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Humans have the remarkable ability to selectively focus on a single talker in the midst of other competing talkers. The neural
mechanisms that underlie this phenomenon remain incompletely understood. In particular, there has been longstanding
debate over whether attention operates at an early or late stage in the speech processing hierarchy. One way to better under-
stand this is to examine how attention might differentially affect neurophysiological indices of hierarchical acoustic and lin-
guistic speech representations. In this study, we do this by using encoding models to identify neural correlates of speech
processing at various levels of representation. Specifically, we recorded EEG from fourteen human subjects (nine female and
five male) during a “cocktail party” attention experiment. Model comparisons based on these data revealed phonetic feature
processing for attended, but not unattended speech. Furthermore, we show that attention specifically enhances isolated indi-
ces of phonetic feature processing, but that such attention effects are not apparent for isolated measures of acoustic process-
ing. These results provide new insights into the effects of attention on different prelexical representations of speech, insights
that complement recent anatomic accounts of the hierarchical encoding of attended speech. Furthermore, our findings sup-
port the notion that, for attended speech, phonetic features are processed as a distinct stage, separate from the processing of
the speech acoustics.
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Significance Statement

Humans are very good at paying attention to one speaker in an environment with multiple speakers. However, the details of
how attended and unattended speech are processed differently by the brain is not completely clear. Here, we explore how
attention affects the processing of the acoustic sounds of speech as well as the mapping of those sounds onto categorical pho-
netic features. We find evidence of categorical phonetic feature processing for attended, but not unattended speech.
Furthermore, we find evidence that categorical phonetic feature processing is enhanced by attention, but acoustic processing
is not. These findings add an important new layer in our understanding of how the human brain solves the cocktail party
problem.

Introduction
The ability to focus on a single talker amid multiple sounds is
essential for human communication. Cherry (1953) brought this
phenomenon to the fore, investigating our behavioral capacity
for selective auditory attention. His study stimulated subsequent
inquiries and the proposal of various theories of attention
(Broadbent, 1958; Moray, 1959; Deutsch and Deutsch, 1963;
Treisman, 1964; Johnston and Wilson, 1980). These theories
model attention as a selective filter that rejects the unattended
message beyond a certain information processing stage. However,
whether this filter operates at an early or late stage of speech proc-
essing is still unresolved.

In recent years, neuroscience has sought to contribute to this
debate by leveraging our increased understanding of the hier-
archical nature of speech processing in the human cortex. In
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particular, to construe meaning from sound, the cortex is posited
to compute several intermediate levels of increasingly abstract
representations in different functionally specialized regions of a
hierarchically organized cortical network (Hickok and Poeppel,
2007; Rauschecker and Scott, 2009; Peelle et al., 2010; DeWitt
and Rauschecker, 2012; Kell et al., 2018). For example, single
talker neuroimaging studies have revealed that core auditory
regions code low-level features which are combined in higher
areas to yield more abstract neural codes (Binder et al., 2000;
Davis and Johnsrude, 2003; Okada et al., 2010). And in terms of
multitalker selective attention, studies have shown that primary
auditory cortical responses represent all talkers regardless of
attentional state (O’Sullivan et al., 2019), but in “higher” areas
such as the superior temporal gyrus (STG), only the attended
speaker is represented (Mesgarani and Chang, 2012; Zion
Golumbic et al., 2013; O’Sullivan et al., 2019). Additionally,
EEG/MEG studies examining the latency of neural responses
(which can be considered a rough proxy measure of processing
at different hierarchical stages) have shown that all talkers are
co-represented in early components, with distinct responses to
the attended speaker appearing only in later components (Ding
and Simon, 2012b; Power et al., 2012; Puvvada and Simon,
2017). Importantly, this specificity is not something that is neces-
sarily true for more simplistic nonspeech stimuli and tasks
(Power et al., 2011).

As well as understanding how attention affects processing in
different brain areas and at different latencies, we also wish to
understand how attention influences the encoding of the differ-
ent speech representations that are thought to be computed by
this hierarchical network. In recent years, encoding/decoding
methods (Crosse et al., 2016; Holdgraf et al., 2017) have revealed
neural indices of a number of these representations, from low-
level acoustics to semantics, in brain responses to continuous
natural speech (Ahissar et al., 2001; Mesgarani et al., 2014; Di
Liberto et al., 2015, 2019; Tang et al., 2017; Brodbeck et al., 2018;
Broderick et al., 2018; Daube et al., 2019; Teoh et al., 2019). And
it has been shown that neural indices of lexical (Brodbeck et al.,
2018) and semantic (Broderick et al., 2018) processing can only
be found for attended speech, in contrast to acoustically-driven
measures like those based on the amplitude envelope that are less
affected by attention (Brodbeck et al., 2018). Taken together, the
results from these anatomic, time-resolved, and representational
approaches support the notion that higher-order regions (and
higher-level representations) are more greatly modulated by
attention.

In this study, we explore how attention modulates neural
indices of speech processing at prelexical levels. Specifically, we
aim to answer two main questions. Our first question is: does the
brain process speech at the level of phonemes and, if so, does it
do so for both attended and unattended speech? The notion of
prelexical processing at the level of phonemes has received neu-
roscientific support in recent years (Chang et al., 2010;
Mesgarani et al., 2014; Di Liberto et al., 2015; Khalighinejad et
al., 2017; Brodbeck et al., 2018; Gwilliams et al., 2020) . But the
idea has also been challenged, with some recent research suggest-
ing that what appear to be categorical responses to phonetic fea-
tures might actually be responses to simple acoustic features
(Daube et al., 2019). Here, to address this debate, we explore
brain responses to speakers with very different acoustics (i.e.,
male and female). The rationale here is that a greater increase in
acoustic variability across the same phonemes will improve our
ability to distinguish categorical brain responses to different pho-
netic features from brain responses driven by the speech

acoustics. Our second question is: at what hierarchical levels
does attention influence processing? We hypothesize that we will
see stronger attention effects on isolated measures of phonetic
feature processing than on isolated measures of acoustic process-
ing. This would support the idea of hierarchical attention effects
suggested by previous studies by showing a dissociation in the
influence of attention on different aspects of sublexical
processing.

