2 was 0.909 (P < .001) (Figure 3C), and the ICC value 
between AutoRAPNO on the predicted segmentation and 
Rater 3 was 0.851 (Figure 3D). Examples of AutoRAPNO 
output are shown in Figure 2C.

In the preoperative cohort, the ICC value between 
AutoRAPNO scores on predicted segmentations and 
AutoRAPNO scores on manual segmentations was 0.940 
(P < .001).

Of the 99 samples in the postoperative contrast-
enhancing tumor segmentation test set, there were 81, 

11, 1, and 6 scans with 1, 2, 3, and 4 or more connected 
lesions, respectively, in both segmentations performed 
by Rater 2 and 3. The performance between AutoRAPNO 
and human raters was compared among scans with mul-
tiple connected lesions. For Rater 2, the ICC value was 
highest comparing manual RAPNO with AutoRAPNO on 
ground truth summing the top 4 lesions (0.972, P < .001) 
and lowest with AutoRAPNO on ground truth on just the 
largest lesion (0.795, P < .001). For Rater 3, the ICC value 
was highest comparing manual RAPNO with AutoRAPNO 
on ground truth on just the largest lesion (0.881, P < .001) 
and lowest with AutoRAPNO on ground truth summing the 
top 4 lesions (0.633, P = .021).

Agreement in Longitudinal Changes in Size

The ICC values between automatically and manually cal-
culated delta FLAIR volumes, contrast-enhancing tumor 
volumes, and RAPNO scores was 0.870 (P < .001), 0.799  
(P < .001), and 0.795 (P < .001), respectively, in the postop-
erative cohort (Figure 4).

Correlation Between RAPNO Measures 
and Volume

The Spearman correlation value between manual volumes 
and manual RAPNO scores and between manual volumes 
and AutoRAPNO on predicted segmentations was 0.957  
(P < .001) and 0.853 (P < .001), respectively (Figure 5).

Volume Segmentation and AutoRAPNO Speed 
Performance

For the preoperative cohort, the median times to get vol-
umes and AutoRAPNO scores were 0.151 seconds (IQR: 
0.092-0.285) and 27.67 seconds (IQR: 4.74-107.716), re-
spectively, for each scan. For the postoperative cohort, 
the median times to get volumes and AutoRAPNO scores 
were 0.054 seconds (IQR: 0.021-0.071) and 29.104 (IQR: 
4.873-223.884), respectively. AutoRAPNO score times were 
positively skewed, with few samples taking over 30 min-
utes for the preoperative cohort and over 150 minutes for 
the postoperative cohort. In comparison, median manual 
RAPNO score calculation time was 56.34 seconds (IQR: 
23.04-505.64).

Discussion

In this study, we demonstrate that a fully automated, deep 
learning-based pipeline can be used to calculate tumor 
volumes and RAPNO measurements in the brain with high 
accuracy in pediatric HGG, MBL, and other leptomenin-
geal seeding tumors. After images were preprocessed, 
brain-extracted, and normalized, they were used to train 
a model with a 3D U-Net neural network architecture to 
automatically segment tumor lesions in pre- and postop-
erative MRIs. To further increase the clinical utility of the 
pipeline, an algorithm (AutoRAPNO) was developed to 

  
Table 1  Study Population Characteristics: Postoperative Cohort

Characteristics Number  
(Percentage)

Median age at diagnosis in years: mean 
(range)

10.6 (0.2-17.9)

Sex  

  Male 72 (59%)

  Female 50 (41%)

High-grade glioma (HGG) group 43

  Glioblastoma 25 (20.5%)

  Anaplastic astrocytoma 18 (14.8%)

Non-HGG group 79

  Medulloblastoma 30 (24.6%)

Embryonal tumor group  

  Atypical teratoid rhabdoid tumor 12 (9.8%)

  Pineoblastoma 3 (2.5%)

  Primitive neuroectodermal tumor 4 (3.3%)

Germ cell tumor group  

  Germinoma 26 (21.3%)

  Germ cell tumor 3 (2.5%)

  Choroid plexus papilloma 1 (0.7%)

Treatment modalities  

  Chemotherapy only 23 (18.9%)

  Radiotherapy only 23 (18.9%)

  Chemoradiotherapy 76 (62.2%)

Surgical extent  

  Biopsy only 41 (33.6%)

  Partial resection 52 (42.6%)

  Gross total resection 29 (23.8%)

Leptomeningeal seeding or not  

  With leptomeningeal seeding 38 (31.2%)

  Without leptomeningeal seeding 84 (68.8%)
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automatically calculate RAPNO scores given a contrast-
enhancing tumor segmentation. There was excellent 
agreement between the automatic pipeline and human 
raters in both lesion volume and RAPNO scores.

