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Aphasia recovery after stroke depends on the condition of the remaining, extralesional brain network. Network control theory (NCT)
provides a unique, quantitative approach to assess the interaction between brain networks. In this longitudinal, large-scale, whole-brain
connectome study, we evaluated whether controllability measures of language-related regions are associated with treated aphasia recov-
ery. Using probabilistic tractography and controlling for the effects of structural lesions, we reconstructed whole-brain diffusion tensor
imaging (DTI) connectomes from 68 individuals (20 female, 48 male) with chronic poststroke aphasia who completed a three-week lan-
guage therapy. Applying principles of NCT, we computed regional (1) average and (2) modal controllability, which decode the ability of
a region to (1) spread control input through the brain network and (2) to facilitate brain state transitions. We tested the relationship
between pretreatment controllability measures of 20 language-related left hemisphere regions and improvements in naming six months
after language therapy using multiple linear regressions and a parsimonious elastic net regression model with cross-validation. Regional
controllability of the inferior frontal gyrus (IFG) pars opercularis, pars orbitalis, and the anterior insula were associated with treatment
outcomes independently of baseline aphasia severity, lesion volume, age, education, and network size. Modal controllability of the IFG
pars opercularis was the strongest predictor of treated aphasia recovery with cross-validation and outperformed traditional graph theory,
lesion load, and demographic measures. Regional NCT measures can reflect the status of the residual language network and its interac-
tion with the remaining brain network, being able to predict language recovery after aphasia treatment.
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Predicting and understanding language recovery after brain injury remains a challenging, albeit a fundamental aspect of
human neurology and neuroscience. In this study, we applied network control theory (NCT) to fully harness the concept of
brain networks as dynamic systems and to evaluate their interaction. We studied 68 stroke survivors with aphasia who under-
went imaging and longitudinal behavioral assessments coupled with language therapy. We found that the controllability of
the inferior frontal regional network significantly predicted recovery in language production six months after treatment.
Importantly, controllability outperformed traditional demographic, lesion, and graph-theoretical measures. Our findings
shed light on the neurobiological basis of human language and can be translated into personalized rehabilitation approaches. /
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Introduction

Language is a central aspect of human interaction, and aphasia
(language impairment) is associated with severe decrements in
quality of life (Wade et al., 1986). Some individuals with chronic
aphasia (ie., lasting more than six months) can significantly
improve with language therapy (Wade et al.,, 1986). However,
treatment outcomes are vastly different across individuals.
Unfortunately, the underlying neurobiological mechanisms sup-
porting recovery are not fully understood. A better understand-
ing of this problem could help elucidate how the brain adapts to,
and recovers from, injury.

It stands to reason that language recovery depends, at least to
some extent, on the brain structures preserved after the stroke,
particularly on the structural networks integrating these struc-
tures. Earlier studies have corroborated the prediction that resid-
ual white matter connections are an important factor predicting
treated aphasia recovery (Turken and Dronkers, 2011; Baldo et
al,, 2013; Bonilha et al.,, 2014a, 2016; Mirman et al., 2015; Dragoy
et al., 2017; Pustina et al,, 2017; Xing et al.,, 2017; Meier et al,,
2019). For instance, when white matter connecting the inferior
frontal cortex or the temporal cortex is damaged after a stroke,
aphasia severity and language treatment outcomes are consider-
ably poor, even when these gray matter structures are preserved
(Bonilha et al., 2014a, 2016; Gajardo-Vidal et al., 2021). Further,
perilesional and associative brain networks have been identified
as sites for brain plasticity related to aphasia recovery (Meinzer
et al., 2004; Lidzba et al., 2012; McKinnon et al., 2017; Stockert et
al,, 2020).

However, it remains challenging to understand the complex
interactions between residual networks. In this context, recent
methodological improvements in the investigation of the neuro-
biology of neuronal networks may provide further insight. First,
using diffusion magnetic resonance imaging (MRI), it is now
possible to track mesoscopic and macroscopic pathways across
the entire human brain, ie., the structural brain connectome
(Hagmann et al., 2008), and to map the impact of the stroke
lesion on the connectome (Gleichgerrcht et al., 2017). Second,
mathematical models of complex systems and networks, which
have been validated in multiple complex biological systems, can
be applied to investigate the brain connectome.

There are multiple approaches to neuronal network modeling
(Rubinov and Sporns, 2010). A recently developed framework is
network control theory (NCT; Gu et al., 2015). NCT is based on
the notion that the brain is a dynamic system transitioning
through different activation patterns (brain states) over time.
These activation patterns give raise to complex behavioral func-
tions, such as language (Karrer et al, 2020). NCT quantifies
brain network properties based on the dynamic interactions of
regions with the entire network. NCT provides a computational
framework to formalize how functional brain dynamics arise
from the underlying network structure (Karrer et al., 2020), and
can be applied to neuroscientific inquiry (Gu et al., 2015, 2017;
Bernhardt et al.,, 2019; Karrer et al,, 2020). In the context of
NCT, a structural brain network is defined as controllable if it is
possible to steer such a network into various active “states,”
defined as coordinated ensembles of neurophysiological activity
across brain regions at a specific time point (Karrer et al., 2020).
Naturally, specific orchestrations of brain states may subserve
different functions or behaviors (Karrer et al., 2020). Based on
the structural embedding of a region within the brain network,
its ability may differ from other regions to distribute activity
through the remaining network, and thus, its ability to influence
activity within other regions. Recently, Gu et al. (2015) proposed
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that cognitive control may be successfully explained by network
controllability properties of specific brain regions that could steer
the brain network from one state to a target cognitive state.
Moreover, Medaglia et al. (2018) demonstrated in healthy indi-
viduals a relationship between regional controllability of the infe-
rior frontal gyrus (IFG) and naming performance in open and
closed response tasks. This study also demonstrated that regional
controllability measures of the IFG explained individuals’ change
in performance as a response to transcranial magnetic stimula-
tion (TMS) intervention. Thus, prior evidence exists linking re-
gional controllability of the language network to language
performance at baseline and as a response to intervention.
However, to our knowledge, the application of controllability
measures in individuals with stroke is not established. In post-
stroke rehabilitation, identifying mechanisms that predict an
individual’s language performance in chronic stroke and months
after treatment is of high clinical importance but remains chal-
lenging to this date. In this study, we assessed whether measures
of regional controllability of the language network may close this
gap of knowledge and provide essential information to predict
treated aphasia recovery.

