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Deep learning (DL) has achieved promising
performance in detecting common abnormalities
from the 12-lead electrocardiogram (ECG). However,
diagnostic redundancy exists in the 12-lead ECG,
which could impose a systematic overfitting on
DL, causing poor generalization. We, therefore,
hypothesized that finding an optimal lead subset of
the 12-lead ECG to eliminate the redundancy would
help improve the generalizability of DL-based models.
In this study, we developed and evaluated a DL-based
model that has a feature extraction stage, an ECG-
lead subset selection stage and a decision-making
stage to automatically interpret multiple common
ECG abnormality types. The data analysed in this
study consisted of 6877 12-lead ECG recordings from
CPSC 2018 (labelled as normal rhythm or eight types
of ECG abnormalities, split into training (approx.
80%), validation (approx. 10%) and test (approx.
10%) sets) and 3998 12-lead ECG recordings from
PhysioNet/CinC 2020 (labelled as normal rhythm or
four types of ECG abnormalities, used as external
text set). The ECG-lead subset selection module was
introduced within the proposed model to efficiently
constrain model complexity. It detected an optimal
4-lead ECG subset consisting of leads II, aVR, V1 and
V4. The proposed model using the optimal 4-lead
subset significantly outperformed the model using
the complete 12-lead ECG on the validation set and
on the external test dataset. The results demonstrated
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that our proposed model successfully identified an optimal subset of 12-lead ECG; the
resulting 4-lead ECG subset improves the generalizability of the DL model in ECG abnormality
interpretation. This study provides an outlook on what channels are necessary to keep and
which ones may be ignored when considering an automated detection system for cardiac ECG
abnormalities.

This article is part of the theme issue ‘Advanced computation in cardiovascular physiology:
new challenges and opportunities’.

1. Introduction
Over the past decades, computerized interpretation of the electrocardiogram (CIE) has been
introduced to clinical settings for aiding the physician’s interpretation. However, achieving
physician-level accuracy in detecting cardiac arrhythmias is challenging for current CIE [1].
Conventional CIE relies on domain expert knowledge to engineer useful features based on the
electrocardiogram (ECG) data, but it faces the challenge of feature quality and robustness [2]. In
recent years, substantial advances in CIE have been made, driven primarily by deep learning (DL)
[3]. DL is a representation-learning method, a subfield in machine learning that allows a machine
to be fed raw data and automatically discover the representations, namely features needed for
detection or classification [4]. DL enables an ‘end-to-end’ paradigm, which can take large amounts
of the original data as input and output its decision without domain expert knowledge. With this
‘end-to-end’ approach and the widespread digitization of ECG data, DL substantially improves
the accuracy of heart rhythm interpretation [3,5–7].

A major challenge in machine learning is overfitting, which happens because a model is
picking up some patterns that are just caused by random chance rather than by true properties
of the unknown relationship [8]. This phenomenon is most likely to happen when the amount
of training data is not much larger than the number of extracted features, causing poor
generalization [2,8]. In the conventional CIE, techniques like dimensionality reduction [9,10]
and feature selection [11,12] have been applied to reduce the model complexity for good
generalization. Deep neural networks (DNNs) have a huge number of parameters, compared
with conventional machine learning models, and a much stronger ability to recognize patterns
from the input data. However, DNNs have a much higher chance to encounter the overfitting
problem. Computer scientists and mathematicians have made numerous efforts to restrict the
solution space of DL models for better generalization, such as L1/L2 regularization [13], dropout
[14] and early stopping [15].

The necessity to tackle the overfitting problem is critical for DL-based CIE, especially for
interpreting the 12-lead ECG. Compared with single-lead ECG, the 12-lead ECG provides a more
comprehensive evaluation of cardiac electrical activity in clinical settings [7]. However, diagnostic
redundancy exists in the 12-lead ECG (particularly in the frontal leads); thus, when using the
complete 12-lead ECG as input to train DL models, a systematic overfitting problem is often
encountered. The systematic overfitting problem in CIE caused by the redundancy in the 12-
lead ECG has been mostly ignored until recently. Van de Leur et al. [16] trained a DNN using the
eight independent ECG leads for automatic ECG interpretation. Zhou et al. [17] suggested that a
DL model could have better generalizability when using an optimal ECG-lead subset obtained
from the 12-lead ECG but did not prove it. Therefore, DL-based CIE would likely benefit in
generalizability from eliminating redundancies in the 12-lead ECG and determining what ECG
leads constitute an optimal subset.