While a recent study developed a model with a 2D 
ResNeXt deep learning architecture to predict the pres-
ence, relative location, and subtype of pediatric posterior 
fossa tumors, no study has described fully automated 
segmentation and volume estimation of pediatric brain 
tumors with deep learning.17 Given that age-related 
changes in brain structure are nonlinear and differ sub-
stantially between tissue types, it was unknown whether 
automated deep learning-based segmentation techniques 
developed and validated in adult subjects would perform 
well in children. Additionally, there are technical chal-
lenges with automated segmentation that are unique to 
children. These may include increased movement-related 
artifacts or noise due to lack of child-appropriate equip-
ment, presence of dental braces, heterogeneity in brain 
size and maturational stage, and lack of age-specific brain 
atlases for normalization.36 Despite these challenges, this 
study has demonstrated that deep learning can be used 
to accurately segment brain tumors in the pediatric pop-
ulation. Even without removing patients due to artifact, 
excellent performance was maintained by stripping po-
tential artifacts from the image inputs like the presence of 
dental braces with the skull stripping brain extraction al-
gorithm (Supplementary Figure 4). Furthermore, models 

are robust to even difficult segmentations, as shown by the 
high agreement with human raters of overall metrics de-
spite inclusion into the dataset of tumor subtypes that are 
typically infiltrative where margins are difficult to define. 
An example of model prediction on infiltrative tumors is 
shown in Supplementary Figure 6.

The model also demonstrates high performance in post-
operative MRIs, which often have brain distortion and 
surgical cavities that can complicate segmentation. As 
depicted in Figure 2A and B, postoperative lesions may 
be complex in shape with associated necrosis. In fact, 
the ICC for automatically vs manually derived volumes 
was slightly higher for the postoperative model for FLAIR 
hyperintensity segmentation (0.947) than the preoperative 
model for T2 hyperintensity segmentation (0.912).

There was high agreement between both human vs 
human RAPNO measures and human vs AutoRAPNO 
measures. Importantly, the ICC value between AutoRAPNO 
scores on automatically predicted segmentations and 
AutoRAPNO scores on manually segmented scans was 
higher than the ICC value between AutoRAPNO scores on 
the automatically predicted segmentations and manually 
calculated scores on manually segmented scans. This goes 
to show that when response assessment, specifically 2D 
measurements, is the primary criteria for model metrics, 
the performance of the model is ostensibly comprom-
ised by using the manual RAPNO score calculation, which 
would include human variability, as the ground truth. 
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When manual segmentation is performed and subsequent 
RAPNO scores are derived, there exist multiple points at 
which human inter and intra-rater variability can be intro-
duced. Thus, by utilizing deep learning-based automatic 
segmentation and AutoRAPNO, measurements are more 
standardized and highly repeatable.

To test agreement between human raters and 
AutoRAPNO specifically on MRIs with complex lesions, we 
identified a subset of scans in the postoperative contrast-
enhancing tumor segmentation test set with multiple le-
sions. When performing manual RAPNO measurements, 
distinct lesions can lead to errors if they are not appro-
priately treated as separate. Failing to recognize separate 
lesions and incorporating them into the RAPNO score 
can underestimate tumor size and consequently affect re-
sponse assessment. An important finding of our study is 
that AutoRAPNO performed better than human raters on 
MRIs with multiple contrast-enhancing connected lesions. 
This is evidenced by the fact that the ICC value between 
scores by Rater 3 and AutoRAPNO on ground truth was 
greater when only the largest lesion was accounted for 
(0.881) than when the top 4 lesions were summed (0.633). 
The lower ICC between scores when the top 4 lesions were 
considered is attributable to Rater 3 interpreting separate 
lesions as single lesions. Interestingly, for Rater 2, the 
highest ICC with AutoRAPNO scores was when 4 lesions 
were taken into account (0.972); when only the largest le-
sion was considered, the ICC was 0.795. This therefore 

highlights the superior repeatability of AutoRAPNO as 
compared to manually derived scores, which can differ be-
tween even highly experienced raters due to varied inter-
pretation of complex lesions on MRI.