Materials and Methods
Subjects
Fourteen subjects (nine female and five male) between the ages of 19
and 30 participated in the experiment. All subjects were right-handed
and spoke English as their primary language. Subjects reported no his-
tory of hearing impairment or neurologic disorder. Each subject pro-
vided written informed consent before testing and received monetary
reimbursement. The study was approved by the Research Subjects
Review Board at the University of Rochester. Some of the data used here
(the first 10 trials) were analyzed differently for a previous study (Teoh
and Lalor, 2019).

Stimuli and procedures
Subjects undertook 40 1-min trials in two separate blocks. Stimuli con-
sisted of two works of fiction, one narrated by a female talker and the
other by a male talker. The stimuli were taken from two Sherlock
Holmes novels: “A Study in Scarlet” (narrated by a female speaker) and
“The Hound of the Baskervilles” (narrated by a male speaker). The sto-
ries were narrated by British speakers. Silent gaps in the audio exceeding
0.3 s were truncated to 0.3 s in duration.

The stimuli were filtered using head-related transfer functions
(HRTFs), giving rise to the perception that the talkers were at 90° to the left
and right of the subject. The HRTFs used were obtained from the CIPIC
database (Algazi et al., 2001). Subjects were always instructed to attend to
one of the two talkers, a counterbalanced paradigm was employed in which,
over the course of the experiment, they would have attended to both male
and female talkers and at both locations. In terms of content, the attended
story segments were presented contiguously (i.e., each trial beginning where
previous one ended), but the unattended story segments were presented in
a random order. Each trial lasted exactly 60 s, with no special effort made to
end the trial at a natural break in the story.

Before the experiment, subjects were asked to minimize motor activities
and to maintain visual fixation on a crosshair centered on the screen during
trials. After each trial, subjects were required to answer four multiple-choice
comprehension questions on each of the stories (attended and unattended).

All stimuli were sampled with a frequency of 44,100Hz and were
presented using Sennheiser HD650 headphones and Presentation soft-
ware from Neurobehavioral Systems.

Data acquisition and preprocessing
The experiment was conducted in a soundproof room. A Biosemi
ActiveTwo system was used to record EEG data from 128 electrode posi-
tions on the scalp as well as two electrodes over the mastoid processes
(all digitized at 512Hz).

EEG data were re-referenced to the mastoids. Automatic bad channel
rejection and interpolation was performed. A particular channel was
deemed as bad if the standard deviation of the channel was lower than a
third of or exceeded three times the mean of the standard deviation of all
channels. In place of the bad channel, data were interpolated from the
four nearest neighboring electrodes using spherical spline interpolation
(Delorme and Makeig, 2004). To decrease subsequent processing time,
data were downsampled to 128Hz. Data were filtered between 0.2 and
8Hz using a zero-phase shift FIR filter with Kaiser window (filter order
was 20,000 for the 0.2-Hz high-pass filter and 1000 for the 8-Hz low-
pass filter; maximum stopband attenuation was �60dB). Low d -band
frequencies (down to 0.2Hz) were included as they have previously been
found to be important for speech processing (Teoh et al., 2019).
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Speech representations
We computed acoustic and phonetic speech representations of both the
attended and unattended stories (Fig. 1A depicts these representations
for an excerpt taken from one of the audio clips).

Acoustic
� Spectrogram (s): the GBFB toolbox (Schädler and Kollmeier, 2015)

was used to extract the spectral decomposition of the time-varying
stimulus energy in 31 mel-spaced bands with logarithmic compres-
sive nonlinearity. The spectrogram representation computed in this
way is consistent with (Daube et al., 2019), where it was shown to
better predict neural activity than other techniques.

� Spectrogram derivative (sD): the temporal derivative of each spectro-
gram channel was computed, and then half-wave rectified. This rep-
resents an approximation of the onsets in the acoustics and was
shown to contribute to predicting neural responses in previous
research (Daube et al., 2019).

Phonetic
� Phonetic features (f): phoneme-level segmentation of the stimuli was

first computed using FAVE-Extract (Rosenfelder et al., 2014) and
the Montreal Forced Aligner (McAuliffe et al., 2017) via the DARLA
web interface (Reddy and Stanford, 2015). The phoneme representa-
tion was then mapped into a space of 19 features based on the map-
ping described previously (Chomsky and Halle, 1968; Mesgarani et
al., 2014). The features describe the articulatory and acoustic
properties of the phonetic content of speech (e.g., bilabial, plo-
sive, voiced, obstruent). Based on the onset time of each fea-
ture, a multivariate time-series binary matrix (19 features by
samples) was produced.

� Phonetic feature onsets (fo): univariate vector of the onsets of all
phonetic features (i.e., a summary measure of all onsets in f
without categorical discrimination). This was included as an
additional control. Specifically, if the f representation above
fails to improve EEG prediction beyond the fo representation,
it would suggest that the encoding of individual phonetic fea-
tures is not reflected in EEG data.