We hypothesized that aphasia recovery depends not only on
the number of residual white matter fibers extending to language
regions (node strength), but also on the condition (topology) of
the residual network. More specifically, we hypothesized that re-
gional network controllability of language related regions would
be more strongly associated with recovery than lesion volume,
the number of residual white matter connections, or graph theo-
retical measures of network integration. Should this hypothesis
be evinced by the data, it would support the concept that the dy-
namics of interaction between language regions and the remain-
ing network is an important mechanism underlying recovery.

To test this hypothesis, we examined (1) whether residual
brain networks with stroke lesions are controllable in the formal
sense of NCT, and (2) whether controllability features of specific
regions in the residual language network predict treated language
recovery after stroke.

Materials and Methods

We studied data from 74 participants who were part of a Phase II
randomized controlled clinical trial (RCT) assessing the role of anodal
transcranial direct current stimulation (A-tDCS) as an adjunct to aphasia
treatment (Fridriksson et al., 2018a, 2019). The inclusion criteria of the
RCT specified that participants must have sustained a one-time stroke in
the left-hemisphere. Participants were excluded if they had a history of
significant cerebral microangiopathy, dementia, brain surgery, concur-
rent neurologic disorders, seizures during the previous 12 months, or
used medications that lower the seizure threshold. For this study, we fur-
ther excluded participants with hemorrhagic strokes (n=2) or missing
diffusion tensor imaging (DTI) data (n=2). All participants had a
chronic ischemic stroke in the left hemisphere, were previously right-
handed and were diagnosed with aphasia according to the cutoff for
aphasia of the Western Aphasia Battery (Revised; WAB-R; Kertesz,
2007).

In this current study, the main variable of interest is not the effect of
tDCS, but the effect of language therapy, which was administered to all
participants, regardless of study condition. Participants completed three
weeks of computerized language training focused on lexical-semantic
processing through a word-picture matching task (Fridriksson et al.,
2018a). Participants were seated in front of a computer and instructed to
indicate via pressing a green or red button if a spoken word matched
with a picture displayed on the computer screen. The spoken words
were presented as an audio signal via headphones and as a visual signal
displaying the face of the speaker on the computer screen. Immediate
feedback was provided whether the participant pressed the correct
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C Lesion co-registration

Image processing steps. A, All participants underwent a structural brain MRI scan at baseline. B, Stroke lesions were manually drawn on each participant’s T2-weighted image. C,

Lesion maps were coregistered to the participant’s diffusion-weighted image. D, Each participant’s T1-weighted image was segmented into 104 gray matter ROIs with the JHU anatomic atlas;
the segmentation maps were registered into diffusion space. E, Probabilistic tractography was computed between every possible gray matter region pair resulting in a 104 x 104 weighted,
undirected adjacency matrix where structural connectivity was represented by the (corrected) number of probabilistic streamlines between regions (color bar represent log values for better visu-
alization). F, Visualization of streamlines in brain space (for visualization purposes, this figure is based on deterministic instead of probabilistic tractography).

button. Per session, 160 word-picture pairs were presented of which half
were correct, and half contained semantic, phonological, or unrelated
foils. Training sessions lasted 45 min and were administered five times a
week. Half of the participants were randomized to receive A-tDCS dur-
ing the first 20 min of language training, while the other half of partici-
pants were randomized to receive sham tDCS (S-tDCS) during the first
20min of language training. Before study enrollment, all participants
provided written informed consent. The clinical trial was conducted at
the University of South Carolina and the Medical University of South
Carolina, whose Institutional Review Boards both approved the study.

Outcome measure for treated aphasia recovery

Our outcome measure was treated anomia recovery, represented by the
proportional gains in naming accuracy from before to six months after
the aphasia therapy. Naming accuracy was determined based on correct
responses on the Philadelphia Naming Test (PNT; Roach et al., 1996).
The PNT is a confrontation naming test that includes 175-line drawings
depicting nouns of different word lengths and frequencies. The PNT was
administered according to the PNT guidelines, twice at baseline and
twice on assessment six months after training, to establish reliability of
the participants’ naming performance. We calculated the average num-
ber of correct responses between the two PNTs at baseline and at six-
month follow-up. As the dependent variable, we calculated the propor-
tion of maximum gain (PMG) as the percentage of change in naming ac-
curacy from baseline to follow-up, divided by the capacity to improve, as
follows:

(Avg Correct FU — Avg Correct BL)/(175—Avg Correct BL),
(6]

where Avg Correct is the average of number of correct responses, FU is
the six-month follow-up, and BL is the baseline. Because PMG controls
for baseline performance, it accounts to some degree for a variation in
the severity of naming impairments across participants. PMG (or similar
calculations) have been commonly used in other studies assessing treated
aphasia recovery (Lambon Ralph et al, 2010; Gilmore et al, 2019;

Kristinsson et al., 2021). Higher values in PMG naming scores denote
higher gains in naming accuracy from baseline to follow-up relative to
every participant’s individual capacity to improve.

Magnetic resonance image acquisition

At baseline, all participants received a structural brain MRI scan on a 3T
TIM Trio scanner (Siemens Healthcare) using a 12-channel head coil. We
obtained sequences of T1-weighted images [MPRAGE (TFE) sequence:
voxel size=1 mm?>, FOV =256 x 256 mm?>, sagittal slices =160, 9° flip
angle, TR =2250 ms, TI=925ms, and TE =4.15ms], T2-weighted images
[3D SPACE (sampling perfection with application optimized contrasts by
using different flip angle evolutions): voxel size =1 mm?, FOV =256 x 256
mm?, sagittal slices =160, TR =3200ms, TE=212ms, turbo factor =129,
echo trains per slice =2, echo train duration =432 ms], and diffusion tensor
weighted images [DTL twice-refocused EPI sequence: voxel size=2.7
mm>, matrix=82 x 82, TE=101ms, TR=6100ms, full-Fourier, x2
GRAPPA in-plane acceleration, 45 contiguous slices without gap, pixel
bandwidth = 1355 Hz/px, three different diffusion weighting strengths (b
value =0, 1000, and 2000 s/mmz) with 30 diffusion-encoding directions,
and with two averages within the total 131 volumes acquired (11 b=0, 60
b=1000, 60 b=2000)].

Magnetic resonance image processing

The steps performed in image processing are outlined in shown in
Figure 1. Before MRI processing, MR DICOM images were converted to
NifTI format using the software dem2niix (Li et al., 2016).

