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High-Throughput, Label-Free and Slide-Free Histological
Imaging by Computational Microscopy and Unsupervised
Learning
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Rapid and high-resolution histological imaging with minimal tissue
preparation has long been a challenging and yet captivating medical pursuit.
Here, the authors propose a promising and transformative histological
imaging method, termed computational high-throughput autofluorescence
microscopy by pattern illumination (CHAMP). With the assistance of
computational microscopy, CHAMP enables high-throughput and label-free
imaging of thick and unprocessed tissues with large surface irregularity at an
acquisition speed of 10 mm2/10 s with 1.1-μm lateral resolution. Moreover,
the CHAMP image can be transformed into a virtually stained histological
image (Deep-CHAMP) through unsupervised learning within 15 s, where
significant cellular features are quantitatively extracted with high accuracy.
The versatility of CHAMP is experimentally demonstrated using mouse
brain/kidney and human lung tissues prepared with various clinical protocols,
which enables a rapid and accurate intraoperative/postoperative pathological
examination without tissue processing or staining, demonstrating its great
potential as an assistive imaging platform for surgeons and pathologists to
provide optimal adjuvant treatment.
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1. Introduction

Postoperative histological examination by
pathologists remains the gold standard for
surgical margin assessment (SMA), which
aims to examine if there are any remaining
cancer cells at the cut margin.[1] However,
routine pathological examination based
on formalin-fixed and paraffin-embedded
(FFPE) tissues involves a series of lengthy
and laborious steps (Figure S1a, Support-
ing Information), causing a significant de-
lay (ranging from hours to days) in provid-
ing accurate diagnostic reports. Although
intraoperative frozen section can serve as a
rapid alternative for SMA, it suffers from
freezing artifacts when dealing with edema-
tous and soft tissues, and sub-optimal cut-
ting for fatty tissues, affecting slide interpre-
tation and diagnostic accuracy.[2]

The great demand in histopathology
has inspired lots of efforts in achieving
a rapid and non-invasive diagnosis for
unprocessed tissues. Some cutting-edge

microscopy techniques (Figure S2, Supporting Information) with
optical sectioning capability enable slide-free imaging of thick re-
section specimens, greatly simplifying the procedures associated
with tissue sectioning in conventional FFPE. The scanning-based
depth-resolved approaches, including confocal microscopy,[3,4]

photoacoustic microscopy (PAM),[5,6] multiphoton microscopy
(MPM),[7] stimulated Raman scattering (SRS),[8,9] second har-
monic generation (SHG),[10] and their spectral multiplexing,[11,12]

enables surface profiling of bulk tissues via 2D/3D scanning of
a tightly focused laser beam. However, the imaging throughput
is therefore restricted to tens of megapixels (Figure S2, Support-
ing Information) due to the low repetition rate of pulsed lasers
and long pixel dwell time, posing a challenge to examine large
specimens (e.g., human biopsies) with a centimeter-scale surface
area within a short diagnostic time frame. In contrast, wide-field
depth-resolved techniques, including microscopy with ultravio-
let surface excitation (MUSE),[13,14] light-sheet microscopy,[15,16]

and structured illumination microscopy (SIM),[17–20] are funda-
mentally suitable for time-sensitive applications as their imaging
throughput can reach hundreds of megapixels via parallel pixel
acquisition. However, fluorescence labelling is generally required
by these methods to visualize features that are analogous to FFPE
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histology, which is challenging to be integrated into the current
clinical practice. Given this, label-free imaging contrast is highly
desirable in modern clinical settings.

The aforementioned PAM and nonlinear microscopy play an
indispensable role in non-invasive label-free characterization of
various biological structures, through either absorption-induced
thermoelastic expansion (PAM), intrinsic autofluorescence
(MPM), molecular vibration (SRS), or non-centrosymmetric
orientation (SHG). The simultaneous multiplexing[21,22] of these
methods enables cell phenotyping and classification based on
the targeted biomolecules. However, the low-throughput nature
of these scanning-based imaging modalities ultimately hinders
their clinical translations. In addition, reflectance-based imaging
approaches, such as optical coherence tomography (OCT)[23,24]

and reflectance confocal microscopy (RCM),[25] pave a way for
rapid label-free inspection of human breast tissue. However,
they are typically not designed at subcellular resolution.

Standard histological images are acquired at a subcellular res-
olution which is essential for pathological analysis. However,
the inherent trade-offs between resolution, field-of-view (FOV),
and depth-of-field (DOF) fundamentally pose an impediment for
rapid and high-resolution imaging of thick tissues through a high
numerical aperture (NA) objective lens. First, the image quality
will be significantly degraded once the resulting shallow DOF
(typically a few microns) is shorter than the optical-sectioning
thickness of the employed imaging modality, which is tunable
with light-sheet microscopy and SIM, but tissue-dependent with
MUSE (determined by the ultraviolet (UV) penetration depth
(∼100 μm in human breast[5] and ∼20 μm in human skin[26])).
In addition, the shallow DOF is unable to accommodate various
surface irregularities and tissue debris presented in surgical re-
section specimens, leading to severe out-of-focus blurs which ul-
timately prevent high-quality imaging of fine structures in thick
specimens. Although extended DOF[27] can be applied to extract
in-focus information at the tissue surface through a sequence of
axially-refocused images, the achievable throughput of the sys-
tem is largely sacrificed.