Model fitting: multivariate linear regression
The acoustic and phonetic representations for both attended and unat-
tended speech described above were normalized and mapped to the

concurrently recorded 128-channel EEG signals. Multivariate regular-
ized linear regression was employed to relate the features to the recorded
EEG data, where each EEG channel is estimated to be a linear transfor-
mation of the speech features over a range of time lags. This transforma-
tion is described by the temporal response function (TRF). For a
particular speech feature, this operation can be represented mathemati-
cally as following (Crosse et al., 2016):

r t; nð Þ ¼
X

t

w t ; nð Þs t � tð Þ1eðt; nÞ;

where r t; nð Þ is the neural (EEG) response at channel, n and time point,
t ¼ 1:::T, s t � tð Þ is the multivariate stimulus representation at a lag, t ,
w t ; nð Þ is the transformation (TRF) of the stimulus at lag t , and eðt; nÞ
is the residual response not explained by the model.

The TRF is estimated by minimizing the mean square error between
the actual neural response, r t; nð Þ, and the response predicted by the
transformation, r̂ t; nð Þ. In practice, this can be solved by using reverse
correlation. We use the mTRF toolbox (Crosse et al., 2016; https://
sourceforge.net/projects/aespa/), which solves for the TRF (w) using
reverse correlation with ridge regression:

w ¼ ðSTS1l IÞ�1STr;

where l is the ridge regression parameter, I is the identity matrix, and
the matrix S is the lagged time series of the stimulus matrix, s. The TRF
approach can be used to relate multiple features of the stimuli to the
ongoing EEG simultaneously by extending the lagged stimulus matrix to
include the various features (more details can be found in Crosse et al.,
2016). The ridge regression parameter was tuned using leave-one-out
cross validation. That is, for each subject, we trained a separate TRF on
each of n – 1 trials (n=40) for a wide range of l values (1� 10�1, 1 -
� 100, ..., 1� 106 for the model comparison analysis, and 2�2, 2�1, ..., 237

for the partial correlation analysis), computed the average TRF across
trials for each l , then tested the TRFs on the nth trial. This was repeated
n times, rotating the trial to be tested each time. For each subject, the sin-
gle l value that maximized the Pearson’s correlation coefficient between
the actual and predicted neural response averaged over all trials and over
all channels was selected. It is worth noting here that the optimal l pa-
rameter value did vary somewhat across subjects. This was not surprising,

Figure 1. A, Speech representations: the first row depicts an acoustic waveform of an excerpt taken from one of the stimuli. Subsequent rows show the computed acoustic and phonetic
representations for that excerpt. B, Analysis framework: cross-validation is used to train forward models mapping the different attended and unattended speech representations to EEG. These
models are then used to predict left-out EEG. Pearson’s correlation is used to evaluate model accuracy, and the prediction accuracies of acoustic and phonetic models are compared.
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considering the fact that strength of EEG responses to speech (and hence
their signal-to-noise ratio) will vary across subjects because of differences
in their cortical fold configuration and skull thickness, etc. However, the
optimal l parameter typically fell into the intermediate region of our
tested range, far from the lowest value. This indicates that incorporating
regularization improved the model prediction accuracies.

The TRF mapping from stimulus to EEG was computed over a range
of time lags, reflecting the idea that changes in the features of the
ongoing stimulus are likely to produce effects in the ongoing EEG in
that interval. Specifically, we chose the interval 0–300ms based on previ-
ous EEG-based speech studies, where no visible response was present
outside this range when considering EEG responses to acoustic and pho-
netic features (Lalor and Foxe, 2010; Di Liberto et al., 2015). We quanti-
fied how well each speech representation related to the neural data using
leave-one-trial-out cross-validation (as described above), with Pearson’s
correlation coefficient as our metric of prediction accuracy. Because the
cross-validation procedure takes the average of the validation metric
across trials, the models are not biased toward the test data used for
cross-validation (Crosse et al., 2016).

To evaluate whether a feature contributed independently of all other
features in predicting the neural data, we also computed the partial cor-
relation coefficients (Pearson’s r) between the EEG predicted by each
measure’s model with the actual recorded EEG after controlling for the
effects of all other features. Specifically, we fit separate cross-validated
forward models/TRFs on each of the four speech representations (s, sD, f
and fo) and predicted EEG based on those models. Then, for the three
features to be partialled out (e.g., s, sD, and fo), we used cross-validation
to optimally predict our EEG data. We then concatenated these three
EEG predictions into one matrix, Z. And, finally, we used the MATLAB
built-in function partialcorr (X, Y, Z), where X = the actual recorded
EEG, Y = the predicted EEG in response to the feature of interest (the
feature whose unique contribution is to be identified, e.g., f), and Z = the
concatenated predicted EEGs in response to the other features (features
that are to be partialled out). This function computes the partial correla-
tion coefficients between X and Y, while controlling for the variables in
Z (Fisher, 1924).

Incidentally, we sought to confirm the validity of our partial correla-
tion approach using a second approach. In this approach, we fit one
model to three predictors simultaneously using cross-validation (e.g., the
s, sD, and fo features). Then we used that model to predict the EEG data
and subtracted that predicted data from the real data to leave us with re-
sidual EEG. Finally (again using cross validation), we predicted this re-
sidual EEG using the left out predictor (e.g., f), to see whether this
predictor had any power to predict unique variance in the original EEG.
This analysis produced the same pattern of result as the approach
described in the previous paragraph.