In this study, we aimed to solve the signal-level ECG classification problem for ECG
abnormality detection, with a focus on addressing the issue of overfitting and generalizability
of DL-based CIE. We hypothesized that finding an optimal ECG-lead subset to eliminate the
diagnostic redundancy would decrease overfitting and improve the generalizability of the
DL-based CIE. To test the hypothesis, a DL-based model was developed that has multiple
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stages for automated interpretation of eight ECG abnormality types: atrial fibrillation (AF),
first-degree atrioventricular block (I-AVB), left bundle branch block (LBBB), right bundle
branch block (RBBB), premature atrial contraction (PAC), premature ventricular contraction
(PVC), ST-segment depression (STD) and ST-segment elevated (STE). The model incorporates a
forward stepwise subset selection approach that iteratively finds single-lead ECGs that improve
the classification performance most to determine an optimal ECG-lead subset for the ECG
abnormality interpretation. We trained the proposed model on a dataset and evaluated it on an
independent external dataset. We show that using an optimal ECG-lead subset (leads II, aVR, V1,
V4) results in better generalizability of the proposed model compared with using the complete
12-lead ECG.

2. Methods

(a) Data description and preparation
In this study, two datasets were used for model development and evaluation: the China
Physiological Signal Challenge 2018 (CPSC 2018) dataset [18] and the PhysioNet/Computing
in Cardiology (CinC) 2020 dataset [19,20]. Table 1 presents the details of the two datasets,
including recording lengths and annotations. The CPSC 2018 dataset consists of 6877 12-lead
ECG recordings from 477 subjects recorded at the sampling rate of 500 Hz. The recordings were
annotated as normal rhythm or eight common abnormality types: AF, I-AVB, LBBB, RBBB, PAC,
PVC, STD and STE. The PhysioNet/CinC 2020 dataset consists of 3998 12-lead ECG records
sampled at 500 Hz. The ECGs were annotated as normal rhythm or four common abnormality
types: AF, AVB, BBB and ST-segment changes (STC).

The CPSC 2018 dataset was divided into a training set (approx. 80% = 5492 recordings),
a validation set (approx. 10% = 693 recordings) and a held-out test set (approx. 10% = 692
recordings). A multi-stage DL-based model was trained to detect 8 ECG abnormality types on the
CPSC 2018 dataset. The PhysioNet/CinC 2020 dataset served as an external test set to evaluate
the generalizability of the trained multi-stage DL-based model. Due to the difference in labels
between the CPSC 2018 dataset and the PhysioNet/CinC 2020 dataset, during the external test on
the PhysioNet/CinC 2020 dataset, we merged the proposed model decision of LBBB and RBBB as
BBB, and also merged STD and STE as STC.

(b) Multi-stage DL-based model development
We developed a multi-stage DL-based model to automatically detect ECG abnormality types,
which takes as input the raw 12-lead ECG data with variable length and outputs an abnormality
interpretation for the whole signal. The proposed model, illustrated in figure 1a, consists of three
modules: (i) a feature extraction module that automatically extracts features from each lead of the
raw 12-lead ECG data, (ii) an optimal ECG-lead subset selection module that is used to find an
optimal minimal lead subset and (iii) a decision-making module that uses features extracted from
the optimal ECG-lead subset to interpret ECG abnormality types.

(i) Feature extraction module

First, a single-lead feature extraction neural network (f FE) was developed. We next deployed
12 such single-lead neural networks of the same architecture in the feature extraction module
and passed separately each of the leads of the 12-lead ECG to one of the networks. The single-
lead ECG signals as inputs to the networks are represented in the form of one-dimensional
time-varying potential signals XECG with a variable length of time. The architecture of the single-
lead neural network consisted of a residual convolutional neural network (ResCNN) (f ResCNN)
[3,21] and a long short-term memory (LSTM) layer (f LSTM) [22]. In the architecture, the ResCNN
detected local features of the single-lead ECG signals and compressed them into a sequence of
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Figure 1. (a) The multi-stage DL-based model for ECG abnormality classification consists of a feature extraction module, an
optimal ECG-lead subset selection module and a decision-making module. The blocks with max pooling shortcuts are the
residual blocks. BN, batch normalization layer; Conv, convolutional layer; ReLU, rectified linear unit activation; LSTM, long short-
termmemory layer; AF, atrial fibrillation; I-AVB, first-degree atrioventricular block; LBBB, left bundle branch block; RBBB, right
bundle branch block; PAC, premature atrial contraction; PVC, premature ventricular contraction; STD, ST-segment depression;
STE, ST-segment elevated. (b) An illustration of the forward stepwise subset selectionprocess. In each step, the candidate single-
lead ECG that introduces the greatest performance improvement, i.e. the one with the smallest p-value< 0.05, is selected to
the target set. (Online version in colour.)

