Table 4.
Performance comparison.
Model | Precision | Sensitivity | Specificity | F1 score | Parameters |
---|---|---|---|---|---|
ResNet-34 (baseline/student) |
0.812 | 0.845 | 0.992 | 0.820 | 21.3M |
ResNeXt-50 | 0.817 | 0.830 | 0.992 | 0.822 | 23.0M |
Densenet-161 | 0.865 | 0.826 | 0.993 | 0.838 | 26.5M |
ResNeSt-200 (teacher) | 0.856 | 0.856 | 0.994 | 0.854 | 68.2M |
Our model (w/o weight pre-training) | 0.833 | 0.856 | 0.993 | 0.841 | 21.3M |
Our model* (w/ weight pre-training) | 0.848 | 0.865 | 0.994 | 0.853 | 21.3M |
Bold value indicates the best performance in the corresponding criteria.
indicates the proposed method.