Statistical testing
To test that a partial correlation coefficient is above chance level, we per-
formed nonparametric permutation testing. The predicted EEG activity
for each model’s representation was permuted across trials such that
they were matched to the actual EEG of a different trial, and partial cor-
relation coefficients were computed, controlling for the effects of all
other features. This was done 1000 times for each subject to establish a
distribution of chance-level prediction accuracies. To perform group-
level statistical testing, we generated a null distribution of group means:
one prediction accuracy from each subject’s individual distribution was
selected at random to go into each group mean. This process was
repeated 1000 times, sampling with replacement for each subject. For
comparison between different models (Fig. 2C; Table 1) and for compar-
ison between conditions (attended vs unattended; Fig. 3A), two-tailed
Wilcoxon signed-rank testing was used. The resulting p values were cor-
rected using the false discovery rate (FDR) method (Benjamini and
Hochberg, 1995). We also used a Bayesian approach to determine the
amount of evidence in favor or against the null hypothesis (H0: no differ-
ence). We estimated the Bayes factors (BF10) using the MATLAB tool-
box bayesFactor toolbox (Moray et al., 2015). More specifically, we used
the bf.t test function from the toolbox for paired observations that uses
Jeffrey–Zellner–Siow (JZS) prior with a scaling factor of 0.707 (Rouder

et al., 2012). Typically, any BF10 exceeding three is considered to be evi-
dence for the alternative hypothesis (H1), while below 0.33 is considered
strong support for the null hypothesis (H0), and BF10 ranging between 1
and 3 is considered to be weak, anecdotal evidence for the alternative hy-
pothesis (Wagenmakers et al., 2011).

Results
Subjects were found to be compliant in carrying out the behav-
ioral task (Fig. 2A). The average questionnaire accuracy was
73.26 3.2% when subjects were tested on the attended story and
27.26 1.6% for unattended stimuli (theoretical chance level is
25% as there are four possible answers to each question).

As mentioned above, our study had two specific questions:
(1) does the brain process speech at the level of phonemes and, if
so, does it do so for both attended and unattended speech? and
(2) at what hierarchical levels does attention influence process-
ing? To address both questions, we chose a two-stage data analy-
sis strategy. The first stage sought to answer the first question. It
involved comparing the performance of different models in pre-
dicting EEG responses to speech. More specifically, it involved
assessing whether or not the inclusion of a categorical phonetic
feature representation of speech (f) could improve the prediction
of EEG beyond that obtained using several other acoustic (s, sD)
and phonetic (fo) features. Furthermore, we aimed to assess
whether any such improved prediction would hold for both
attended and unattended speech. The second analysis was aimed
at answering the second question. This strategy involved identi-
fying the ability of each stimulus feature to predict unique var-
iance in the EEG responses (while controlling, or partialling out,
the predictive contributions of the other features), and then
assessing whether that unique predictive contribution was
affected by attention. While these two data analyses are closely
related, each is targeted at one of our specific complementary
questions.

Model comparisons reveal that responses to attended talkers
reflect phonetic-level processing
We assessed the performance of attended and unattended mod-
els that were trained to predict EEG responses using the acoustic
and phonetic feature representations extracted from the speech
stimulus (Fig. 2B). The Pearson’s correlation between predicted
and actual EEG activity, averaged across the same 12 bilateral
fronto-temporal channels used in Di Liberto et al. (2015) and
Daube et al. (2019), was used as our metric of prediction accu-
racy for each model (although the same pattern of results was
observed if all 128 channels were used). All individual features
could predict EEG above chance on a group level (nonparamet-
ric permutation test, p= 0.999e-3).

Now, the feature spaces used here are not independent, so the
individual model predictions are not a pure representation of the
extent to which EEG tracks these features. The phonetic features
representation (f) overlaps with the spectrogram representation
(s) in that if every phoneme is always spoken the same way, then
the two representations would be equivalent. The phoneme onset
(fo) representation marks the same time-points as the phonetic
feature representation (f), except that it does not contain feature
category information. The sD, an approximation of acoustic
onsets, contains peaks that overlap with those of the fo represen-
tation. Thus, the processing of a particular feature was assessed
by examining whether adding that feature improved prediction
of the EEG responses beyond a model built from other features
(Fig. 2C). We were particularly interested in establishing whether
the three other features could improve prediction accuracy
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beyond using spectrograms alone, and if phonetic features con-
tributed unique predictive power beyond all other features.
Importantly for comparing the present study with previous stud-
ies using this approach (Di Liberto et al., 2015; Daube et al.,
2019), our experiment involved speakers with markedly different

acoustics (i.e., a male speaker and a female speaker). This means
an increase in the variability of the acoustic representation (s) for
the same phonetic features. As such, the phonetic feature repre-
sentation should only improve predictions if there are consistent
responses to the same phonetic features despite their acoustic
variation. In order to test this idea, we performed pairwise statis-
tical testing of the joint model prediction accuracies, these results
are shown in Table 1.