Both the volume calculations and AutoRAPNO measure-
ments were achieved efficiently for the pre- and postoper-
ative MRIs. For the preoperative cohort, the median time 
to volume output was 0.151 seconds, and for the postoper-
ative cohort, the median time to volume output was 0.054 
seconds. The median time required for AutoRAPNO to cal-
culate scores was 27.67 seconds for preoperative MRIs and 
29.104 seconds for postoperative MRIs. The AutoRAPNO 
time requirement was related to the complexity of the le-
sion shape, with a few MRIs taking over 30 minutes for the 
preoperative cohort and over 150 minutes for the postop-
erative cohort. This finding further supports the use of vol-
umetric measurements rather than 2D measurements for 
response assessment. Given that volume measurements 
can be automatically calculated in less than a second, our 
algorithm demonstrates potential utility for extremely 
rapid assessment of tumor burden in clinical practice.

The strong correlation between RAPNO measures and 
volumes indicates that RAPNO guidelines can be easily 
adapted for 3D measurements in the future. Current 2D 
guidelines show excellent consistency in treatment re-
sponse evaluation for MBL and other leptomeningeal 
seeding tumors.37 As the RAPNO criteria uses percentage 
rather than absolute changes in tumor size,3 the strong 
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Fig. 2  Examples of model segmentation for (A) T2 FLAIR hyperintensity and (B) contrast-enhancing tumor regions in the postoperative co-
hort. (C) Examples of AutoRAPNO applied on predicted contrast-enhancing tumor regions in the postoperative cohort. Abbreviation: FLAIR, fluid-
attenuated inversion recovery.
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correlation suggests that volumes can substitute such 2D 
measurements and still achieve excellent consistency in 
treatment response evaluation. In smaller clinical trials or 

institutions with smaller volume of MBL and other lepto-
meningeal seeding tumor cases, the traditional approach 
where trained specialists, such as neuro-radiologists or 
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oncologists, take 2D measurements for response as-
sessment may be more ideal than 3D measurements, 
avoiding the need to segment the whole tumor, establish 
automatic segmentation pipelines, and allocate GPU/cen-
tral processing unit (CPU) resources. However, in larger 
clinical trials and in institutions with limited human re-
sources—either from high case volume or smaller 
number of trained specialists—the benefits of a deep 
learning segmentation pipeline outweigh the initial time 
and capital costs for setup. A deep learning segmentation 
pipeline is potentially more cost-effective than increasing 
volume of highly specialized human labor, scalable to 
demand, and excels in its remarkably fast volumetric 
calculations and robustness to inter and intra-rater var-
iability. Our code is also contained within a Docker con-
tainer, and therefore, a trained technician will be able to 
run the pipeline for inference with a few lines of code. If 
further training and model development are needed for 
fine-tuning of the model to an institution’s patient demo-
graphic, more expertise would be required. As our high-
performing deep learning models have already been 
trained on datasets segmented by specialists, institutions 
that employ deep learning segmentation pipelines would 
be able to dedicate fewer human resources for treatment 
response assessment.

There are some limitations to this study. First, the MBL 
RAPNO criteria were applied to non-MBL tumors, taking 
the sum of up to 4 target lesions.3 For HGG, it is recom-
mended that only up to 3 target lesions should be used.4 
We chose this approach in order to compare the overall 
performance of the model as a single collective cohort. 
However, there were only 6 MRIs for which 4 or more le-
sions were present, making the effect of this decision on 
the outcomes negligible. In addition, leptomeningeal dis-
ease was not assessed in the spine. Further deep learning 
classification models for leptomeningeal disease using 

spine MRIs should be investigated to supplement our brain 
tumor models for complete RAPNO response assessment. 
Finally, while these data were collected from multiple in-
stitutions, the institutions specifically in Hunan are in 
close proximity to each other and therefore patient demo-
graphics may be similar across these institutions. The tool 
should be validated in larger, prospective studies prior to 
widespread implementation.

In conclusion, we developed a fully automatic pipeline 
for the segmentation of tumors in pediatric MBL, HGG, and 
other leptomeningeal seeding tumors using deep learning. 
We further developed an algorithm that automatically cal-
culates RAPNO scores for segmented tumors. The models 
demonstrate excellent performance in both pre- and post-
operative MRIs, with high agreement in volume estimates 
and RAPNO scores with human experts. Additionally, we 
demonstrate that AutoRAPNO measurements are superior 
to those derived by human experts given the algorithm’s 
ability to more accurately and consistently distinguish sep-
arate lesions. Finally, our study demonstrates that fully au-
tomated deep learning-based pipelines can successfully be 
applied to the pediatric population. This tool may aid clin-
icians and clinical trial investigators in response assess-
ment for pediatric tumors.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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