feature vectors (z1, z2, . . . , zn). The length of the sequence depends on the length of the input
signal; the dimensionality of the feature vectors depends on the number of filters used in the
convolutional layers. The LSTM layer directly connected to the end of ResCNN then fused the
sequence of time-distributed features from the ResCNN into aggregated features, which were
contained in a fixed-length vector ZECG and represented signal features of this single-lead ECG.
The process is represented as

ZECG = fFE(XECG) (2.1)

and
fFE(XECG) = fLSTM[fResCNN(XECG)] = fLSTM[(z1, z2, . . . , zm)]. (2.2)

Lastly, there was a fully connected dense layer using the aggregated features to interpret
eight ECG abnormality types. The ECG abnormality interpretations of the 12 single-lead feature
extraction networks obtained in the training process, termed intermediate interpretations in this
study, were not part of the final interpretations.

The details of the single-lead feature extraction network are as follows. There were nine
residual blocks, and each residual block had two convolutional layers. Each convolutional layer
had 32 filters with a width of 5. Within each residual block, the first and the second convolutional
layers were performed with a stride of 1 and 2, respectively. The shortcut connection of each
residual block had a max-pooling layer with a pool size of 2. In this manner, every residual
block downsampled its inputs by a factor of 2. Following each convolutional layer, a rectified
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linear unit (ReLU) activation [23] and a batch normalization layer [24] were applied. The ReLU
reduced the vanishing gradient problem and created sparsity, allowing for fast and effective
training of DNNs. The batch normalization layer standardized the inputs and helped stabilize the
parameter updating procedure. Within each residual block, a dropout layer [14] with a probability
of 0.3 was applied as a regularization method to improve generalization. Finally, an LSTM layer
with a size of 32 and a dense layer with an output size of 9 followed by the convolutional
residual blocks were applied to interpret eight ECG abnormality types. The dense layer had a
sigmoid activation, which allowed the network to detect each ECG abnormality type in a binary
classification manner and learn to classify recordings with multiple labels. The hyperparameters
above characterizing the network architecture are tuned with a grid search method. The major
hyperparameters considered in the grid search tuning include the number of residual blocks, the
number of convolutional filters, the probability of dropout and the size of LSTM layer.

(ii) Optimal subset selection and decision-making modules

A forward stepwise subset selection method [8], as illustrated in figure 1b, was used to find an
optimal ECG-lead subset of the 12-lead ECG. Briefly, we iteratively selected a stepwise optimal
single-lead ECG from the 12-lead ECG until the addition of any single-lead ECG no longer
improved the classification performance significantly. Specifically, we divided the 12-lead ECG
into a target set and a candidate set. Initially, the target set was null, and the candidate set
contained the complete 12-lead ECG. In each step, we tested the addition of each single-lead
ECG from the candidate set to the target set by training a decision-making classifier with random
initialization of weights 10 times independently and evaluating it on the validation set each time.
We used F1 score to measure the multi-class classification performance (see Model evaluation
section for details about the scoring function), thus, in each step, we had 10 estimates of the
validation F1 score from the 10 independent trainings for the addition of each candidate single-
lead ECG. We conduct the two-sample t-test between two groups of F1 scores using, respectively,
the target set and the target set with the addition of a candidate single-lead ECG. From the two-
sample t-test, a p-value measuring the statistical improvement of F1 scores were calculated for
the addition of each candidate single-lead ECG. Among all the candidate single-lead ECGs, we
chose the one whose inclusion gave the model the most statistically significant improvement
of validation F1 score, i.e. the one with smallest p-value < 0.05. That single-lead ECG was then
moved from the candidate set to the target set. When the addition of any single-lead ECG could
not improve the model to a statistically significant extent for a 0.95 confidence, i.e. the p-values
for all candidate single-lead ECGs were greater than 0.05, we took the selected target set to be the
optimal ECG-lead subset of 12-lead ECG. After finding an optimal ECG-lead subset, we continued
the process above until all the 12-lead ECGs were added into the target set to see what change
would be brought to the model by additional single-lead ECGs.