Lesion delineation

A neurologist and/or trained research specialist manually drew the
chronic stroke lesions on each participant’s T2-weighted image with the
software MRIcron (https://www.nitrc.org/projects/mricron; Fig. 1B).
Using open source MATLAB scripts that were developed in-house
(Rorden et al,, 2012), and SPM12 (Functional Imaging Laboratory,
Wellcome Trust Center for Neuroimaging Institute of Neurology,
University College London; http://www.filion.ucl.ac.uk/spm/software/
spm12/), we coregistered the native lesion maps to the participant’s
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native T1-weighted image and normalized the lesion maps into MNI
standard space. For the normalization of the lesion map, we (1) removed
uneven edges with a 3-mm full-width at half-maximum Gaussian kernel
for smoothing; (2) binarized the smoothed lesion maps (lesioned vs not
lesioned tissue) with a threshold of 0; and (3) normalized the T1-
weighted image using an enantiomorphic approach (Nachev et al., 2008)
onto standard space (chimeric T1-weighted image with a voxel size=1
mm? and with the area corresponding to the stroke lesion being replaced
by the mirrored equivalent region in the intact hemisphere) using
SPM12’s unified segmentation-normalization validated in individuals
with a stroke (Rorden et al., 2012).

Structural connectome

The whole-brain probabilistic tractography connectome was extracted
for every participant in accordance with previously published methods
(Fridriksson et al., 2018b; Wilmskoetter et al., 2019b). Specifically, to
segment each participant’s normalized T1-weighted image into regions
of interest (ROIs; Fig. 1D), we used the Johns Hopkins University (JHU)
anatomic atlas (Faria et al., 2012), which was applied in previous studies
investigating the neuroanatomy of aphasia (Fridriksson et al., 2018b;
Wilmskoetter et al., 2019a). From the full set of 189 JHU regions, we
focused on 104 gray matter areas (for a list of all regions, see Table 1).
We registered the gray matter JHU segmentation maps to the DTI space
and computed probabilistic tractography between every possible pair of
gray matter region. First, we removed distortions in the diffusion images
using eddy current correction (Andersson and Sotiropoulos, 2016). All
diffusion images were acquired with the same phase encoding polarity,
and distortions in the acquired images were reduced with twice-refo-
cused sequences and in-plane accelerations (Reese et al., 2003). Second,
we computed tractography using the probabilistic method of FSL’s
FMRIB’s Diffusion Toolbox (Behrens et al., 2007) with the toolbox’s
accelerated BEDPOST (Hernandez et al, 2013) and probtrackX with
5000 individual pathways, drawn through probability distributions on
principal fiber direction, curvature threshold=0.2, maximum
steps =200, step length=0.5 mm, and distance correction. The stroke
lesion was excluded from tractography. We obtained the weighted con-
nectivity link for a pair of regions A and B by averaging the number of
probabilistic streamlines from A to B and from B to A. We corrected the
weighted connectivity links for every streamline’s distance between A
and B (or B and A) for the size of region A and the size of region B
(Gross, 2008; Bonilha et al., 2015). As a result, every connectome con-
sisted of a 104 x 104 matrix (Fig. 1E). In this network, the nodes repre-
sent the 104 JHU gray matter regions and edges represent the weighted
connectivity links.

To exclude links with low probability, links whose weights were
below the lowest 20% percentile of the links in the right unlesioned
hemisphere were set to zero (Mirman et al, 2015). We calculated the
percentage of links set to zero for the final cohort of 68 participants. As
explained in more detail below, two more of the 70 participants were
later excluded based on lack of controllable brain networks. Across the
68 participants on average 23.6% (SD 7.0%) of links were set to zero.
When adding all other links that were zero, on average 55.3% (SD
10.3%) of all links in the entire brain had a weight of zero. In conclusion,
for each participant, a 104 x 104 weighted undirected adjacency matrix
representing structural connectivity was obtained.

MRI analyses

We calculated network controllability of every participant’s individual
structural connectome by using previously described methods (Gu et al.,
2015). We first determined whether a participant’s connectome is con-
trollable, and second, calculated controllability diagnostics, i.e., average
controllability and modal controllability. The steps are described below.

Global controllability

Controllability refers to the possibility to move the dynamical brain net-
work into a target state by changing a single brain region’s activity using
external input energy. Thus, a network is not controllable if there are tar-
get states that cannot be reached by controlling any brain region inde-
pendently of its input energy (Karrer et al., 2020).
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To ensure a valid application of controllability measures to a net-
work, the network itself needs to be controllable. The controllability of a
network is determined by (1) the energy applied to the network, and by
(2) the connectivity links of the network. If regions within a network are
not connected to the remaining network, it is impossible that these
regions can control the network regardless of how much energy is
applied to the region. In the case of brain networks with a lesion, as in
the participants with a history of stroke, some regions can be discon-
nected, at least in terms of white matter, from the remaining network
and thus, may not be able to control the whole network. Therefore, on a
case-by-case basis, we excluded all regions with no white matter connec-
tion to another region (zero-degree nodes) from each participant’s net-
work and assessed whether participants’ residual connectomes were
controllable by calculating a measure of global controllability. Seeding
one brain region (node) at a time (for up to 104 regions, depending on
how many zero-degree nodes were excluded), we computed the controll-
ability Gramian for each node using the entire connectome matrix as
input (size of the matrix was up to 104 x 104). If the smallest eigenvalue
across all controllability Gramians was >0, the participant’s structural
connectome was considered controllable (Gu et al., 2015; Karrer et al.,
2020).

Regional controllability

Our second objective was to determine whether controllability features
of specific regions in the residual language network predict treated lan-
guage recovery after stroke. To examine this, we analyzed regional con-
trollability by calculating average controllability and modal controllability
for every brain region in participants who had a controllable structural
connectome. Average and modal controllability describe two distinct
nodal properties for control goals. In a controllable network, the magni-
tudes of average and modal controllability can be computed for every
region and in brain networks are typically inversely proportional (Gu et al.,
2015; Karrer et al., 2020); thus, a node with high average controllability
generally exhibits low modal controllability.

Average controllability quantifies the energetical response of the
brain system to a regional impulse (control input) and describes a
region’s ability to spread and amplify the energy of the control input
through the remaining network (Karrer et al., 2020). If regions with high
average controllability receive control input, the larger and more wide-
spread is the response of the remaining brain system. As a result, for
regions with high average controllability less input energy is required to
control this region and more target states can be reached. Thus, average
controllability describes the efficiency of a region in supporting brain
state transitions by spreading and amplifying energy throughout the
brain. Brain regions with high average controllability can be interpreted
as “hub” regions, that are highly connected to the remaining network
and have high network degree values. Among healthy individuals,
regions with high average controllability include the precuneus, superior
frontal, posterior cingulate and subcortical regions (Gu et al, 2015;
Karrer et al., 2020). Average controllability was calculated as Trace(Wy),
where W refers to the controllability Gramian of a participant’s connec-
tome, and K indexes nodes in the connectome.

