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Mammographic screening is aimed at detecting early-
stage breast cancer, which leads to less aggressive treat-

ment and reduced mortality. There is continuous effort to 
find the optimal balance between benefits and harms—
that is, recall rate and cancer detection rate—to maximize 
the effectiveness of screening programs. In Europe, screen-
ing programs use double reading to ensure high accuracy 
for cancer detection while keeping recall rates low, usually 
below 4%, which is two to five times lower than in the 
United States where single reading is the norm (1). Use of 
warnings and markings given by computer-aided detection 
(CAD) has been used for more than 2 decades to optimize 
overall accuracy, and several new systems using artificial 
intelligence (AI) have been recently introduced with an 
ultimate goal of increasing the sensitivity and specificity of 
mammographic screening by supporting or replacing hu-
man radiologist interpretation (2,3).

The Dutch screening program has a unique warning 
system: Specialized mammography technologists preread 
screening examinations to identify and annotate possible 
abnormalities for their interpreting radiologists. This sys-
tem was implemented as an effort to optimize the balance 
between the benefits and harms in the screening program 

while also making the technologists’ role more attrac-
tive. In this issue of Radiology, Geertse et al (4) evalu-
ated the effect of blinding or nonblinding the radiolo-
gists performing initial interpretations to technologists’ 
warning signals. The authors found that blinding versus 
nonblinding readers to the technologists’ prereading find-
ings resulted in a lower recall rate (2.1% vs 2.4%, respec-
tively), a higher positive predictive value of recall (30.6% 
vs 26.2%), and no difference in cancer detection rate (6.5 
vs 6.4 per 1000 screening examinations). The authors 
concluded that prereading of screening mammograms 
by technologists and their warning signals to nonblinded 
radiologists at the start of their initial interpretations did 
not add any benefit to women. Of note, technologists’ 
warning signals were considered for the blinded group at 
quality assurance sessions, where technologists and radi-
ologists were both present after the initial independent 
radiologist interpretations. These consensus sessions led 
to additional recalls and cancer detection for the blinded 
group. However, the overall recall rate remained lower for 
the blinded versus nonblinded group, and the cancer de-
tection rates were not significantly different.

Although the use of technologist prereading may be 
unique to the Dutch screening program, the findings of 
Geertse et al regarding timing and use of outside warn-
ing signals and annotations by interpreting radiologists 
is salient to current efforts in mammographic screening 
technologies. In both its objectives for improved accu-
racy and its process for identifying and alerting the radi-
ologist to areas of potential suspicious imaging findings, 
the Dutch prereading strategy is analogous to CAD 
and newer AI-driven adjunct mammographic screening 
technologies. All of these warning systems are meant 
to help streamline the work of interpreting radiologists 
by helping them focus on the most suspicious area of 
a mammogram. However, as we have learned from the 
study by Geertse et al and seminal studies on the accu-
racy of traditional CAD for mammography, these sys-
tems may not be benefiting interpreting radiologists or 
the women undergoing routine screening (2,5).

One of the most likely reasons for this phenomenon 
is the bias introduced in the human interpretive process 
by early warning signals (6). Radiologists likely focus on 
areas marked as suspicious by an independent reviewer—
whether human or computer—with a higher likelihood of 
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calling back women with mammograms marked as suspicious. 
Providing warning signals to radiologists may lead to their over-
reliance on the signals without maintaining their own vigilance 
in the independent interpretive process, or may reduce their 
attention to other suspicious areas on mammographic images. 
With traditional CAD, studies have demonstrated that there 
were 1.5 to four false-positive markings per screening examina-
tion, leading to more false-positive screening results (7).

The introduction of bias in what is meant to be an inde-
pendent interpretive process for radiologists is an especially im-
portant concern as newer AI technologies for mammographic 
interpretation are gaining regulatory approval and becoming 
commercially available. AI technologies, compared with tradi-
tional CAD or technologist prereading, are being marketed as 
having higher interpretive accuracy than that of radiologist inter-
pretation alone. If adopted and applied broadly based on solely 
these promises, then AI is likely to lead to higher introduction 
of bias or, more specifically, automation bias (6). In automation 
bias, the human interpreter finds it difficult to disagree with 
what is perceived as a smarter and more accurate supercomputer. 
How can a radiologist not call back women with a preannotated 
finding marked as suspicious on the mammogram by algorithms 
that are supposedly more accurate than they are?

The study by Geertse et al also points out the importance 
of when such additional warning signals should be presented to 
radiologists, if at all. In double-reading environments such as 
the Dutch screening program, consensus meetings are meant to 
keep the recall rate low while maintaining appropriate cancer 
detection rates (8). The objective of these meetings is to dese-
lect cases and thereby increase the positive predictive value of 
recalls and the specificity of the screening program. Two human 
interpretations have already been performed and additional as-
sessment by a third radiologist is often used as a tiebreaker for 
recall or no recall. In the study by Geertse et al, the technology 
prescreening results were applied to the blinded group only at 
the consensus stage (4). As we look ahead on how to implement 
AI, this study suggests that one route to diminish automation 
bias at the time of initial interpretation is to hold AI results until 
a later decision point. Perhaps AI should be used to replace the 
consensus process, rather than influencing initial independent 
human interpretation in double-reading settings.

Finally, the Dutch study points out an important aspect of 
warning signals like CAD and AI for mammographic screening: 
the ideal format for informing radiologists with warning signals 

or AI scores (4). The user interface for computer algorithms and 
human radiologists is vastly understudied. Although automation 
bias among radiologists is likely with newer AI technologies for 
mammography, this has not been shown in prospective studies. 
Future research efforts for the optimal user interface for these 
early warning signals are needed prior to their widespread adop-
tion. The findings from the Dutch study suggest availability to 
warning signals should occur after independent interpretation 
to avoid the introduction of interpretive bias. This may be pos-
sible in double-reading environments with consensus but not for 
single-reader environments. Moreover, additional interpretation 
by expert technologists does not appear to add value to mam-
mographic screening programs. Any additional warning signals 
will certainly have to have substantially higher cancer detection 
rates and lower recall rates than radiologists. The optimal tim-
ing and approach for incorporating early warning signals from 
emerging AI tools in both single- and double-reading environ-
ments remain to be determined and are open, critical areas for 
further research.
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