A feed-forward neural network (FNN) was used as the decision-making classifier, which
interpret ECG abnormality types from extracted ECG features. The FNN consists of an input
layer with variable size based on the number of ECG leads incorporated, a hidden layer with a
size of 64, a following hidden layer with a size of 32, and an output layer with a size of 9 and
a sigmoid activation. The hyperparameters for this FNN, including the number of hidden layers
and the size of each hidden layer, are selected using grid search tuning to maximize the classifier’s
performance. The FNN took concatenated features from selected ECG leads and outputted an
interpretation of ECG abnormality types as probabilities. We set a probability threshold of 0.5
and accepted the ECG abnormality types with probabilities higher than the threshold to turn
the probability outputs into one-hot encoded labels, with each digit corresponding to one ECG
abnormality type in a binary format.

(c) Training strategies
The 12 single-lead feature extraction neural networks and the FNN classifier were trained with
Xavier initialization of the weights [25] and Adam optimizer with the default parameters (β1 = 0.9
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Algorithm 1. Forward stepwise subset selection.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variables:

SCandidate—Candidate set

STarget—Target set

XECG—Single-lead ECG

F1ECG—F1 scores for the addition of single-lead ECG

F1best,i—The best F1 scores in step i

PECG—The p-value measuring the improvement for the addition of single-lead ECG

Xbest, i—The best single-lead ECG in step i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pseudo code:

Initialize

SCandidate = {XI, XII, XIII, XaVR, XaVL, XaVF, XV1, XV2, XV3, XV4, XV5, XV6}, STarget = {∅}, F1best, 0 = 0

For i in 1:12

For XECG in SCandidate

Calculate F1ECG by training a model using STarget + XECG for 10 times

Calculate PECG by conducting t-tests between F1best,i−1 and F1ECG

If min (PECG)< 0.05

Xbest,i = argmin(PECG)

Remove Xbest,i from SCandidate, Add Xbest,i to STarget

F1best,i = F1Xbest,i

Else

Break

Output STarget as the optimal subset
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and β2 = 0.999) [26]. The training of models in this study suffers from class imbalance problems
as revealed in table 1. For each class of abnormalities, the negatively labelled recordings greatly
outnumbered the positively labelled recordings. The weighted binary cross entropy (WCE) as a
loss function was used to tackle the problem of class imbalance.

WCE = −
∑

c={AF,I−AVB, LBBB,...}

{
wc

nc∑
i

[yc,i log(p(yc,i)) + (1 − yc,i) log(1 − p(yc,i))]

}
, (2.3)

where nc is the number of signals labels as ECG abnormality class c; yc,i is the true label of the
ith signal in class c; p(yc,i) is the signal’s predicted probability for the ECG abnormality class;
wc = 0.5(

∑
cnc)/nc is the class weight used to balance the contribution from each ECG abnormality

class to WCE.
During training, an adaptive learning rate was applied by tracking the validation loss. The

adaptive learning rate was initialized as 0.001 and decayed by a factor of 10 when the validation
loss did not improve for three consecutive epochs. A maximum epoch limit is set to 100 and
an early stopping strategy [15] with a patience of 10 epochs was used to prevent overfitting.
Most training experiments stopped within 50 epochs by the early stopping strategy and the
maximum epoch limit was never reached. All experiments were conducted on a workstation
with AMD Ryzen 7 2700X 8-Core CPU @ 4.00 GHz, 64 GB RAM and NVIDIA GeForce RTX
2060 GPU.
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(d) Model evaluation
In the study, the held-out internal test set (approx. 10% of CPSC 2018) and the external
PhysioNet/CinC 2020 dataset were used to evaluate the classification performance of the multi-
stage DL-based model trained from the CPSC 2018 dataset (approx. 80%). The F1 score and AUC
(area under the receiver operating characteristic (ROC) curve/sensitivity versus 1 − specificity
curve) were adopted for evaluating the classification performance. The F1 score and ROC curves
were calculated from true positive (TP), true negative (TN), false positive (FP) and false negative
(FN).

precision = TP
TP + FP

, (2.4)

recall = sensitivity = TP
TP + FN

, (2.5)

specificity = TN
TN + FP

(2.6)

and F1 = 2

recall−1 + precision−1
= TP

TP + (1/2)(FP + FN)
. (2.7)