In general, we found that adding model features tended to
improve EEG prediction performance for attended speech, with
fewer improvements visible for unattended speech. Of particular
relevance to our original question, we found that including pho-
netic features (f) significantly improved prediction over the
acoustic (s, sD) features when subjects were attending to the
speech (p=0.0043), but this improvement was not observed for
the unattended speech (p=0.1981). Importantly, the addition of
phonetic features also improved prediction when compared with
a combination of acoustic features and phoneme onsets (fo) in
the attended case (p= 0.0076), indicating that the inclusion of
specific phonetic feature categories carries unique and important
information. The acoustic onset (i.e., sD) representation dis-
played a different pattern of results, including this measure along
with the spectrogram (i.e., s1sD) improved prediction accuracy
over spectrogram alone for both attended and unattended stimuli,
suggesting that it is less strongly modulated by attention. For unat-
tended speech, it is also worth noting that, while the phonetic feature
representation did not improve the prediction of EEG responses over

Table 1. Joint model comparison statistics

Attended Unattended

Baseline: s
s1 f . baseline p= 0.0012, z = 3.2330,

BF10 = 8.0159
p= 0.4326, z = 0.7847,
BF10 = 0.2790

s 1 sD . baseline p= 0.0023, z = 3.0447,
BF10 = 63.9041

p= 0.0023, z = 3.0047,
BF10 = 13.2765

s 1 fo . baseline p= 0.0015, z = 3.1708,
BF10 = 2.1335

p= 0.7299, z = 0.3453,
BF10 = 0.3035

Baseline: s 1 sD
s 1 sD1 f . baseline p= 0.0043, z = 2.8563,

BF10 = 7.1414
p= 0.1981, z = 1.2869,
BF10 = 0.6082

Baseline: s 1 fo
s 1 fo 1 f . baseline p= 0.0023, z = 3.0447,

BF10 = 59.7059
p= 0.6378, z = 0.4708,
BF10 = 0.2829

Baseline: s 1 fo 1 sD
s 1 fo 1 sD 1 f. baseline p= 0.0076, z = 2.6680,

BF10 = 13.9134
p= 0.4703, z = 0.7219,
BF10 = 0.4912

Wilcoxon two-sided signed-rank test results for attended and unattended stimuli (columns) along with the
bayes factors (BF10). Each set of rows tests a different statistical question, as specified by the baseline.
Terms being evaluated are to the left of the . symbol. Bolded values indicate significant improvement over
baseline.

Figure 2. A, Behavioral (comprehension questionnaire) results; dots indicate individual subject performance. Theoretical chance level is 25% (multiple-choice test with four options) and is
indicated by the dashed line. B, Prediction accuracies of individual acoustic and phonetic feature spaces (as labeled on horizontal axes) for the attended and unattended stimuli. There is redun-
dancy between these features, so joint modeling was performed to gauge in particular whether phonetic features add unique predictive power beyond other features. C, Prediction accuracies
of joint feature spaces for attended and unattended stimuli (**p, 0.01, two-tailed Wilcoxon sign-ranked test, FDR corrected). On each box, the central horizontal line indicates the median.
The bottom and top edges of the boxes indicate the 25th and 75th percentiles of the data, respectively. The whiskers indicate variability outside the upper and lower quartiles. The ‘+’ sign
inside the boxes indicates mean value and the ‘+’ sign outside the boxes indicate outlier. n.s. means not significant (p. 0.05).
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that based on the acoustic (s1sD) or combined acoustic and fo
(s1sD1fo) features, the absence of evidence is not evidence of ab-
sence. Indeed, the Bayes factor scores for these two comparisons
were BF10 = 0.6082 and BF10 = 0.4912, respectively. Both of these are
larger than 0.33, indicating we do not have strong evidence in sup-
port of the null hypothesis. As such, while we saw no evidence for
phonetic feature processing of unattended speech, we cannot claim
that it definitely is not happening. However, the evidence in support
of such processing for attended speech is strong.

While our results provide evidence for phoneme level processing
of attended speech, but no such evidence for unattended speech, the
above analysis does not allow us to answer the second question our
study set out to examine. In particular, the above results do not
allow us to test the hypothesis that attention effects are stronger on
measures of phonetic feature processing than onmeasures of acous-
tic processing. One might be tempted to conclude from the results
in Figure 2B that attention is affecting processing at the level of
acoustics [compare the prediction accuracies of the s model for
attended (Fig. 2B, left panel) vs unattended (Fig. 2B, right panel)
speech]. However, as discussed above, the s and f representations
are likely to be highly correlated (given that the acoustics for a given
phoneme will tend to be correlated across utterances of that pho-
neme). As such, if one were to observe an attention effect on the s
model alone, one would not be able to conclude that attention is
affecting low-level acoustic processing. Rather, it could be operating
at the level of phonemes and simply appearing in the s model per-
formance via correlation. Therefore, to answer our study’s second
question, we need another approach.

Variance partitioning analysis reveals that attention
enhances isolated measures of phonetic feature processing
but not acoustic processing
Given the aforementioned redundancies between the predictions
of feature spaces, we were also interested in more clearly isolating
the unique contribution of each feature. To do so, we employed
a partial correlation approach to control for the predictions of all

other representations. The unique predictive power of each
model is shown in Figure 3A (shown here for an average across
12 channels, although including all 128 channels revealed the
same pattern of results). On a group level, all features made
unique, significant contributions to the EEG predictions except
the sD models (attended and unattended), and the unattended
phonetic features model (nonparametric permutation test; sD
attended: p=0.0619; sD unattended: p=0.1788; f unattended:
p= 0.1788; all other models: p, 0.05). When comparing
attended and unattended models, we found a significant effect of
attention for phonetic features (two-tailed Wilcoxon signed-rank
test; p, 0.05, FDR corrected, BF10 = 12.56), but not for any of
the other representations (two-tailed Wilcoxon signed-rank test;
FDR corrected; s: p=0.2412, BF10 = 0.54; sD: p = 0.3910, BF10 =
0.41; fo: p=0.1726, BF10 = 0.59). Again, the Bayes factor scores
for these three latter results are all ,1, but .0.33. As such, we
cannot definitively claim that there is no effect of attention on
the s, sD, or fo representations. However, our data do not provide
any evidence of such an effect, unlike the strong effect we see for
phonetic features. This strong effect for phonetic features, but
not the other representations, is clearly visible in when visualiz-
ing the topographic distributions for the unique predictive power
of each model (Fig. 3B).