Modal controllability quantifies a region’s ability to control all possi-
ble brain states. Energy injected into a region with high modal controll-
ability allows for more diverse state transitions. In contrast to average
controllability, brain regions with high modal controllability are sparsely
connected to the remaining network and have low degree. Examples of
regions with high modal controllability among healthy individuals
include the postcentral gyrus, supramarginal gyrus, and IFG pars orbita-
lis (Gu et al,, 2015). Modal controllability was calculated from the eigen-
values Aj and the normalized eigenvector matrix V=[v;;] of the
connectome matrix, where i represents a brain region (node) and Aj a
brain state (Karrer et al., 2020). Therefore, modal controllability is a
measure of node’s i ability to control brain state j and corresponds to the
projection of node i onto eigenvector j.

For statistical comparisons between participants, we normalized the
regional controllability values for every participant by calculating the
rank of each node across the entire set of 104 nodes in each participant’s
connectome. Zero-degree nodes were assigned the lowest ranks.
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Table 1. List of gray matter regions selected from the Johns Hopkins University (JHU) anatomic atlas

Left hemisphere Right hemisphere
Region group Region label Region from JHU anatomic atlas Region label Region group
Left frontal SFG_L Superior frontal gyrus (posterior segment) SFG_R Right frontal
SFG_PFC_L Superior frontal gyrus (prefrontal cortex) SFG_PFC_R
SFG_pole_L Superior frontal gyrus (frontal pole) SFG_pole_R
MFG_L* Middle frontal gyrus (posterior segment) MFG_R
MFG_DPFC_L Middle frontal gyrus (dorsal prefrontal cortex) MFG_DPFC_R
IFG_opercularis_L* Inferior frontal gyrus pars opercularis IFG_opercularis_R
IFG_orbitralis_L* Inferior frontal gyrus pars orbitralis IFG_orbitralis_R
IFG_triangularis_L* Inferior frontal gyrus pars triangularis IFG_triangularis_R
LFOG_L Lateral fronto-orbital gyrus LFOG_R
MFOG_L Middle fronto-orbital gyrus MFOG_R
RG_L Rectus gyrus RG_R
PrcG_L* Precentral gyrus PrCG_R
rostral_ACC_L Rostral anterior cingulate gyrus rostral_ACC_R
subcallosal_ACC_L Subcallosal anterior cingulate gyrus subcallosal_ACC_R
subgenual _ACC_L Subgenual anterior cingulate gyrus subgenual_ACC_R
dorsal_ACC_L Dorsal anterior cingulate gyrus dorsal_ACC_R
Left insula Ins_L¥ Anterior insula Ins_R Right insula
Plns_L* Posterior insula Plns_R
Left temporal STG_L* Superior temporal gyrus STG_R Right temporal
STG_L_pole* Pole of superior temporal gyrus STG_R_pole
MTG_L* Middle temporal gyrus MTG_R
MTG_L_pole* Pole of middle temporal gyrus MTG_R_pole
ITG_L* Inferior temporal gyrus ITG_R
PHG_L Parahippocampal gyrus PHG_R
ENT_L Entorhinal area ENT_R
FuG_L Fusiform gyrus FuG_R
Amyg_L Amygdala Amyg_R
Hippo_L Hippocampus Hippo_R
PSTG_L* Posterior superior temporal gyrus PSTG_R
PSMG_L* Posterior middle temporal gyrus PSMG_R
PSIG_L Posterior inferior temporal gyrus PSIG_R
Left subcortical Caud_L Caudate nucleus Caud_R Right subcortical
Put_L* Putamen Put_R
GP_L* Globus pallidus GP_R
Thal_L Thalamus Thal_R
Hypothalamus_L Hypothalamus Hypothalamus_R
Mynert_L Nucleus innominata of mynert Mynert_R
NucAccumbens_L Nucleus accumbens NucAccumbens_R
Left Parietal PoCG_L* Postcentral gyrus PoCG_R Right parietal
SPG_L Superior parietal gyrus SPG_R
SMG_L* Supramarginal gyrus SMG_R
AG_L* Angular gyrus AG_R
PrCu_L Precuneus PrCu_R
PCC_L Posterior cingulate gyrus PCC_R
Left occipital S0G_L Superior occipital gyrus SO0G_R Right occipital
MOG_L* Middle occipital gyrus MOG_R
10G_L Inferior occipital gyrus 10G_R
Cu_L Cuneus Cu_R
La_L Lingual gyrus LG_R

Regions on the left side of the circular diagrams of Figure 6 correspond in counterclockwise order to regions listed from top to bottom in this table. Likewise, regions on the right side of the circular diagrams correspond in
clockwise order to regions listed from top to bottom in this table. Because of visualization purposes substantia nigra, red nucleus and mammillary body are not displayed in the circular diagrams or listed in this table. JHU =

Johns Hopkins University. * denote regions that were included in the set of 20 language-related left hemisphere gray matter regions.

Selection of language-related regions

To determine whether regional controllability within the language
network is associated with treated aphasia recovery, we selected 20
language-related left hemisphere gray matter regions, based on pre-
vious literature on critical language-related regions supporting
aphasia recovery (Fridriksson et al., 2016): IFG pars triangularis,
pars orbitalis, pars opercularis, middle frontal gyrus, precentral
gyrus, postcentral gyrus, supramarginal gyrus, angular gyrus, supe-
rior temporal gyrus (pole, middle, and posterior part), middle tem-
poral gyrus (pole, middle, and posterior part), inferior temporal
gyrus, anterior and posterior insula, middle occipital gyrus (MOG),
putamen, and globus pallidus.

We focused on the language network in the left hemisphere because
current research suggests that, for individuals who exhibit left-hemi-
sphere language dominance, language recovery after a stroke relies on
the reorganization of language specific residual brain networks in the left
hemisphere (Stockert et al., 2020) and, further, that the language net-
work itself may only receive little input from other domain-general exec-
utive control networks (Shain et al., 2020).

Other imaging control variables: graph theory measures and regional
lesion load

Because regional controllability measures are calculated based on struc-
tural network properties and may share some similarities with
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traditional graph theory measures (Gu et al.,, 2015), we compared the
predictive value for aphasia recovery of both measurement types. We
calculated established regional (local) graph theory measures (node
strength, node betweenness centrality) as well as regional lesion load
(calculated as the percentage of lesion in a region) to determine how
these measures relate to regional controllability (average and modal
controllability). Previous work has shown that controllability diverges
from other graph measures in ways that are reflective of the complexity
of regional computations (Parkes et al., 2020). Demonstrating addi-
tional insights from controllability measures beyond information con-
veyed by traditional graph theory and regional lesion load measures
would provide further support to their use in future studies on post-
stroke aphasia.