We calculated class-specific F1 scores and AUC for each ECG abnormality type with a one-versus-
rest strategy [27,28], i.e. considering each class of ECG abnormality as a binary classification
problem, which measured the ability of detecting each specific abnormality from the whole
population. We also calculated overall F1 scores in the multi-class classification problem,
measuring the ability in correctly detecting all ECG abnormality types. For the recordings with
multiple labels, their contributions to the overall F1 scoring function were normalized to ensure an
equal contribution from each recording. For example, if a recording has six labels, and our model
identifies three labels correctly, identifies one label incorrectly and misses two labels, then we
increase the TP by 3/6, FP by 1/6, FN by 2/6 for the F1 scoring functions, respectively. Statistical
comparisons of the multi-stage DL-based model performance metrics using either the optimal
ECG-lead subset or the complete 12 lead includes firstly testing the normality of the data using
the Shapiro–Wilk test, and then testing the difference through the independent two-sample t-test
if the data is normally distributed or through the nonparametric Mann–Whitney U-test if the data
is not normally distributed.

3. Results

(a) Optimal ECG-lead subset selection
Figure 2 illustrates the forward stepwise subset selection process that (i) the F1 score increases
on the training set with the addition of single-lead ECGs, and (ii) the F1 score increases on the
validation set at first but remains within stable ranges on the validation set (F1 = 0.789–0.799) and
the held-out test set (F1 = 0.760–0.770) after ECGs from four leads are added. Statistical results
yield that the four single-lead ECGs (leads II, aVR, V1, V4) improved the validation F1 scores
significantly (p < 0.05), and the addition of another single-lead ECG did not improve the model
significantly afterwards. This result suggested that the proposed model was picking up patterns
that were not generalizable after the model complexity exceeds a particular interval (marked by
green in figure 2). In other words, although the extra complexity (e.g. adding additional single-
lead ECGs) enabled the proposed model to build more complicated relationships on the training
set, it could not generalize well to the validation set and the test set.

(b) Performance evaluation
We evaluated the classification performance of the multi-stage DL-based model on the held-out
test set using the optimal ECG-lead (II, aVR, V1, V4) subset. In figure 3a, a heat map shows the
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Figure 2. Optimal ECG-lead subset selection by the forward stepwise subset selection method. The table at the bottom
shows the single-lead ECGs selected in every step and the p-values quantifying the improvements they caused. Significant
improvement is defined as p-value< 0.05. (Online version in colour.)

interpretation output in probabilities of the ECG abnormality types for 692 recordings on the
held-out test set. The heatmap illustrates that the multi-stage DL-based model correctly detected
AF, I-AVB, LBBB and RBBB with high probabilities. The ROC curves plotted in figure 3b highlight
that the detection of AF, LBBB and RBBB had AUC greater than 0.99 on the held-out test set,
reflecting an excellent classification. The probability outputs in the heatmap (figure 3a) also
illustrated that the proposed model was able to identify concurrent abnormalities in agreement
with the statistics of the multi-labelled recordings in the CPSC 2018 dataset. Particularly, many AF
recordings and PAC recordings were detected to have high probabilities for RBBB, which agrees
with the statistical findings that AF/RBBB (172 recordings out of 476 multi-label recordings) and
PAC/RBBB (55 recordings) are the first and second most common concurrent pairs in the dataset,
respectively.

Table 2 reports comparisons of the ECG abnormality classification performance of the
proposed model using the optimal 4-lead subset and the complete 12-lead ECG. All the data
groups are tested to be normally distributed in the Shapiro–Wilk test. On the CPSC 2018 dataset,
using the optimal 4-lead subset was significantly better than using the complete 12-lead ECG
for classifying the eight common ECG abnormality types on the validation set (F1 score = 0.802
versus F1 score = 0.789, p-value = 0.000); there was no statistical difference in performance on
the held-out test set. On the external test dataset, the model with the optimal 4-lead subset
significantly outperformed the model using the complete 12-lead ECG (F1 score = 0.547 versus
F1 score = 0.537, p-value = 0.000) for detecting four ECG abnormality types. The results suggest
that the multi-stage DL-based model with a 4-lead (II, aVR, V1, V4) subset selection had better
generalizability on the validation set and on the external test set.