We think the above approach of explicitly testing the unique
predictive power of different speech representations is a good
way to explore the hierarchical processing of natural speech.
However, further insight could potentially be gleaned by investi-
gating how the EEG is affected by attention at different temporal
delays relative to the speech stimulus. Indeed, in previous work
we did this by relating EEG to the speech envelope and finding
attention effects at a specific range of time lags from 195 to
230ms, suggesting that cocktail party attention operates at rela-
tively long latencies, and, thus, beyond the earliest stages of
acoustic processing (Power et al., 2012). Similarly, we sought
here to explore how the attention effects we have observed on
our phonetic features representation might vary across time lags.

Figure 3. A, Unique predictive power for the acoustic and phonetic feature spaces under two attentional states. The features are as labeled on the horizontal axis. Statistical testing was conducted to
identify attentional effects (two-tailed Wilcoxon signed-rank; *p, 0.05, FDR corrected). B, Topographic distribution of partial correlations, averaged across all subjects. C, Unique predictive power for the
phonetic features representation (f) in 50-ms windows from 0 to 300ms, under two attentional states (two-tailed Wilcoxon signed-rank test; *p, 0.05, **p, 0.005, FDR corrected). On each box, the
central horizontal line indicates the median. The bottom and top edges of the boxes indicate the 25th and 75th percentiles of the data, respectively. The whiskers indicate variability outside the upper and
lower quartiles. The ‘+’ sign inside the boxes indicates mean value and the ‘+’ sign outside the boxes indicate outlier. n.s. means not significant (p. 0.05).
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To do so, we first explored the possibility of examining the
weights of a TRF that captures the unique variance in the EEG
because of the phonetic features. To that end, we used cross-vali-
dation to fit a three-feature model based on s, sD, and fo to best
predict the EEG data. Then we subtracted this EEG prediction
from the real EEG, and again used cross validation to model the
residual EEG using only the phonetic feature representation.
This model was able to predict significant variance in the residual
EEG, and these predictions were affected by attention, support-
ing our earlier results. However, there was no clear effects of
attention in the TRF weights themselves at any particular time
lags. In fact, this was not terribly surprising. In our previous
studies on cocktail party attention, we have found that attention
effects on TRF weights themselves are generally much less robust
and, thus, require a large amount of data (Power et al., 2012), rel-
ative to approaches based on EEG prediction or stimulus recon-
struction using those TRFs (O’Sullivan et al., 2015).

With this in mind, we tried a second approach. Specifically,
we repeated the approach of predicting EEG using phonetic fea-
tures f, while controlling for s, sD, and fo. However, this time,
rather than using a 0- to 300-ms interval of stimulus-response
time lags, we ran the analysis separately for different, nonover-
lapping 50-ms windows from 0 to 300ms. Figure 3C shows that
attention has a significant effect on the phonetic feature-based
predictions across a broad range of time lags, starting from
around 50ms. However, the strongest effects of attention are
visible from 150 to 250ms, with weaker effects from 50 to 100,
100 to 150, and from 200 to 250ms, and no attention effects at
the shortest latencies of 0–50ms (two-tailed Wilcoxon signed-
rank test; FDR corrected; 0–50ms: p=0.1726, BF10 = 0.5468; 50–
100ms: p=0.0166, BF10 = 3.8610; 100–150ms: p=0.0017, BF10 =
11.0430; 150–200ms: p=6.1035e-4, BF10 = 66.8325; 200–250ms:
p=0.0031, BF10 = 32.4147; 250–300ms: p= 0.0203, BF10 =
3.6121). This finding of strongest attention effects at time lags in
the range 150–250ms is largely consistent with earlier results
that identified strong cocktail party attention effects at temporal
latencies beyond 100ms with limited effects at earlier latencies
(Power et al., 2012; Puvvada and Simon, 2017). One complicat-
ing factor here, however, is that exploring EEG predictions using
narrow ranges of time delays is not necessarily as highly tempo-
rally resolved as it appears to be. This is because of the autocorre-
lational structure of the speech stimuli and of the EEG. The
stimulus-data relationship at, say, 90ms, can be quite similar to
that at 110ms. So the results need to be interpreted with some
sensitivity to the likelihood of smearing in time.

Phonetic feature categories contribute predictive power
beyond differentiating vowels and consonants
Di Liberto et al. (2015) found a high degree of discriminability
between EEG responses to vowels and consonants. The phonetic
feature representation used in the above analysis information on
the manner, place, and voicing of consonants, as well as the artic-
ulatory position of vowels. We wondered how our results would
be affected if, instead of using a 19-dimensional vector, the pho-
nemes were simply marked as vowels or consonants. We repeated
the partial correlation analysis described above and found that
there was a significant decrease in prediction accuracy when the
information on specific articulatory features was left out in the
case of attended speech, but not for unattended speech (two-tailed
Wilcoxon signed-rank test, p=0.011, z = 2.542). Additionally,
there was no longer a significant difference between the prediction
accuracies of attended and unattended stimuli (att_vc vs unatt_vc;
Wilcoxon signed-rank test; p=0.4326; z =0.7847).