Here, we propose a promising and transformative histologi-
cal imaging technology, termed computational high-throughput
autofluorescence microscopy by pattern illumination (CHAMP),
which enables high-throughput and label-free imaging of thick
and unprocessed tissues with large surface irregularity at an ac-
quisition speed of 10 mm2/10 s with 1.1-μm lateral resolution. To
the best of our knowledge, this is not achievable with any of the
existing methods. Rich endogenous fluorophores,[28] including
reduced nicotinamide adenine dinucleotide (NADH), structural
proteins (e.g., collagen and elastin), aromatic amino acids (e.g.,
tryptophan, tyrosine), and heterocyclic compounds (e.g., flavins,
flavoproteins, and lipopigments), naturally form a fundamental
contrast mechanism with deep-UV excitation in CHAMP. High
imaging throughput and long DOF can be achieved with the as-
sistance of computational microscopy, making CHAMP highly
suitable for intraoperative tissue assessment (e.g., SMA) where
immediate feedback should be provided to surgeons for optimal
adjuvant treatment. Furthermore, an unsupervised neural net-
work is implemented to transform a CHAMP image of an un-
labeled tissue into a virtually stained histological image (Deep-
CHAMP), ensuring an easy interpretation by pathologists. As
thick resection tissues are inevitably deformed during the FFPE

workflow (e.g., rigidity change, tissue shrinkage, tissue rupture,
and slide folding), it is impractical to obtain a pixel-to-pixel regis-
tered label-free CHAMP image with its corresponding histolog-
ical image to form a paired training data as required by some
recently reported virtual staining networks.[29,30] In contrast, we
employ unsupervised learning based on the architecture of a
cycle-consistent generative adversarial network (CycleGAN),[31]

which enables image translation without paired training data,
fundamentally favoring the virtual staining of CHAMP images of
thick and unprocessed tissues. Diagnostic features are quantita-
tively extracted from Deep-CHAMP with high accuracy. The ver-
satility of CHAMP is experimentally demonstrated using mouse
brain/kidney and human lung tissues prepared with various
clinical protocols, which enables rapid and accurate intraopera-
tive/postoperative pathological examinations without tissue pro-
cessing or staining. The high-throughput, high-versatility, cost-
effective, and ease-of-use features of our CHAMP microscope
hold great promise in clinical translations to revolutionize the
current gold standard histopathology.

2. Results

2.1. Histological Imaging by CHAMP Microscopy

Our CHAMP microscope is configured in a reflection mode
(Figure 1a and Video S1, Supporting Information), which can ac-
commodate tissues of any size and thickness without physically
interfering with the illumination and collection optics. Deep-UV
laser at 266 nm, which presents a significant difference in the
quantum yields between nucleotides[32] and other endogenous
fluorophores, is used for illumination in our CHAMP system to
maximize the negative contrast of cell nuclei (Figure S3, Sup-
porting Information). Oblique illumination circumvents the use
of UV-transmitting optics and fluorescence filters because the
backscattered UV light is naturally blocked by the glass objective
and tube lens which are spectrally opaque at 266 nm. A constant
speckle pattern (inset of Figure 1a), which is generated by a dif-
fuser and featured a grain size smaller than the point spread func-
tion (PSF) of the detection optics, is projected onto the bottom
surface of the specimen for pattern illumination. A long DOF
(Figure 1b) enabled by the implementation of a low-NA objec-
tive lens not only matches the optical-sectioning thickness pro-
vided by UV surface excitation, but also accommodates differ-
ent levels of tissue surface irregularities. With intensity modu-
lation, the aperture of the diffraction-limited system (Figure 1c)
is convolved with the spectrum of speckle pattern which con-
tains various frequency components (Figure 1d), and is conse-
quently 2D translated in the Fourier domain, enabling the syn-
thesis of an extended system passband (Figure 1e). This allows
high spatial frequency (i.e., high-resolution features) to be en-
coded into the low-NA imaging system, thus bypassing the res-
olution limit governed by the low-NA objective lens equipped in
the CHAMP microscope. The sample is raster-scanned to gener-
ate a sequence of speckle-illuminated diffraction-limited images
(Figure 1f), which are subsequently demodulated to reconstruct a
resolution-enhanced image (Figure 1g and Video S1, Supporting
Information) (termed CHAMP image hereafter). CHAMP imag-
ing features 2.6× resolution improvement (see Methods, Fig-
ure 1h,j) compared with conventional wide-field microscopy with
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Figure 1. Overview of histological imaging by CHAMP. a) Schematic of the CHAMP system. The beam is expanded by a pair of lenses, and obliquely
reflected onto a diffuser to generate an interference-induced speckle pattern (inset at the top right corner), which is subsequently focused onto the
bottom surface of a specimen by a condenser lens. The excited autofluorescence signal is collected by an objective lens, refocused by a tube lens,
and subsequently detected by a monochromatic camera. The specimen supported by a sample holder is raster-scanned by a 2-axis motorized stage to
generate a sequence of speckle-illuminated diffraction-limited autofluorescence images. b) Illustration of the relationship between DOF, objective NA,
UV penetration depth (i.e., UV optical-sectioning thickness), and tissue surface irregularity. c) The aperture of the diffraction-limited imaging system
with a cut-off frequency of fobj. d) The spectrum of the speckle pattern with a maximum frequency of fpmax

. e) The synthetic aperture (cut-off frequency =
fobj + fpmax

) through intensity modulation by speckle illumination. f) The captured raw image sequence for CHAMP reconstruction. g,h) A reconstructed
resolution-enhanced image (i.e., a CHAMP image) and its corresponding spectrum in Fourier domain, respectively. i,j) Diffraction-limited wide-field
image captured with uniform illumination and its corresponding spectrum in the Fourier domain, respectively. k) Input CHAMP image. l) Virtually
stained Deep-CHAMP image. m) Generated cyclic CHAMP image. n) Input H&E-stained image. o) Generated fake CHAMP image. p) Generated cyclic
H&E-stained image.

uniform illumination (Figure 1i). The reconstructed CHAMP im-
age is subsequently transformed into a virtually stained histo-
logical image (termed Deep-CHAMP image hereafter) through
a CycleGAN-based neural network, which is composed of four
deep neural networks, including two generators (GA2B, GB2A) and
two discriminators (DA, DB). The generator GA2B learns to trans-
form grayscale images to color images, while the generator GB2A
learns to transform color images to grayscale images. A sequence
of unpaired CHAMP images and hematoxylin and eosin (H&E)
stained images are fed to the neural network to undergo a for-
ward training cycle (Figure 1k–m) and a backward training cycle
(Figure 1n–p). The discriminator DA aims to distinguish real in-
put CHAMP images (Figure 1k) from fake CHAMP images (Fig-
ure 1o) produced by the generator GB2A. Meanwhile, the discrimi-
nator DB aims to distinguish real input H&E-stained images (Fig-
ure 1n) from virtually stained Deep-CHAMP images (Figure 1l)
produced by the generator GA2B. Once the generator GA2B can
produce Deep-CHAMP images that the discriminator DB cannot
distinguish from the input H&E-stained images, the transforma-

tion from CHAMP to Deep-CHAMP is well learned by the gener-
ator GA2B. This iterative process is also applicable to the generator
GB2A and the discriminator DA.