We used the Brain Connectivity Toolbox to compute node strength
and betweenness centrality (Rubinov and Sporns, 2010). Node strength
was calculated for each node as the sum of undirected weighted links
connected to a given node. Node betweenness centrality for a region
(Bx) was calculated for each node as the proportion of shortest paths
between regions i and j that pass through node k (Brandes, 2001). For
normalization purposes, we computed the rank of each node across the
entire set of 104 nodes in each participant’s connectome (Gu et al,
2015). A node with a higher number of shorter path connections to the
remaining network can more easily influence the state of the network.

Statistical analyses

We performed explanatory and predictive statistical modeling to assess
whether regional controllability is associated with treated aphasia recov-
ery, and whether it aides out of sample predictions, respectively.

For explanatory modeling, we applied multivariable linear regression
to assess whether regional controllability of any of the 20 language
regions is associated with the outcome variable “PMG naming score”
while controlling for regional controllability of the remaining 19 ROIs.
We performed two different linear regression models, one for average
controllability and one for modal controllability: (1) dependent variable:
PMG naming score; primary independent variables: average controll-
ability of each of the 20 language-related regions; and (2) dependent
variable: PMG naming score; primary independent variables: modal
controllability of each of the 20 language-related regions.

In both models, we controlled for baseline aphasia severity (WAB-AQ),
education, age, therapy type (A-tDCS vs S-tDCS), total lesion volume, and
number of edges (global degree). By controlling for the number of edges,
we sought to control for any differences in network size across participants.
We excluded independent variables if they showed high multicollinearity,
as indicated by a variance inflation factor >6.

After explanatory modeling, we performed predictive statistical
modeling to test whether controllability measures support generalizability
to nontraining samples, assessing whether controllability measures outper-
form traditional graph theory and regional lesion load measures in pre-
dicting treated aphasia recovery. Therefore, we applied elastic net
regression modeling with cross-validation to build a parsimonious predic-
tive model (Zou and Hastie, 2005). Elastic net regularization combines
lasso and ridge regularization penalties to select a set of predictors from a
pool of candidate predictors that provides the highest predictive value for
an outcome measure (in this study, PMG naming score). Elastic net mod-
eling is especially useful in situations with more predictors than observa-
tions, and highly multicollinear predictors. We performed regularization
from zero (min) to one (max) in increments of 0.1 for ridge and 0.02 for
lasso penalties. Ten-fold cross-validation was applied (convergence crite-
rion: 0.00001 with max. 100 iterations). The set of candidate independent
variables included a total of 106 variables: average controllability, modal
controllability, node strength, node betweenness centrality, lesion volume
for each of the 20 nodes, and age, education, baseline WAB-AQ, therapy
type (A-tDCS vs S-tDCS), total lesion volume, and number of edges.

Two-tailed statistical tests were used, and p < 0.05 was considered
statistically significant. MATLAB (version R2019b, 9.7.0.1140744,
released 2019, The MathWorks Inc.) and IBM SPSS Statistics for
Windows (version 25, released 2017, IBM Corp.) were used to conduct
all statistical analyses.
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Results

Outcome measure for treated aphasia recovery

A related-samples Wilcoxon signed-rank test showed that the
room to improve changed significantly from baseline to six-
month follow-up (Z=456, p < 0.001). Participants had a median
room to improve of 120.75 at baseline, and a median room to
improve of 114.00 at six-month follow-up. Thus, overall, the
treatment intervention resulted in a significant improvement in
correct naming responses.

Global controllability

Sixty-eight of the 70 participants with ischemic strokes had con-
nectomes that were controllable from every single region. The
smallest eigenvalues of the controllability Gramians were >0 for
all remaining 68 participants (mean 9.05 X 107%, SD 3.73-
x 107%°). Please refer to Figure 2A and Table 2 for lesion charac-
teristics, demographic and clinical information related to the 68
participants included in the final analyses. While the participants
varied in their stroke chronicity ranging from sixmonths to
16 years, the time since stroke did not relate to the PMG naming
score (Spearman’s p = —0.07, p=0.57).

An average of 2.5 regions (median: 2, range: 0-16) were
excluded across participants as zero-degree nodes (Fig. 2B shows
the regions with zero-degree nodes). For example, in seven par-
ticipants the IFG pars opercularis was a zero-degree node, and
thus was excluded from the connectome of these participants.
Note that these participants were not excluded from the statisti-
cal analyses, which included controllability of IFG pars opercula-
ris as well as the degree. More specifically, this step did not bias
the analyses toward finding a relationship between aphasia and
a region’s controllability, with regional controllability serving
as a proxy for lesion. Lesion volume was included in all analyses
as a separate variable.

Likewise, the spatial distribution of zero-degree nodes did not
mirror the lesion overlay (Fig. 2A). While the pole of the left supe-
rior frontal gyrus was most commonly disconnected from the
remaining network, being a zero-degree node in 25 of the 68 par-
ticipants; it was lesioned in only one participant. The posterior
superior temporal gyrus was lesioned in 46 participants (on aver-
age 60% lesion across all participants) but was disconnected from
the remaining network in only four of the 68 participants. The sta-
tistical models also included lesion volume for the same reason.

Regional controllability

Figure 2C,D show the median rank for each of the 20 language-
related nodes for average and modal controllability, respectively.
The left MOG had the highest average controllability within the
language network, with a rank of 73 across all 104 gray matter
regions. The left anterior insula had the lowest average controll-
ability (rank 20). The left anterior insula had the highest (rank
73) and the left posterior middle temporal gyrus had the lowest
(rank 30) modal controllability within the language network. In
line with previous evidence in brain networks, average and
modal controllability have opposite directions (Gu et al.,, 2015;
Karrer et al., 2020), where regions with high average controllabil-
ity are more likely to have low modal controllability and vice
versa. We found no association between average or modal con-
trollability with node strength or node betweenness centrality for
the 20 selected language-related ROIs but found weak to moder-
ate associations between average or modal controllability and re-
gional lesion volume (Fig. 3). The left MOG left anterior insula
and left posterior middle temporal gyrus had on average the
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Lesion and regional characteristics. 4, Lesion overlay of all participants included in the final analyses (n = 68). Different numbers of participants with a lesion in an area are repre-

sented by different colors. The more participants shared a lesion in an area, the warmer the color. As expected, most participants had lesions around the sylvian fissure. B, Zero-degree nodes
(brain areas disconnected from the remaining network) across all participants. The more participants shared a zero-degree node in that area, the warmer the color. €, D, Regional controllability
of the 20 left hemisphere language-related ROIs included in this study. The controllability values were ranked across all 104 gray matter regions. The visualizations in this figure show the aver-
age (median) ranks across all participants. The warmer the color, the higher the value of average (€) or modal (D) controllability. Note that average and modal controllability are in general
inversely related: nodes with higher average controllability tend to have lower modal controllability, and vice versa.