Discussion
There has been longstanding debate on how selective attention
affects the processing of speech. Here, we set out to investigate
attentional modulation at the prelexical level. In particular, based
on earlier work (Di Liberto et al., 2015; Daube et al., 2019), we
considered how two acoustic and two phonetic feature represen-
tations of attended and unattended speech were reflected in EEG
responses to that speech. We found that, for attended speech,
including a 19-dimensional phonetic features representa-
tion improved the prediction of the EEG responses beyond
that obtained when only using acoustic features. This was
not true for unattended speech. Furthermore, we found that
the unique predictive power of the phonetic feature repre-
sentation was enhanced for attended versus unattended
speech. This was not true for any other feature. We contend
that these findings make two important contributions to the
literature. First, they contribute to the debate around pre-
lexical speech processing in cortex. And second, they con-
tribute to the longstanding debate on how selective
attention affects the processing of speech.

In terms of prelexical speech processing, our study shows that
a phonetic feature representation has unique predictive power
when it comes to modeling responses to attended speech (Fig. 2;
Table 1). This suggests that processing attended, but not unat-
tended speech, may involve a mapping from an acoustic to a cat-
egorical phonemic representation. This is a controversial idea. In
particular, while linguistic theories and prominent speech proc-
essing models posit a mapping to phonetic features and/or pho-
nemes as an intermediate stage between low-level acoustics and
words (Liberman et al., 1967; McClelland and Elman, 1986;
Hickok and Poeppel, 2007), this viewpoint is not unanimous.
Some researchers question the necessity and existence of a men-
tal representation at this level for comprehending speech mean-
ing (Lotto and Holt, 2000). Indeed, there have been theories
advocating for alternatives, including a different intermediate
representational unit (e.g., syllables; Massaro, 1974), or direct
matching to the lexicon based on the comparison of acoustic rep-
resentations (Goldinger, 1998; Klatt, 1989). In support of an
acoustic-phonemic stage of processing, there has been evidence
from behavioral and EEG studies that humans perceive phoneme
categories. Liberman et al. (1957) found that discrimination
within phoneme categorical boundaries is poorer than
across them. Eimas et al. (1971) looked at infants’ ability to
discriminate syllables that differed in a voicing (phonetic)
feature and found that infants also perceived categorical
phonetic features. Additionally, Näätänen (2001) found
that the mismatch negativity (MMN), an event-related
potential component that reflects discriminable change in
some repetitive aspect of the ongoing auditory stimulation,
is observed when the deviant stimulus is a phoneme proto-
type of a subject’s native language relative to when it is a
nonprototype. However, it has been argued that these stud-
ies used simple isolated units, and therefore their results
could be because of the type of task and not reflective of
everyday listening.

More recent neuroimaging studies have shown that a
phonetic feature representation of speech can predict neu-
ral activity during listening to natural, continuous speech.
Using high-density cortical surface electrodes, Mesgarani
and colleagues found that the STG selectively responds to
phonetic features (Mesgarani et al., 2014; their Fig. 2–4).
Di Liberto et al. (2015) and Khalighinejad et al. (2017)
found evidence that noninvasive EEG activity reflects the
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categorization of speech into phonetic features. However, a
recent paper challenged these findings and argued that neu-
ral responses to speech could be well explained by a model
that is based entirely on acoustic features (Daube et al.,
2019). Namely, they found that acoustic onsets made very
similar predictions to the benchmark phonetic features, and
that acoustic onsets explained parts of the neural response
that phonetic features could not. Here, we show evidence to
support the encoding of a rich array of phonetic features
(certainly more than simply vowel and consonant categori-
zation; Fig. 4) for attended speech. It is possible that we
were able to find unique predictive power for these pho-
netic features because our study involved stimuli from two
different talkers (a male and a female) while the stimuli
used in Daube et al. (2019) were spoken by a single talker.
As mentioned earlier, there is redundancy between speech
acoustics and a phonetic feature representation because
each phonetic feature has a characteristic spectro-temporal
acoustic profile. This overlap can make it difficult to isolate
the precise contribution of each predictor. Indeed, if there
were no variation in spectro-temporal acoustics across each
utterance of the same phoneme, the phonetic feature and
spectrogram representations would be, effectively, identi-
cal. However, the more variation there is between utteran-
ces of the same phoneme (which will happen when
including both male and female speakers), the greater the
difference should be between the contribution of neurons
that care about those variations (e.g., low-level “acoustic”
neurons) and the contribution of neurons whose responses
are invariant to the acoustic details and only dependent on
phoneme category. As such, it may be that, when using
stimuli with high intra-phoneme acoustic variation, includ-
ing both acoustic and phonetic feature representations is of
most benefit for predicting neural activity. Future work will
investigate this idea further.

Interestingly, while our data support the idea of a mapping
from an acoustic to a categorical phonemic representation dur-
ing attended speech processing, we found no such evidence for
unattended speech. Our Bayesian analysis (BF10 = 0.4912. 0.33,
last row of Table 1) does not allow us to confidently assert that
no such mapping takes place. For example, it could be that the

generally lower prediction scores for unattended speech means
that the signal-to-noise ratio of the data are just not high enough
to detect subtle effects. That said, the EEG prediction scores for
our individual (Fig. 2B) and combined (Fig. 2C) speech represen-
tations for unattended speech were all significantly above chance.
Furthermore, the unique predictive power of the phonetic fea-
ture model for unattended speech was very low (Fig. 3A,B). As
such, it seems clear that, if it takes place at all, categorical proc-
essing of phonetic features for unattended speech is much
reduced. Importantly, we contend that the lack of any evidence
for phonetic feature processing of unattended speech actually
further supports our claim that such phonetic feature processing
is occurring for attended speech. In particular, if it were true that
putative categorical phonemic responses to speech could be well
explained by a model based entirely on acoustic features, then
this would surely hold for both attended and unattended speech.
That is, unless some acoustic features are more strongly modu-
lated by attention than others. But we favor the interpretation
that categorical linguistic processing (which surely happens)
occurs for attended and not unattended speech and that this di-
chotomy extends from semantic (Broderick et al., 2018) and
other linguistic levels (Brodbeck et al., 2018) down to the level of
phoneme categorization.