2.2. CHAMP and Histological Imaging of Thin Mouse
Brain/Kidney Tissue Slices

FFPE thin slices of mouse brain/kidney tissues are imaged to
validate the performance of CHAMP initially (Figure 2). The
microtome-sectioned thin slices (with thickness ∼7 μm) are de-
paraffinized before CHAMP imaging. Cell nuclei distributed at
the cerebral cortex and brain stem are clearly revealed with a
negative contrast in CHAMP images. With a measured reso-
lution of 1.1 μm (see Methods), the densely packed cell nuclei
in the hippocampus (Figure 2b, and zoomed-in CHAMP im-
ages (Figure 2e,f) of orange solid and dashed regions in Fig-
ure 2b) can be resolved individually. Other anatomical struc-
tures, including lateral ventricle and corpus callosum (Figure 2b),
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Figure 2. CHAMP and histological imaging of thin mouse brain/kidney tissue slices. a) Combined CHAMP and H&E-stained mosaic image of a mouse
brain. b–d) Zoomed-in CHAMP images of blue, red, and green dashed regions in (a), respectively. e,f) Zoomed-in CHAMP images of orange solid and
dashed regions in (b), respectively. g–k) The corresponding H&E-stained images. l) Combined CHAMP and H&E-stained mosaic image of a mouse
kidney. m–o) Zoomed-in CHAMP images of blue, red, and green dashed regions in (l), respectively. p,q) Zoomed-in CHAMP images of orange solid and
dashed regions in (o), respectively. r–v) The corresponding H&E-stained images.

caudoputamen (Figure 2c), and cerebral peduncle (Figure 2d) are
also well recognized. After CHAMP imaging, the slice is histolog-
ically stained by H&E, and imaged with a bright-field microscope
to obtain the corresponding histological images (Figure 2g–k).
The cerebral peduncle, which is poorly visualized in the H&E-
stained image (Figure 2i), can be clearly identified in CHAMP
(Figure 2d). Multiple similarities are revealed in CHAMP and
H&E-stained images, despite that the nucleoli are less visible
in CHAMP. Pearson correlation coefficient of 0.9 is calculated
from Figure 2b,g, validating the feasibility of using tissue’s aut-
ofluorescence as an intrinsic contrast mechanism for label-free
characterization of biological structures. Similarly, CHAMP pro-
vides well-characterized structures of a mouse kidney (Figure 2l–
q), including cortex (Figure 2m), collecting ducts (Figure 2n),
glomerulus and Bowman’s space (Figure 2p), and renal tubules
(Figure 2q). Their corresponding H&E-stained images are shown
in Figure 2r–v. A reduced correlation coefficient of 0.7 is calcu-
lated from Figure 2p,u, which is due to the locally deformed Bow-
man’s space during the subsequent H&E staining after CHAMP
imaging.

2.3. CHAMP Imaging of Thick and Unprocessed Mouse
Brain/Kidney Tissues

To showcase the slide-free and label-free imaging capability
of CHAMP as well as its superiority in thick tissue imaging,
formalin-fixed and unprocessed thick mouse brain/kidney tis-
sues are imaged (Figure 3). The mouse brain tissues are hand-
cut at different coronal planes with thickness ∼5 mm, while
the mouse kidney tissue is vibratome-sectioned with a thick-
ness ∼200 μm. As mentioned above, resolution-enhanced and
all-in-focus (due to the long DOF) CHAMP images (Figure 3a–d)
eliminate any image blur that potentially originated from mis-
matched DOF and UV penetration depth or non-flattened tissue
surface. Zoomed-in CHAMP images of cell nuclei in the hip-
pocampus (Figure 3e,g) and lobules (Figure 3i) far outperform
the corresponding wide-field images which are directly captured
with a 0.3-NA imaging objective (Figure 3f,h,j). The out-of-focus
blurs presented in kidney tubules (Figure 3m,n) are eliminated in
CHAMP images (Figure 3k,l) such that individual cells are clearly
observed in the entire FOV.
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Figure 3. CHAMP imaging of thick and unprocessed mouse brain/kidney tissues. a–c) CHAMP images of fixed and unprocessed mouse brain tissues
hand-cut at different coronal planes with thickness ∼ 5 mm. d) CHAMP image of a fixed and unprocessed mouse kidney tissue sectioned with thickness
∼200 μm. e,g,i,k,l) Zoomed-in CHAMP images of orange dashed regions in (a–d). f,h,j,m,n) The corresponding wide-field images captured with a 0.3-NA
imaging objective with uniform illumination.

2.4. CHAMP and Deep-CHAMP Imaging of Tissues Treated with
Various Clinical Protocols

CHAMP and Deep-CHAMP imaging is experimentally validated
with mouse brain/kidney tissues and human lung cancer tissues
which are treated with various clinical protocols, e.g., microtome-
sectioned thin tissue slice (Figure S4, S5 and Video S2, Support-
ing Information), formalin-fixed thick tissues (Figure 4 and Video
S3, Supporting Information, Figure 5, Figure S6 and Video S4,
Supporting Information), as well as freshly excised tissues (Fig-
ure 6, Figure S7, Supporting Information). We trained two neu-
ral networks to separately handle the virtual staining of fixed and
fresh mouse brains due to the significant difference in CHAMP
images. In addition, we found the overall trend for the Cycle-
GAN is that it converts brighter regions to white background,
and darker regions to purple nuclei. Therefore, dark features in
CHAMP (e.g., interstitial spaces, ventricles, and vessels) can be
incorrectly color mapped to purple and mixed with cells. To allevi-
ate this issue, the CHAMP image is segmented by a pre-trained
classifier to separate cell nuclei from features that demonstrate
similar brightness. After that, the segmented CHAMP image is
cropped and fed into the network to output a virtually stained
Deep-CHAMP image.