Table 2. Demographic and diagnostic information of all participants included in the final analyses (n = 68)

Demographic information

Age, mean (SD; range)

Sex, n (%) Female
Male
Race, n (%) White

African American

Asian
Education (highest year of school completed); years, mean (SD; range)
Diagnostic information
Years since stroke, mean (SD; range)
WAB-AQ (max. 100), mean (SD; range)
Average correct responses in the 2 PNTs at baseline (max. 175), mean (SD; range)

Average change in correct responses in the 2 PNTs from baseline to 6 months after therapy (max. 175), mean (SD; range)

59.7 (10.2; 30-77)

20 (29.4)

48 (70.6)

56 (82.3)

10 (14.7)
2(3.0)

14.8 (2.4; 10-20)

3.4 (3.3; 0.5-16.9)
59.0 (19.5; 27.8-93.7)
60.8 (43.4; 0.5-139)

6.6 (14.6; —32-52.5)

n = number; PNT = Philadelphia Naming Test (Roach et al., 1996); WAB-AQ = Aphasia Quotient of the Western Aphasia Battery (Revised; Kertesz, 2007).

28th, 4th, and 10th greatest lesion burden across all 104 regions,
respectively.

Explanatory multivariable regression modeling

Average controllability

Using multivariable linear regression modeling, average controll-
ability of IFG pars opercularis was significantly associated with
PMG naming scores (§=0.39, p=0.038), independently of the
average controllability of any other language region, baseline
aphasia severity, education, age, therapy type, total lesion vol-
ume, and number of edges; the higher the average controllability
of IFG pars opercularis, the better the naming gains (Fig. 4A).
Average controllability of no other region and no other control
variable was statistically significant (Table 3).

Modal controllability
Modal controllability of the IFG pars orbitalis and anterior insula
were significantly associated with PMG naming scores (f =

—0.34, p=0.033 and £=0.36, p =0.036, respectively), with lower
modal controllability of the IFG pars orbitalis (Fig. 4B) and
higher modal controllability of the anterior insula (Fig. 4C) being
associated with higher improvement in naming performance af-
ter therapy. In the same model, WAB-AQ at baseline was signifi-
cantly associated with PMG naming scores (§=0.38, p=0.047),
with higher WAB-AQs (less severe aphasia) being associated
with better improvement (Table 4).

Relationship between stroke lesions and regional controllability

As expected, the number of zero-degree nodes was strongly asso-
ciated with the total brain lesion volume (Pearson’s r=0.59;
p <0.001; Fig. 5). The ranked average controllability of the IFG
pars opercularis was significantly correlated with the IFG pars
opercularis regional lesion volume (Pearson’s r = —0.59;
P <0.001) and with the total brain lesion volume (Pearson’s r =
—0.33; p=0.005), but not with its ranked node strength
(Pearson’s r = —0.04; p=0.77) or ranked betweenness centrality
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Table 3. Multiple linear regression model to assess the influence of average
controllability on the outcome PMG naming scores from baseline to 24 weeks
(six months) after therapy with an overall model fit of B> = 0.31

Wilmskoetter et al. @ Network Controllability Predicts Aphasia Recovery

Table 4. Multiple linear regression model to assess the influence of modal con-
trollability on the outcome PMG naming scores from baseline to 24 weeks
(six months) with an overall model fit of R = 0.4

Variable B SEB B p Variable B SE B B p
Intercept 0.053 0.310 0.864 Intercept 0.181 0.379 0.636
Average Pars opercularis 0.004  0.002 0391 0.038* Modal controllability Middle frontal gyrus —0.001 0.001 —0.099 0.560
controllability Precentral gyrus <—0.001 0.002 —0.002 0.992 Pars opercularis 0.001 0.001  0.160 0.415
Supramarginal gyrus —0.001  0.002 —0.131 0.609 Pars orbitalis —0.002 0.001 —0.343 0.033*
Angular gyrus <0.001  0.002 0.060 0817 Pars triangularis —0.001 0.001 —0.194 0.296
Pole of superior temporal gyrus ~ <<0.001  0.003 —0.043 0.855 Postcentral gyrus —0.003 0.002 —0.358 0.143
Pole of middle temporal gyrus 0.001  0.003  0.060 0.831 Supramarginal gyrus —0.001 0.001 —0.165 0.380
Middle occipital gyrus 0.002  0.002 0.175 0.445 Angular gyrus 0.001 0.001 0221 0.225
Anterior insula —0.001  0.003 —0.055 0.779 Superior temporal gyrus  0.002 0.002 0222 0310
Putamen —0.003  0.002 —0.249 0.239 Pole of superior <0.001 0.001 —0.023 0.889
Posterior insula 0.003 0.002 0.282 0.232 temporal gyrus
Posterior superior temporal gyrus —0.002  0.002 —0.280 0.251 Middle temporal gyrus ~ <<0.001 0.001 —0.062 0.756
Posterior middle temporal gyrus  —0.001 ~ 0.002 —0.280 0.715 Pole of middle <0.001 0.001 —0.061 0.706
WAB-AQ baseline 0.002 0002 0.223 0.191 temporal gyrus
Age —0.005 0.003 —0.274 0.128 Inferior temporal gyrus ~ <<0.001 0.001 —0.064 0.763
Education 0.007  0.011  0.095 0.519 Middle occipital gyrus ~ —0.002 0.002 —0.257 0.156
Therapy type (A-tDCS vs S-tDCS) 0.061  0.052 0.171 0.246 Anterior insula 0.002 0.002 0359 0.036*
Total lesion volume <—0.001 0 —0.113 0.636 Globus pallidus <0.001 0.002  0.013 0.934
Number of edges <0.001 0 0.168 0.388 Posterior insula <0.001 0.001 —0.034 0.832
B = standardized regression coefficient; *significant at the « level p << 0.05. Posterior superior —0.001 0.001 —0.104 0.529
temporal gyrus
Posterior middle <<0.001 0.001 0.050 0.811
(Pearson’s r=0.06; p =0.64). The ranked modal controllability of temporal gyrus
the IFG pars orbitalis was correlated with the IFG pars orbitalis’ ~ WAB-AQ baseline 0.003 0.002 0377 0.047%
regional lesion volume (Pearson’s r=0.29; p=0.02), but not with  Age —0.005 0.003 —0.276 0.116
the total brain lesion volume (Pearson’s r = —0.02; p=0.82),  Education 0.016 0010 0216 0139
ranked node strength (Pearson’s r = —0.05; p=0.71), or ranked mgffeys,tgﬁe (EIA_rtnDeCS vs 1G5 <ggg? <ggg$ 8(1);? g;?;
. > ion volu . . . .
betweenness centrality (Pearson’s r = —0.05; p =0.70). The ranked Number of edges — 0001 <0001 —0122 0528