As a final comment on this issue, we acknowledge that there
are also other acoustic transformations of the auditory stimu-
lus that have not been considered beyond the spectrogram
and its derivative, as well as other theorized intermediate rep-
resentations apart from phonemes/phonetic features that have
not been tested. It is likely that some of these feature sets may
overlap with our measure of phonetic features. As such, we
cannot definitively prove the encoding of this measure in cor-
tex. However, one reason the idea of mapping to words via an
acoustic-phonetic stage has prevailed is because of its compu-
tational efficiency (Scharenborg et al., 2005). It is less obvious
how the detection of acoustic onsets and other acoustic repre-
sentations would lead to lexical access without an intermedi-
ate stage – and in particular, how such a model would robustly
generalize to new words and new speakers.

As to the cocktail party attention debate, our results suggest
that attention differentially modulates cortical processing of
acoustic and phonetic information. We found that the unique
predictive power of phonetic features was modulated by atten-
tion, while the other feature spaces were not. This result is in line
with a wealth of evidence for stronger attention effects at higher
levels of the speech processing hierarchy. For example, there is
no doubt that both attended and unattended speech will influ-
ence activity in the cochlea and the auditory nerve. But by the
time one reaches auditory association areas like STG, only the
attended speaker is represented (Mesgarani and Chang, 2012;
Zion Golumbic et al., 2013). Indeed, an important recent study
(O’Sullivan et al., 2019) used simultaneous recordings in both
primary auditory cortex (Heschl’s gyrus; HG) and STG, to show
that both attended and unattended speech are robustly repre-
sented in primary areas, with STG selectively representing the
attended speaker. This lines up very well with our results. In par-
ticular, it is well established that spectro-temporal models of
sounds can do a good job of explaining neural responses in pri-
mary auditory areas, but not in nonprimary auditory cortex
(Norman-Haignere and McDermott, 2018). Thus, we might
expect our isolated acoustic speech processing indices to mostly
reflect activity from primary auditory areas, which have been
shown to be relatively unaffected by attention (O’Sullivan et al.,
2019). Meanwhile STG is known to be selective for phonetic

Figure 4. A significant reduction in unique predictive power was observed for the
attended condition when the partial correlation analysis was repeated with phonemes only
categorized as vowels or consonants (vc), as opposed to their underlying articulatory features
(f; two-tailed Wilcoxon signed-rank test, *p= 0.011, z = 2.542).
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feature representations (Mesgarani et al., 2014) and activity in
STG is strongly affected by attention (O’Sullivan et al., 2019).
Thus, we might expect our isolated measures of phonetic feature
processing to be strongly influenced by activity from STG, and
thus, significantly affected by attention. This is the pattern of
results that we have observed.

Additional support for our findings as evidence for a higher-
level locus of attentional selection comes from research examin-
ing the latency of attention effects on EEG and MEG responses
to speech. This approach has commonly focused on a rather gen-
eral measure of speech processing that derives from indexing
how the neural data track the speech envelope. Directly deter-
mining how much this speech processing is driven by acoustic
versus speech-specific processing is not clear, although there is
undoubtedly a very substantial acoustic contribution (Lalor et al.,
2009; Howard and Poeppel, 2010; Prinsloo and Lalor, 2020).
Nonetheless, researchers have examined components of these
responses at different latencies as a proxy measure of processing
at different hierarchical stages, and found that both attended and
unattended speech are well represented in early components,
with distinct responses to the attended speaker appearing only in
late components (Ding and Simon, 2012; Power et al., 2012;
Puvvada and Simon, 2017). Directly linking envelope tracking at
different latencies with different representations of speech is a
task for future research. Indeed, it may be quite an important
task given the myriad efforts in recent years aimed at linking the
effects of attention on behavior with those on a difficult-to-inter-
pret neurophysiological measure that is likely substantially
driven by attentionally-insensitive acoustic processing (Tune et
al., 2020). Similarly, it may be that decoding of attentional selec-
tion from neural recordings will be improved by focusing on
how those recordings reflect specific speech representations that
are strongly affected by attention rather than the very general
speech envelope (O’Sullivan et al., 2015).

Finally, it is important to add the caveat that our lack of an
attention effect on isolated measures of acoustic processing is not
evidence of their absence. Indeed, while the Bayes factor scores for
the effect of attention on the unique predictive power of the s and
sD models were both ,1, they were not ,0.33, meaning we can-
not definitively assert that there are no attention effects at the
acoustic level. It may well be that our analysis pipeline is not sensi-
tive enough to detect small attention effects on those measures.
Nonetheless, the fact that a clear difference was found for the pho-
netic feature representation supports the notion of stronger atten-
tion effects at higher levels of the speech processing hierarchy. The
capacity of the brain to process information frommultiple streams
at any given moment in time is limited, so a longstanding question
has concerned the extent to which unattended speech undergoes
processing in cortex. Our results, considered together with studies
focused on lexical (Brodbeck et al., 2018) and semantic (Broderick
et al., 2018) processing, suggest it possible that attention is catego-
rically selective for speaker-invariant representations and, at most,
attenuates lower-level acoustic (speaker-dependent) measures.
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