4. Discussion
In this study, we developed a novel multi-stage DL-based model for automatic ECG abnormality
classification. An optimal ECG-lead subset selection module was introduced to regularize the
proposed model for improving generalizability. The results show that using the optimal ECG-
lead subset outperforms significantly the use of the complete 12-lead ECG on the external test
set, which supports our hypothesis that eliminating the redundancy can decrease overfitting and
improve generalizability. To our knowledge, this is the first study to integrate a forward stepwise



10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200258

...............................................................

probability heat map on test set

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

AF

AF

I-AVB

I-AVB

LBBB

RBBBLBBB

normal

normal

model interpretation

PAC

PAC

PVC

PVC

RBBB

tr
ue

 la
be

l

STD

STD

STE
STE

(a)
(b)

se
ns

iti
vi

ty
se

ns
iti

vi
ty

se
ns

iti
vi

ty

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

validation
test

AF

0.5 1.0 0 0.5 1.0 0 0.5 1.0
1–specificity

0.5 1.0
1–specificity

0.5 1.0
1–specificity

se
ns

iti
vi

ty

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0
1–specificity

se
ns

iti
vi

ty

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0
1–specificity

se
ns

iti
vi

ty

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0
1–specificity

se
ns

iti
vi

ty

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0
1–specificity

1–specificity 1–specificity

AUC = 0.976
AUC = 0.997

AUC = 0.958
AUC = 0.951

AUC = 0.917
AUC = 0.891

AUC = 0.93
AUC = 0.947

AUC = 0.927
AUC = 0.918

AUC = 0.969
AUC = 0.961

AUC = 0.984
AUC = 0.99

1.0

se
ns

iti
vi

ty

0.2

0.4

0.6

0.8

1.0

AUC = 0.981
AUC = 0.983

se
ns

iti
vi

ty

0.2

0.4

0.6

0.8

1.0

AUC = 1
AUC = 0.999

I-AVB LBBB

normal PAC PVC

RBBB STD STE

AUC = 0.927
AUC = 0.918

Figure 3. Evaluation of ourmodel using the optimal ECG-lead subset (II, aVR, V1, V4) in the classification of the ECG abnormality
types. (a) A heat map illustrates the interpretation output in probabilities of the ECG abnormality types on the held-out test set
using the optimal ECG-lead subset. From a vertical view, the distribution of the bright bars in a column reflects the performance
of detecting a specific ECG abnormality from population. For instance, in the column of LBBB, the bright bars aligned well with
the true LBBB patients, reflecting an excellent performance in LBBB detection. From a horizontal view, whether bright bars
concentrate in the correct column reflects the performance of classifying a recording to its true abnormality class out of nine
labels. For instance, in the rows of AF patients, the bright bars concentrated in the AF column correctly, but there are several
bright bars in the RBBB column, which could be due to multi-labelled recordings or misclassification. (b) ROC curves show the
classification performance of our model for interpreting each of the ECG abnormality types on the validation and held-out test
sets. (Online version in colour.)

Table 2. A comparison of our model’s overall F1 scores between using the optimal ECG-lead subset and using the complete
12-lead ECG on different datasets. p-values were calculated using the independent two-sample t-test between the overall F1
scores using the optimal 4-lead ECGandusing the complete 12-lead ECG. Ap-value< 0.05means the optimal 4-lead ECG system
provides a significant improvement in classifying ECG abnormalities over the complete 12-lead ECG.

datasets

F1 scores using
the optimal
4-lead ECG

F1 scores using
the complete
12-lead ECG p-value

CPSC 2018 (8 ECG abnormality types) validation 0.802± 0.004 0.789± 0.004 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

held-out test 0.764± 0.005 0.769± 0.005 0.123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PhysioNet/CinC 2020 (4 ECG abnormality types) external test 0.547± 0.001 0.537± 0.001 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

subset selection method with a DL-based model for ECG abnormality classification. Most studies
previously attempted to overcome overfittings using general computational and mathematical
techniques that were not task-specific. In addition to the common techniques used to overcome
overfitting, the optimal ECG-lead subset selection algorithm we developed is specifically tailored
to the 12-lead ECG and improves the generalizability of the DL-based CIE using a new approach.
This study provides an outlook on what leads are necessary to keep and which ones may be
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ignored when considering an automated detection system for the cardiac ECG abnormalities at
hand.