modal controllability of the anterior insula was not significantly
correlated with any measure (total lesion volume: Pearson’s r =
—0.22; p=0.07; own regional lesion volume: Pearson’s r = —0.20;
p=0.10; ranked node strength: Pearson’s r = —0.13; p=0.29;
ranked betweenness centrality: Pearson’s r = —0.01; p = 0.97).

Elastic net prediction modeling
Elastic net prediction modeling was used to determine whether re-
gional controllability aides in out-of-sample prediction. This step
was not aided, informed, or modified based on the regression analy-
ses described above. We did not choose the variables that were
included in the final prediction model. All 106 variables, 40 of which
were measures of regional controllability, were used as candidate
predictors, with the intent of validating and confirming the findings
from the explanatory models without biasing the predictive model.
With elastic net modeling using 10-fold cross validation, two
out of 106 candidate variables were retained in the optimal
model to predict PMG naming scores: (1) average controllability
of IFG pars opercularis (§=0.27), and (2) baseline WAB-AQ
(8=0.22). The model had an overall fit of R* = 0.156, and an
expected prediction error estimate (10-fold cross-validation) of
1.12 (SD=0.19). In post hoc linear regression analyses, we
assessed the predictive value of average controllability independ-
ent from baseline aphasia severity. We extracted the residuals of
average controllability of IFG pars opercularis by regressing
baseline WAB-AQ. In a simple linear regression model, the
residuals from average controllability of IFG pars opercularis sig-
nificantly predicted PMG naming scores (f§=0.26, p = 0.038).

Discussion
In this study, we observed that inferior frontal and insular re-
gional network controllability, based on residual poststroke white

B = standardized regression coefficient; *significant at the c level p << 0.05.

matter network topology, significantly predicted individualized
treated language recovery in a cohort of participants undergoing
aphasia treatment. Regional network controllability outper-
formed traditional demographic, lesion, and graph-theoretical
measures. These results provide an important first step toward
the understanding of the network mechanisms underlying lan-
guage dysfunction. Importantly, this study did not assess neuro-
physiological brain states that each participant’s network can
transition to, i.e., patterns of brain activation explaining language
recovery. Instead, we focused on the initial and necessary evalua-
tion of whether topological properties of the residual networks,
quantified from a NCT standpoint, are associated with, and are
predictive of, aphasia recovery. The implications of these find-
ings are discussed below.

Most brain networks with stroke lesions are controllable
We observed that 97% of the individual brain connectomes (68
of 70) were controllable, taking into account the zero-degree
nodes within the lesion, or outside of the lesion because of
reduced connectivity, possibly as a result of small vessel disease
and white matter injury preceding the stroke (Wilmskoetter et
al., 2019b), or deafferentation from the stroke lesion (Bonilha et
al., 2014b). Additional explanations may relate to technical
aspects, including the inability to resolve crossing fibers or com-
plex fiber anatomy poststroke via diffusion MRI, or reduced sen-
sitivity to partially gliotic regions.

While we observed that the connectomes of most participants
were controllable, the magnitude of global controllability was
low, indicating that the energy needed to change the state of the
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brain from a single region is substantial. This observation is not
specific to structural connectomes with stroke lesions but was
also observed in studies that applied NCT to structural connec-
tomes in healthy adults (Gu et al,, 2015). Thus, controlling the
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entire brain from one single region is theoretically possible, but
may require impractically high levels of energy. Importantly, this
finding does not preclude the clinical application of NCT to
patients with stroke, as demonstrated by this study and by a
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previous study that successfully 20
explained the effects of neuromodula-
tion on language performance in
healthy adults via regional controllabil-
ity features (Medaglia et al., 2018). Of
note, it is important to consider global
network controllability in the context
of language processing, ie., language
processing may not require input from
all regions or to all regions and may be

-
[3,]

10

Number of Zero-Degree Nodes
(of 104 nodes)

5
mostly limited to a confined network of
language-specific regions (Shain et al,
2020). 0 o
0

Regional controllability, residual
network interaction, and language
recovery

We found evidence that controllability
features of specific regions in the resid-
ual language network after stroke were
associated with and predicted treated
language recovery six months after
treatment. Higher average controllability of the left IFG pars
opercularis, lower modal controllability of the left IFG pars orbi-
talis, and higher modal controllability of the left anterior insula
were associated with higher improvement in naming accuracy af-
ter therapy. Because of the typically inverse relationship between
average and modal controllability (Gu et al., 2015; Karrer et al.,
2020), nodes with high average controllability usually have low
modal controllability. Our findings suggest that both sections of
the IFG, pars orbitalis and opercularis can be drivers of aphasia
recovery based on their structural connectivity pattern that sup-
ports their dynamic interaction with the remaining network.

The importance of high average controllability of the IFG was
further supported by our elastic net regression approach, that
provided a parsimonious model with the highest possible out-of-
trained-sample predictive value. Average controllability of the
left IFG pars opercularis was selected as a crucial predictor along-
side baseline aphasia severity. Importantly, average controllabil-
ity of the left IFG pars opercularis was the best predictor among
all 106 candidate predictors for treated naming recovery six
months after treatment. Thus, average controllability of the left
IFG pars opercularis outperformed traditional measures of re-
gional lesion burden, total lesion burden, graph theory features,
as well as demographic characteristics and baseline aphasia
severity.

Previous research identifying the left IFG pars opercularis as
a hub region in the residual language network after a left-hemi-
spheric stroke (Fridriksson et al., 2018b). Moreover, Fridriksson
et al. (2018b) show that damage to hub regions affects language
performance of individuals with aphasia at least six months after
their stroke and speculated that damage to these regions may
have long-term consequences for communication abilities. Here,
our findings indicate that integrity of the left IFG pars opercula-
ris and its ability to support brain state transitions is relevant for
recovery (Karrer et al., 2020).