In Figure 4, the freshly excised mouse brains are fixed in for-
malin for 24 h to prevent tissue degradation, after which the
specimens are manually sectioned without any further process-
ing (Figure 4a), or processed and paraffin-embedded as a block
tissue (Figure 4p). The specimens are imaged by CHAMP and
virtually stained to generate the corresponding Deep-CHAMP
images (Figure 4d–i,s–v), and are subsequently processed by a
standard histological procedure to obtain the H&E-stained im-

ages for comparison (Figure 4j–o,w–z). Note that the microtome-
sectioned FFPE thin slice is not able to exactly replicate the
surface imaged by CHAMP due to the tissue deformation and
the difference in imaging thickness. Despite this difference, the
structural features are still remarkably similar.

As an initial clinical value validation of CHAMP and Deep-
CHAMP, a thin human lung cancer tissue with large cell carci-
noma is first imaged (Figure S5). Both CHAMP, Deep-CHAMP,
and H&E-stained images outline a clear interface between the
normal and tumor regions (Figure S5a–c, Supporting Informa-
tion). The alveoli structures with air spaces are shown in the
Deep-CHAMP image of the normal lung tissue region (Figure
S5e, Supporting Information). Although the alveoli septa appear
slightly thicker than that of the H&E-stained image (Figure S5f,
Supporting Information), it still falls well within the spectrum
of normal morphology, and the airway looks essentially identical.
For the tumor region, large cancer cells can be easily observed in
all three sets of images (Figure S5g–i, Supporting Information).

To further demonstrate the powerfulness of CHAMP and
Deep-CHAMP imaging in an intraoperative setting, a formalin-
fixed and thick human lung adenocarcinoma tissue is imaged
(Figure 5a,b) with the corresponding H&E-stained image as a
reference (Figure 5c). The CHAMP and Deep-CHAMP images
(Figure 5d–f) show the loss of alveoli, replaced by cancer tis-
sue arranged in mostly acini structure separated by desmoplas-
tic stroma. The acini structures are lined by cancerous pneumo-
cytes showing nuclear atypia, which is a sign of cellular dysreg-
ulation and is often related to cancer development. The degree
of nuclear atypia visualized by Deep-CHAMP is similar to that in
the H&E-stained images (Figure 5g–i). Overall, the destruction of
the architecture and nuclear atypia depicted in Deep-CHAMP are
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Figure 4. CHAMP and Deep-CHAMP validation with formalin-fixed thick mouse brains. a) CHAMP (top) and Deep-CHAMP (middle) images of a fixed
and unprocessed mouse brain, inset at the bottom left of the CHAMP image shows the photograph of the specimen (the yellow dashed box shows the
mouse brain that is imaged). The corresponding H&E-stained thin slice image (bottom). b,c) Zoomed-in CHAMP images of green and blue dashed
regions in (a), respectively. d–f,g–i) Zoomed-in CHAMP and Deep-CHAMP images of yellow solid, orange dashed, and magenta dashed regions in (b)
and (c), respectively. j–o) The corresponding H&E-stained images. p) CHAMP (top) and Deep-CHAMP (middle) images of a fixed and paraffin-embedded
mouse brain, inset at the bottom left of the CHAMP image shows the photograph of the specimen. The corresponding H&E-stained thin slice image
(bottom). q,r) Zoomed-in CHAMP images of green and blue dashed regions in (p), respectively. s–v) Zoomed-in CHAMP and Deep-CHAMP images of
yellow solid and orange dashed regions in (q) and (r), respectively. w–z) The corresponding H&E-stained images.
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Figure 5. CHAMP and Deep-CHAMP validation with a formalin-fixed and unprocessed human lung tissue. a,b) CHAMP and Deep-CHAMP images
of a formalin-fixed and unprocessed human lung tissue with adenocarcinoma, respectively. c) The corresponding H&E-stained thin slice image. d–f)
Zoomed-in CHAMP and Deep-CHAMP images of orange solid, blue dashed, and green dashed regions in (a), respectively. g–i) The corresponding
H&E-stained images.

sufficient to reach a diagnosis of adenocarcinoma by a pathologist
with minimal difficulty.

In Figure 6, freshly excised mouse brains are rinsed in
phosphate-buffered saline to remove adhesive blood on the cut
surface, and blotted up before imaging. The specimens are im-
aged by CHAMP and virtually stained to generate the correspond-
ing Deep-CHAMP images (Figure 5f,g,j,k). After that, the spec-
imens are processed following the standard procedure to ob-
tain the H&E-stained images (Figure 5h,i,l,m). Despite the tis-
sue deformation and shrinkage of fresh brains (the percentage of
shrinkage is ∼40% in our experiments), the histological features
are still considerably similar. It should be noted that cell nuclei
located at heavily myelinated regions are partially obscured due
to the strong scattering in fresh brain tissues.

In addition to fresh mouse brain, CHAMP and Deep-CHAMP
imaging are also applied to a fresh mouse kidney (Figure S7, Sup-
porting Information). The densely packed cell nuclei along kid-
ney tubules are well-identified in CHAMP (Figure S7b–e, Sup-
porting Information). These CHAMP images are first fed to the
virtual staining network trained for fresh mouse brain to ob-
tain “brain-style” Deep-CHAMP images (Figure S7f–i, Support-

ing Information), which are subsequently input to another unsu-
pervised network trained for style transformation (see Methods),
to generate “kidney-style” Deep-CHAMP images (Figure S7j–m,
Supporting Information). This bridge network allows style trans-
formation among different types of tissues without the need for
retraining on specific tissue, demonstrating great simplicity and
flexibility of the unsupervised neural networks. Note that intri-
cate renal tubules and vessels in a fresh kidney pose a great
challenge for feature segmentation, which consequently leads to
some staining artifacts in the generated Deep-CHAMP images
(indicated by the arrows in Figure S7, Supporting Information).

Diagnostic features, such as cross-sectional area and intercel-
lular distance of the cell nuclei, play an important role in tis-
sue phenotyping and histologic tumor grading.[33,34] These fea-
tures can be quantitatively extracted from Deep-CHAMP with
high accuracy. As shown in Figure 7, nuclear features are derived
from FFPE thin mouse brain/kidney slices (Figures S4g,m and
S4t,x, Supporting Information), and formalin-fixed and unpro-
cessed thick mouse brain/kidney tissues (Figure 4i,o and Figure
S6f,j, Supporting Information). Wilcoxon rank-sum testing is ap-
plied to evaluate the difference in nuclear features extracted from
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Figure 6. CHAMP and Deep-CHAMP validation with freshly excised mouse brains. a–c) CHAMP images of freshly excised mouse brains, inset at the
bottom left of each figure shows the photograph of the specimen (the yellow dashed box indicates the mouse brain that is imaged). d,e) Zoomed-in
CHAMP images of green dashed regions in (a) and (b), respectively. f,g) Zoomed-in CHAMP and Deep-CHAMP images of orange regions in (d) and (e),
respectively. h,i) The corresponding H&E-stained images. j,k) Zoomed-in CHAMP and Deep-CHAMP images of green dashed and orange solid regions
in (c), respectively. l,m) The corresponding H&E-stained images.