In the feature extraction module of the proposed model, we deployed a novel DNN that
integrated a ResCNN with an LSTM, a type of recurrent neural network (RNN), to automatically
extract high-quality features from arbitrary-length ECG signals. Although CNNs and RNNs
have been separately applied in CIE in previous studies [3,6,29], there were limitations. CNNs
require fixed-length input data when dealing with varied-length ECG signals, which could cause
information loss or noise added. RNNs are capable of processing ECG signals with an arbitrary
length, but they are considered to be less powerful than CNNs across a wide range of tasks [30].
Therefore, our DNN, as a combination of a CNN and an RNN, has the complementary advantages
of these two networks, achieving efficient feature extraction.

The optimal 4-lead subset obtained by this data-driven approach provides valuable insights
for CIE when considering an automatic system for ECG abnormality detection. As a 4-lead
subset, it consisted of two limb leads, II and aVR, which contained all information needed
to derive the other four limb leads, and two unipolar precordial leads V1 and V4, providing
assessments in the horizontal plane from the vantage points of the septal surface and the anterior
ventricular wall, respectively. The quasi-orthogonal four leads (leads II, aVR, V1 and V4) play
a particularly important role in the ECG abnormality classification. Lead II, which is favoured
among the 12 leads by physicians for a quick impression of an ECG recording due to its clearest
signal [31], had decent overall performance here in classifying the eight ECG abnormality types.
Lead V1 used in the clinic to detect RBBB by recognizing the distinct ‘m-shaped’ ‘RSR’ complex
marker [32] exhibited supreme performance in classifying RBBB here. Although lead aVR is
historically ignored in clinical practice, it is a valuable lead to diagnose acute coronary syndromes
and narrow complex tachycardia [33,34]. As a comparison, lead I, which is used in the Apple
Watch [35] and KardiaMobile [36] for AF detection, achieved ordinary performance in our study.
Furthermore, our results indicated that the lead aVR performed ECG abnormality classifications
with appreciable accuracy and thus deserves a further study.

The presented optimal subset selection module could be further improved. Currently, it
selected a general ECG-lead subset optimized from a training set to classify all the ECG
abnormality types. However, the clinical diagnostic criteria of cardiac arrhythmia types are often
lead-specific, so a future research direction would be to select class-specific ECG-lead subsets
rather than one general ECG-lead subset, which could improve the classification performance and
provide more valuable insights. In addition, the resulting optimal 4-lead subset depends on the
eight types of ECG abnormalities on our training dataset (AF, I-AVB, LBBB, RBBB, PAC, PVC, STD
and STE). The optimal ECG-lead subset may change when considering new ECG abnormalities
types or on new datasets. Finally, compared with an exhaustive search of all possible ECG-
lead combinations, the presented forward stepwise subset selection algorithm provides a
more efficient way to selectively search the solution space, but the result may not be global
optimal.

There are several limitations to the study. Firstly, there are major difficulties in comparing
our results with other studies in ECG interpretation. The values of performance metrics we
reported cannot be compared directly due to the difference between the datasets or the different
strategies of the metric calculation. Chen et al. [37] won the CPSC 2018 competition on 12-lead
ECG interpretation with an overall F1 score of 0.837. Their classification of AF also ranked first in
AF detection with an F1 score of 0.933. Although we used the same CPSC 2018 dataset, the results
they reported were based on a hidden test set that was unavailable to us. Secondly, we split the
CPSC 2018 dataset by signals but not by individual patients due to difficulties in tracking the
patient of each ECG signal. In addition, the proposed multi-stage DL-based model had a relatively
poor performance in detecting STE. The poor performance in detecting STE may be in part due to
disagreements among physicians in interpreting STE [38] or the scarcity of data (STE had the least
number of recordings in this dataset). Finally, the data analysed in this study had varying signal
quality and were labelled by different physicians with various criteria, which may influence the
performance of our model.
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5. Conclusion
This study addressed the issue of overfitting and generalizability of DL-based CIE. To improve
the generalizability, an ECG-lead subset selection module within a novel multi-stage DL-based
model eliminated the redundancies of the 12-lead ECG. The subset selection module determined
an optimal 4-lead subset (leads II, aVR, V1, V4), from which the model classifies ECG abnormality
types significantly better than the classification from the complete 12-lead ECG. The results
demonstrated the efficacy of the proposed subset selection approach and the feasibility of
representing a complete 12-lead ECG by the optimal 4-lead subset to improve DL models’
generalizability in the ECG abnormality classification.
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