The literature on controllability and language in general (out-
side of aphasia) is still relatively limited, but a recent study sup-
ports our findings of the crucial role of the IFG from an NCT
perspective. Medaglia et al. (2018) examined the effects of TMS
on language performance in healthy adults. The effects of TMS,
applied over the left IFG, on the participants’ performance in
open response (sentence completion, verb generation) and

Figure 5.
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Scatter plot of total brain lesion volume versus number of zero-degree nodes. Zero-degree nodes were calculated
across all 104 gray matter anatomic regions. The number of zero-degree nodes was overall related to the total brain lesion vol-
ume (Pearson correlation coefficient = 0.59; p << 0.001). corr = Pearson correlation coefficient.

closed response tasks (number naming) was dependent on differ-
ent controllability features of the IFG. TMS-induced changes in
open response tasks were associated with the IFG’s controllability
of communication between brain modules, while changes in
closed response tasks were associated with the IFG’s ability to
control brain states.

Stroke lesion and regional controllability

In this study, we observed that the relationship between stroke
lesions and regional controllability was not consistent, highlight-
ing the importance of using NCT and not relying on lesion char-
acteristics alone. Figure 6 provides an overview of the
relationship between lesion locations, regional controllability,
and graph theory measures.

One example for lesion locations impacting regional controll-
ability measures is the MOG. The MOG had the highest average
controllability across our participant cohort which would be a
surprising result in a cohort of healthy individuals. However,
given that our participants had strokes in the anterior brain cir-
culation, thus the likelihood of damage to the MOG and/or its vi-
cinity was low. As demonstrated in Figure 2, the MOG had a
lower probability of lesion compared with other brain areas.
Thus, control input injected into the MOG has a higher likeli-
hood of resulting into a distributed response of the language sys-
tem, given the preservation of the area. It should be noted that
the MOG was not associated with recovery, hence the specificity
of controllability in core language related areas in relationship
with language outcomes.

While the lesion significantly affected the degree of controll-
ability of some regions, it did not affect that of others. For exam-
ple, average controllability of the left IFG pars opercularis was
correlated with total brain lesion volume, and lesion volume of
the left IFG pars opercularis itself. The larger the lesion, the lower
the ability of the left IFG pars opercularis to spread and amplify
control input through the network. In contrast, regional and total
brain lesion volume were not associated with modal controllabil-
ity of the anterior insula. Both regions, left IFG pars opercularis
and anterior insula, were among the most commonly lesioned
regions across all participants, with an average regional lesion
volume of 53.8% (SD 39.1%) and 55.2% (SD 40.8%), respectively.
This finding is expected since aphasia is typically the result of left
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The impact of the stroke lesion on global and regional connectome measures. This composite figure provides a comprehensive visual summary of how a stroke lesion affects the

structural connectome and its properties. For comparison, the average connectome data from 60 healthy individuals with the same demographic and risk factor profile (described previously;
Marebwa et al., 2018) is shown in the upper panel (above the horizontal gray lone). Data from one participant with aphasia (lesion volume: 266 ml) in the lower panel. A, E, Reconstructed
white matter fibers, here for visualization purposes based on deterministic tractography. B, F, Edges between gray matter regions from the JHU anatomic atlas. €, G, Adjacency matrices repre-
senting probabilistic streamlines between each region pair (color bar represent log values for better visualization). D, H, All structural connectome measures used in the analyses of this study:
average controllability, modal controllability, regional lesion volume, node strength, and betweenness centrality, each one within a “track” of the figure, as indicated by the inset. Each box rep-
resents one gray matter region (for full region names, see Table 1). For visualization purposes, 98 of the included 104 gray matter regions are displayed here.

middle cerebral artery strokes. The reason why the regional
lesion volume has no effect on the insula’s modal controllability
in our study remains a matter of speculation. It is possible that
structural connections driving the insula’s modal controllability
are located more distant from the lesion core, and thus less likely
to be damaged by the average stroke lesion location.

It is also possible that white matter health outside the stroke
lesion impacts the relationship between network properties and
NCT. The relationship between NCT and brain health may be a
promising future new avenue of inquiry.

Limitations

This study did not assess the states that a network can transition
to (for example, brain activation patterns) and their relationships
with language. Instead, this study focused on the necessary and
important task of clarifying whether NCT tools can be applied to
poststroke networks, and if such a theoretical approach can be
used to disclose aspects of network topology with clinical rele-
vance, i.e., useful to predict clinical outcomes. We limited our
analyses of regional controllability to 20 regions in the left

hemisphere commonly associated with language processing. It
remains to be investigated whether controllability of other
regions has an impact on treated aphasia recovery. Further, while
we examined controllability of the entire residual brain, future
studies may address sub-network controllability (i.e., constrained
to the language network).

Another limitation is that we leveraged data from an RCT
assessing effects of tDCS on treated aphasia recovery. To account
for potential effects related to tDCS, we included tDCS as a con-
trol variable in the regression models where tDCS presented as a
nonsignificant predictor. Further, based on visual comparisons,
the locations of the tDCS anode were different from the location
of the identified ROIs in our study: the tDCS location was typi-
cally over the left parietal or left posterior temporal cortices
(Fridriksson et al., 2018a), whereas the identified ROIs in this
study are in the frontal lobe (IFG pars opercularis, IFG pars orbi-
talis) and anterior insula. Last, we performed Wilcoxon signed-
rank test to determine differences between participants who
received active tDCS and participants who received S-tDCS for
average controllability of the left IFG pars opercularis, modal
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controllability of the left IFG pars orbitalis, and modal controll-
ability of the left anterior insula. There were no significant differ-
ences between these two groups for any measure (p>>0.05).
Thus, while we cannot exclude overall effects of tDCS in our
study, the likelihood that tDCS interfered with our results of re-
gional controllability appear low.

In conclusion, topological properties of the residual networks,
quantified from an NCT standpoint, are associated with aphasia
recovery. The modal controllability of IFG pars opercularis is
predictive of long-term treatment-related language improve-
ment. Overall, NCT properties are not fully explained by the
lesion and they are not directly associated with graph theoretical
properties, and therefore provide another important window
into the neurobiology of language. Stroke-related NCT measures
provide a principled approach to evaluate the status of the resid-
ual language network and its interaction with the remaining
brain network. This NCT approach may also disclose properties
related to brain topology and brain health, from the perspective
of white matter network integrity, which may guide future trans-
lational studies on the topic.
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