Deep-CHAMP and gold standard H&E-stained images. Our re-
sults show that the distributions of cross-sectional area and inter-
cellular distance extracted from Deep-CHAMP agree fairly well
with the H&E-stained images in both thin and thick tissue speci-
mens. Although cell counting may be slightly affected by feature
segmentation, the distributions of nuclear features still support
the accuracy of the information that can be extracted from the
Deep-CHAMP. These results are highly encouraging and sug-
gest that CHAMP/Deep-CHAMP can be potentially translated
into the current histopathological practice to alleviate the work-
load involved in the frozen section or FFPE tissue preparation
(Figure S1b, Supporting Information).

3. Discussion

CHAMP is a promising and transformative histological imag-
ing technology that enables rapid, label-free, and high-resolution
imaging of thick and unprocessed tissues, holding great promise
to streamline the standard-of-care histopathology. However, there
are still challenges ahead as CHAMP and H&E-stained images
exhibit some deviations. First, the nucleoli structures are bet-
ter visualized in H&E-stained images than that in CHAMP un-
der the same magnification (e.g., Figures 2f,k, and 4v,z). This is

likely because the fluorescence property of nucleoli in the de-
tected spectral range is not chemically identical to H&E histo-
logical stains. Second, the densely packed cell nuclei in the hip-
pocampus are less distinguishable in CHAMP compared with
the clinical standard images in fresh tissue (e.g., Figure 6f,h).
This may be attributed to the difference in the imaged thickness
(tens of micrometers in CHAMP versus 7 μm in H&E-stained
images). Third, fiber tracts are better visualized in CHAMP than
that in H&E-stained images (e.g., Figures 2b–d,g–i, and 5d–f, g–
i). This is possibly due to the proteins in these fibrous structures
present a high quantum yield under deep-UV excitation while
eosin exhibits a similar affinity as with cytoplasm. Fourth, pyra-
midal cell nuclei in the hippocampus are better identified in the
H&E-stained images than that in Deep-CHAMP (Figure 6f–i).
This is a limitation of the current unsupervised network, which
tends to learn better from image brightness than structures even
though the structural similarity loss is implemented in the net-
work (see Section 4). Thus, Deep-CHAMP is less effective to
preserve fine structures with low image contrast. Furthermore,
the pyramidal cell nuclei are with less population, causing in-
sufficient data for training. Therefore, we believe that integrat-
ing a large training dataset or imposing weak/semi-supervision
to the current network could be a solution for this problem. In
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Figure 7. Distributions of nuclear features extracted from Deep-CHAMP and clinical standard images. a–d) Intercellular distances extracted from thin
mouse brain/kidney slices (a,b) and formalin-fixed thick mouse brain/kidney tissues (c,d), respectively. e–h) Cross-sectional areas extracted from thin
mouse brain/kidney slices (e,f) and formalin-fixed thick mouse brain/kidney tissues (g,h), respectively. Wilcoxon rank-sum testing is carried out across
groups with n = 50 for each distribution. The significance is defined as p* ≤ 0.05 in all cases.

addition, equipping CHAMP with higher optical-sectioning capa-
bility is feasible to mitigate the thickness-induced deviations be-
tween Deep-CHAMP and H&E-stained images. The axial super-
resolution contents can be provided by 3D structured illumina-
tion approaches,[35,36] which could potentially facilitate a more
comprehensive specimen analysis.

Although an exogenous contrast agent is not required for
CHAMP imaging, significant variations in autofluorescence in-
tensity can still be observed in CHAMP as the excitation light
is scattered/absorbed differently among various tissue types
and functional areas (e.g., white matter and gray matter of the
brain).[37] The fluorescence properties of intrinsic fluorophores,
such as excitation/emission maximum and quantum yield, are
highly related to the biochemical environment and disease status.
For instance, tissue fixation by using formaldehyde or glutaralde-
hyde leads to a significant increase in autofluorescence intensity,
especially in the kidney and spleen. However, this has little ef-
fect on the Deep-CHAMP images as the fluorescence intensity
increases for the entire image, and hence, the relative variation is
minimal. For disease status, we found that the membrane of alve-
olar macrophages in cancerous human lung tissues is highly flu-
orescent with deep-UV excitation (indicated by arrows in Figure
S5d). Still, the nuclei are dark with high consistency, which is es-
sential for the high-quality virtual staining (Figure S5e,f, Support-
ing Information). In addition, a transitory decrease in autoflu-
orescence, which is related to UV-induced photo-oxidation,[38]

can occur at the beginning of UV radiation. With continuous
exposure, the intensity is progressively increased, and the re-

sulting homogenously distributed autofluorescence adversely de-
grades the negative contrast that can be observed in the CHAMP
images. This could potentially be a problem for Deep-CHAMP
as the current virtual staining network achieves color transfor-
mation primarily based on the image brightness. We believe
that this issue can be addressed with neural network develop-
ment. Situations are more complicated in fresh tissues, where
different levels of local hemorrhage can occur during excision
with biopsy forceps, and the consequent attenuation of radia-
tion due to the absorption by non-fluorescent chromophores like
hemoglobin[39] should also be taken into account. The proposed
method is at an early stage of development. The influence of aut-
ofluorescence variability on the diagnosis of various organs and
diseases still requires large-scale clinical studies. The reliability
of CHAMP/Deep-CHAMP can be further improved by (i) the as-
sistance of autofluorescence spectroscopy, as metabolic enzymes
such as NADH and FAD can effectively serve as a biomarker to
differentiate normal tissues from malignant lesions,[28] and by
(ii) the development of deep-learning algorithms.

