Skip to main content
. 2022 Jan 18;9:770182. doi: 10.3389/fped.2021.770182

Table 4.

Performance comparison.

Model Precision Sensitivity Specificity F1 score Parameters
ResNet-34
(baseline/student)
0.812 0.845 0.992 0.820 21.3M
ResNeXt-50 0.817 0.830 0.992 0.822 23.0M
Densenet-161 0.865 0.826 0.993 0.838 26.5M
ResNeSt-200 (teacher) 0.856 0.856 0.994 0.854 68.2M
Our model (w/o weight pre-training) 0.833 0.856 0.993 0.841 21.3M
Our model* (w/ weight pre-training) 0.848 0.865 0.994 0.853 21.3M

Bold value indicates the best performance in the corresponding criteria.

*

indicates the proposed method.