CHAMP can potentially reach higher imaging speed to further
shorten the diagnostic timeframe for more time-sensitive appli-
cations. Currently, the imaging speed is limited by the exposure
time of each speckle-illuminated image, which is nearly 280 ms
with an illumination power of 2 mW to maintain a good signal-
to-noise ratio (SNR). The acquisition speed can be further accel-
erated by increasing excitation power. Another limiting factor is
the number of acquisitions that are required for super-resolution
reconstruction. The minimum number of acquisitions is related

Adv. Sci. 2022, 9, 2102358 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2102358 (9 of 14)



www.advancedsciencenews.com www.advancedscience.com

to the sparsity of the imaged features. According to our exper-
iments, a sufficiently large scanning range (greater than twice
the length of the low-NA diffraction-limited spot size) and fine
scanning steps (smaller than the targeted resolution) can reduce
distortions in the reconstruction. 2.6× resolution improvement
can be obtained through at least 36 speckle-illuminated (average
grain size ∼ 1.3 μm) autofluorescence images without obvious
degradation in the reconstructed CHAMP image. The system can
be further optimized to balance the achievable resolution and ac-
quisition speed for a specific application. Note that the compu-
tational efficiency may be a dominant impediment for CHAMP
imaging, which takes ∼50 s/10 mm2 due to the use of an itera-
tive reconstruction framework that involves a massive number of
Fourier transformations. This issue can be potentially addressed
by the implementation of powerful computational resources or
the introduction of a deep-learning approach,[40] which allows
super-resolution reconstruction with a reduced number of acqui-
sitions under low light conditions. This is expected to dramat-
ically speed up structured illumination approaches and release
the computational burden of CHAMP imaging.

It should be admitted that the CycleGAN-based network
faces difficulty to differentiate features that demonstrate similar
brightness (e.g., cell nuclei with interstitial spaces, ventricles, and
vessels), which can lead to some staining artifacts (as indicated by
the arrows in Figures S4 and S7, Supporting Information). We be-
lieve that integrating weakly-/semi-supervised data or introduc-
ing a saliency constraint[41] would help to address this problem,
further improving the accuracy of Deep-CHAMP images. Virtual
staining through unsupervised learning should be systematically
investigated in the future to enable a faithful conversion, which,
however, is beyond the scope of this study.

In summary, we propose a revolutionary and transforma-
tive histological imaging technology that enables rapid, label-
free, and high-resolution imaging of thick and unprocessed tis-
sues with large surface irregularity. The versatility of CHAMP
is experimentally demonstrated, which enables rapid and accu-
rate pathological examination without tissue processing or stain-
ing, demonstrating great potential as an assistive imaging plat-
form for surgeons and pathologists to provide optimal adjuvant
treatment intraoperatively. To show the diagnostic reliability of
CHAMP/Deep-CHAMP, large-scale clinical trials should be car-
ried out as follow-up work. Moreover, computer-aided diagnoses
could be incorporated with CHAMP/Deep-CHAMP to further
improve the efficiency of the current clinical workflow.

4. Experimental Section

Collection of Biological Tissues: The animal organs were ex-
tracted from C57BL/6 mice. For fresh animal tissues (Figure 6
and Figure S7, Supporting Information), the brain/kidney were
harvested immediately after the mice were sacrificed and rinsed
in phosphate-buffered saline for a few seconds, and then blot-
ted up with laboratory tissue for CHAMP imaging. To prepare
fixed and unprocessed tissues (Figures 3,4a, 5, and Figure S6,
Supporting Information), the freshly excised tissues were fixed in
4% neutral-buffered formalin at room temperature for 24 h, and
manually sectioned with ∼5-mm thickness or sectioned by a vi-
bratome (VF-700-0Z, Precisionary Instruments Inc.) with ∼200-
μm thickness. To prepare paraffin-embedded tissue (Figure 4p),

the formalin-fixed tissues were processed with dehydration, clear-
ing, and infiltration by a tissue processor (Revos, ThermoFisher
Scientific Inc.) for 12 h, and paraffin-embedded as a block spec-
imen. To prepare thin tissue slices (Figure 2 and Figures S4,S5,
Supporting Information), the paraffin-embedded block tissues
were sectioned at the surface with ∼7-μm thickness by a micro-
tome (RM2235, Leica Microsystems Inc.). The thin tissue slices
were stained by H&E, and subsequently imaged by a digital slide
scanner (NanoZoomer-SQ, Hamamatsu Photonics K.K.) to gen-
erate the histological images. Human lung cancer tissues were
obtained from lung cancer patients who underwent curative lung
cancer surgery at the Queen Mary Hospital. Following lung lobec-
tomy, the lung cancer tissues were cut with a scalpel from the
resected lobe, subsequently fixed in formalin, and transported
to the lab for imaging. After CHAMP imaging, the tissues were
processed by the standard histological procedure to obtain the
H&E-stained images. All animal experiments were carried out
in conformity with a laboratory animal protocol approved by the
Health, Safety and Environment Office (HSEO) of Hong Kong
University of Science and Technology (HKUST) (licence num-
ber: AH18038), whereas all human experiments were carried out
in conformity with a clinical research ethics review approved by
the Institutional Review Board of the University of Hong Kong/
Hospital Authority Hong Kong West Cluster (HKU/HA HKW)
(reference number: UW 20–335), and informed consent was ob-
tained from all lung cancer tissue donors.

Reflection-Mode CHAMP System: As shown in Figure 1a, a
nanosecond UV pulsed laser is used as the excitation source
(266 nm wavelength, WEDGE HF 266 nm, Bright Solutions Srl.),
which is spectrally filtered by a bandpass filter (FF01-300/SP-
25, Semrock Inc.) and expanded by a pair of lenses (LA4647-UV
and LA4874-UV, Thorlabs Inc.). After that, the expanded beam is
obliquely reflected by a UV mirror (PF10-03-F01, Thorlabs Inc.)
and projected onto a diffuser (DGUV10-600, Thorlabs Inc.) to
generate a constant speckle pattern, which is subsequently fo-
cused onto the bottom surface of a specimen by a condenser lens
(LA4148-UV, Thorlabs Inc.) with an illumination power of 2 mW.
The excited autofluorescence signal is detected by an inverted
microscopy system which consists of a plan achromat infinity-
corrected objective lens (RMS4X, NA = 0.1, Thorlabs Inc.) and
an infinity-corrected tube lens (TTL180-A, Thorlabs Inc.), and fi-
nally imaged by a monochrome scientific complementary metal-
oxide-semiconductor (sCMOS) camera (PCO edge 4.2, 2048 ×
2048 pixels, 6.5-μm pixel pitch, PCO Inc.). In this experiment, the
specimen was 2D raster-scanned by a 2-axis motorized stage (L-
509.20SD00, PI miCos GmbH) with a scanning interval of 1 μm.
A sequence of speckle-illuminated diffraction-limited autofluo-
rescence images were recorded by the sCMOS camera which was
synchronized with the motor scanning via our lab-designed Lab-
VIEW software (National Instruments Corp.) and triggering cir-
cuits. 36 speckle-illuminated raw images were generally required
to generate a CHAMP image in this study. The data acquisi-
tion time for each raw image was set to 280 ms (250-ms camera
integration time plus 30-ms stage settling time) to balance be-
tween the image SNR and acquisition speed, which can reach 10
mm2/10 s under this setting.

Super-Resolution Reconstruction Framework: Extended DOF
enabled by the implementation of a low-NA imaging objective in
the CHAMP microscope not only matched the optical-sectioning
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thickness provided by UV surface excitation, but also accom-
modated different levels of tissue surface irregularities. To by-
pass the resolution limit set by the low-NA objective and max-
imize the achievable imaging throughput, structured illumina-
tion with a constant speckle pattern was implemented. Unde-
tectable high-frequency information can be multiplexed into the
low-NA imaging system through intensity modulation, where
the fluorescent specimen was illuminated with non-uniform
intensity-varied patterns, including sinusoidal stripe,[42,43] mul-
tifocal spot,[44,45] or random speckle patterns.[46–51] The pro-
cesses of intensity modulation with uniform illumination, lin-
ear/nonlinear sinusoidal stripe, and random speckle pattern
were respectively demonstrated in Figure S8, Supporting Infor-
mation. The highest achievable resolution through structured il-
lumination was determined by the reciprocal of Fourier space
bandwidth, which is given by 𝜆/2(NAobj + NAillu), where 𝜆 was
the fluorescence emission wavelength, and NAobj and NAillu were
the numerical apertures of the detection objective lens and il-
lumination pattern, respectively. The resolution improvement
through conventional SIM with epi-fluorescence configuration
was restricted to 2× as the illumination NA was also restricted
by the detection objective (Figure S8e–h, Supporting Informa-
tion). The adoption of high-frequency sinusoidal harmonics gen-
erated by nonlinear fluorescence response allowed reaching be-
yond 2× resolution enhancement[52,53] (Figure S8i–l, Supporting
Information). However, the photodamage and photobleaching
associated with high-power excitation will hinder its biomedical
applications. Recent studies showed that 4× resolution improve-
ment can be achieved through an off-axis projection of a set of
frequency-multiplexed sinusoidal patterns.[54] However, the sys-
tem complexity was inevitability increased, and the transmission-
based configuration restricts its application only to thin
samples.

For simplicity and flexibility, oblique illumination with a con-
stant speckle pattern, which featured a grain size smaller than
the PSF of the detection optics, was implemented in CHAMP
to obtain beyond 2× resolution enhancement. In addition, with
the assistance of UV surface excitation, this method is applica-
ble to unprocessed and unlabeled tissues with any thickness,
which is not achievable with the existing super-resolution SIM
systems. Unlike SIM with sinusoidal illumination, where super-
resolution demodulation can be achieved through a one-step
analytic inversion with a few raw images, SIM with speckle
illumination (e.g., CHAMP, Figure S8m–p) fails to establish a
direct inversion relationship, thus requiring more redundant
acquisitions to isotropically fill the Fourier space. Note that even
with prior information based on speckle statistics[49,55,56] and
sample sparsity[50,57], multifold resolution gain was not exper-
imentally achievable with fully-randomized speckle patterns
due to the ill-posed nature in this situation, that is, N intensity
measurements were captured with N+1 unknown variables to be
solved (N illumination patterns plus one sample distribution).
To address this issue, illuminating with a constant speckle
pattern that is translated between measurements, as opposed
to randomly changing speckle patterns, was utilized in this
report.[46,51,58]

The CHAMP reconstruction framework is based on a
momentum-assisted regularized ptychographic iterative
engine,[59] which is a well-developed inversion solver with

significantly improved robustness that enables rapid conver-
gence to a lower error (10 iterations are generally sufficient in
the experiments). The flowchart of the reconstruction algorithm
is shown in Table S1, Supporting Information. Before recon-
struction, the raw images were flattened to correct illuminance
non-uniformity. Then, the scanning trajectory (xj,yj) of the
specimen was pre-estimated by cross-correlation of the captured
raw images.[60] Note that the sampling rate is a prerequisite
for digital image reconstruction. Undersampling issue, which
occured in the CHAMP system as the sampling pixel size is
larger than half of the PSF size of the low-NA detection optics,
will lead to pixel aliasing and consequently generate artifacts in
the reconstruction. To tackle this issue, a sub-sampled method[61]

was introduced. The algorithm was run on a workstation with
a Core i9-10980XE CPU @ 4.8GHz and 8×32GB RAM, and
4 NVIDIA GEFORCE RTX 3090 GPUs, which takes ∼50 s/10
mm2 for computation.

Note that the resolution improvement is theoretically infinite,
which, however, will be experimentally restricted by the speckle
contrast on the specimen. In principle, a condenser lens with
higher illumination NA enables higher achievable resolution at
the expense of more acquisitions. However, the resulting highly
compressed speckle pattern not only causes a vignetting effect
which darkens the corners of the captured autofluorescence im-
ages, but also degrades the speckle contrast due to the natural de-
cay governed by the incoherent optical transfer function. There-
fore, the system can be optimized to balance the tradeoffs be-
tween target resolution, acquisition speed, and computational ef-
ficiency for various applications. In this work, 2.6× resolution
gain was achieved via 36 speckle-illuminated (average grain size
∼1.3 μm) diffraction-limited images that were raster-scanned
with 1-μm scanning interval. CHAMP enables rapid and label-
free imaging of thick and unprocessed tissues with large surface
irregularity at an acquisition speed of 10 mm2/10 s with 1.1-μm
lateral resolution (Figure S9, Supporting Information), leading
to a high imaging throughput of ∼200 megapixels (throughput is
defined by the ratio of attainable FOV per minute to the square of
the half-pitch resolution, thus the throughput of CHAMP is cal-
culated as 60 mm2 / (1.1 μm/2)2 ≈ 200 megapixels. The through-
put across different imaging modalities is compared in Figure
S2, Supporting Information).

The spatial resolution of CHAMP was measured by imaging
500-nm-diameter fluorescent beads (B500, excitation/emission:
365/445 nm, Thermo Fisher Scientific Inc.) (Figure S9, Support-
ing Information). The Gaussian-fitted data show that the full
width at half maximum is 1.1 μm in the reconstructed CHAMP
image while 2.9 μm in the diffraction-limited wide-field image,
demonstrating 2.6× resolution enhancement through speckle il-
lumination.

Virtual Staining through Unsupervised Learning: Figure S10,
Supporting Information shows the architecture of the generator
and discriminator networks. The objective of CycleGAN contains
two types of loss functions — adversarial loss[62] and cycle con-
sistency loss. [31] For adversarial loss, the objective of the discrim-
inator Y (DY) is calculated as:

LGAN

(
G, DY , X, Y

)
= Ey→pdata(y)

[
logDY (y)

]

+Ex→pdata(x)

[
log

(
1 − DY (G (x))

)]
(1)
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Similarly, the objective of the discriminator X (DX) is:

LGAN

(
F, DX , X, Y

)
= Ex→pdata(x)

[
logDX (x)

]

+Ey→pdata(y)

[
log

(
1 − DX (F (y))

)]
(2)

Cycle consistency loss, which is applied to monitor the training
process, is calculated as:

Lcyc (G, F) = Ex→pdata(x)
[‖F (G (x)) − x‖]

+Ey→pdata(y)

[‖G (F (y)) − y‖] (3)

In addition, structural similarity index measure (SSIM),[63]

which predicts the perceived quality based on illuminance, con-
trast, and structure, is appended to the aforementioned loss func-
tions. The SSIM loss is calculated as:

Lssim (G, F) =
(

1 − Ex→pdata(x)
[SSIM (x, G (x))]

)

+
(

1 − Ey→pdata(y)

[
SSIM (y, F (y))

])
(4)

The overall objective for our virtual staining network is the
weighted sum of the four loss functions, which is given by:

l
(
G, F, DX , DY

)
= LGAN

(
G, DY , X, Y

)
+ LGAN

(
F, DX , X, Y

)
+𝜆Lcyc (G, F) + 𝛾Lssim (G, F) (5)

where 𝜆 is set to 10 and 𝛾 is set to 2. The network is imple-
mented with Python version 3.7.3 and Pytorch version 1.0.1. The
software is implemented on a desktop computer with a Core i7-
9700K CPU@ 3.6GHz and 64GB RAM, running on an Ubuntu
18.04.2 LTS operation system. The training and testing are per-
formed by an NVIDIA Titan RTX GPU with 24 GB RAM, which
allows operating on ∼25 megapixels/s for testing (including GPU
computing and time to write to hard disk).

For virtual staining network of fixed mouse brains, the train-
ing data consists of 1600 unpaired CHAMP and H&E-stained
images, where CHAMP images were collectively obtained from
fixed, thick/thin mouse brains, and histological images were col-
lected from H&E-stained thin mouse brain slices which contain
similar features as the CHAMP images. For the virtual stain-
ing network of fresh mouse brains, the training data consists of
800 unpaired CHAMP and H&E-stained images, where CHAMP
images were collectively obtained from freshly excised mouse
brains. For the style transformation network, the training data
consists of 800 unpaired “brain-style” Deep-CHAMP images and
H&E-stained images of thin mouse kidney slices, where Deep-
CHAMP images were the output from the fixed mouse brain net-
work with the CHAMP images of mouse kidney used as the in-
put. The training details and convergence plots can be found in
Figure S11, Supporting Information.

To show the wide applicability of the unsupervised network,
the fixed mouse brain/kidney tissues with various thicknesses
were utilized for cross validation. The resulting virtually stained
Deep-CHAMP images are enumerated in Figure S12, Supporting
Information. It is emphasized that the CycleGAN-based network

enables image translation without paired training data, thus fun-
damentally favoring the virtual staining of CHAMP images of
thick and unprocessed tissues. The network was trained with the
hybrid CHAMP images of unprocessed/processed, thick/thin tis-
sues that can exhibit differences in terms of cellular morphol-
ogy, image contrast, and brightness, thus demonstrating strong
applicability in different tissue thicknesses (Figure S12i,j, Sup-
porting Information). In addition, the bridge network enables
style transformation from “brain-style” Deep-CHAMP images
(Figure S12k,l, Supporting Information) to “kidney-style” Deep-
CHAMP images (Figure S12m,n, Supporting Information) with-
out the need for retraining a kidney network. Because of this,
cross-organ validation with CycleGAN is feasible. This transfor-
mation is also applicable to other different types of tissues as long
as the CHAMP images of these tissues do not show a significant
difference with the mouse brain, showing the great simplicity
and flexibility of the unsupervised neural network.

Calculations of Cross-Sectional Area and Intercellular Distance
and Statistical Analysis: Deep-CHAMP and H&E-stained histo-
logical images were segmented by a free Fiji plugin, trainable
Weka segmentation,[64] which enables to produce pixel-based
segmentations. Based on the resulting probability maps, images
were subsequently converted to a binary image where cell nuclei
can be identified. The binarized Deep-CHAMP and H&E-stained
images were analyzed in Fiji, where the cross-sectional area and
centroid of each nucleus were provided. With the localized center
positions of the cell nuclei, the intercellular distance was calcu-
lated to be the shortest adjacent distance to a neighboring cell nu-
cleus. A two-sided Wilcoxon rank sum test was carried out across
groups with n = 50 for each distribution of cross-sectional area
and intercellular distance. No assumptions were made on data
distributions. The significance was defined as p* ≤ 0.05 in all
cases. Statistical analysis was carried out using MATLAB (MAT-
LAB R2018b, MathWorks, Inc).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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