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Robust immunity to intracellular infections is mediated by antigen-specific naive CD8 T cells
that become activated and differentiate into phenotypically and functionally diverse subsets
of effector cells, some of which terminally differentiate and others that give rise to memory
cells that provide long-lived protection. This developmental system is an outstanding model
with which to elucidate how regulation of chromatin structure and transcriptional control
establish gene expression programs that govern cell fate determination, insights from which
are likely to be useful for informing the design of immunotherapeutic approaches to engineer
durable immunity to infections and tumors. A unifying framework that describes how naive
CD8 T cells develop into memory cells is still outstanding. We propose a model that incor-
porates a common early linear path followed by divergent paths that slowly lose capacity to
interconvert and discuss classical and contemporary observations that support these notions,
focusing on insights from transcriptional control and chromatin regulation.

During infections and cancer, the activation
of antigen-specific naive CD8T cells results

in the development of a tapestry of “effector”
and “memory” CD8 T-cell populations (Box
1) that progressively acquire differences in their
life spans, abilities to manifest rapid effector
functions, to self-renew, to expand extensively
upon rechallenge, and to traffic between or lo-
calize within distinct lymphoid and nonlym-
phoid tissue and microanatomic locales (Table
1; Mueller et al. 2013; Jameson and Masopust
2018). The developmental process through
which naive CD8 T cells become cells that ter-
minally differentiate, or that develop into one of
many CD8 T-cell subclasses has been described
by a number of theoretical models. However, a

unifying conceptual framework capturing all as-
pects of observed results is still outstanding. In
this review, we take the perspective that naive
CD8 T cells initially differentiate along a com-
mon linear pathway, which subsequently di-
verges along developmental paths that may be
reinforced, or reprogrammed, and are actively
maintained by DNA-sequence-specific tran-
scription factors (TFs) and chromatin remodel-
ing factors (CRFs).We attempt to synthesize the
observations from a wide range of studies by
drawing on cell developmental aspects of CD8
T-cell responses, the defined roles of specific TFs
and CRFs in CD8 T cells, and the basic princi-
ples that underlie chromatin remodeling, tran-
scription, and cell fate determination. A more
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advanced perspective of how the early differen-
tiation of naive CD8 T cells determines the de-
velopment of memory cells might provide im-
portant guideposts that could be informative
when considering the design of vaccination
and immunotherapies aimed at engineering du-
rable immunity to infections and tumors.

LINEAGE RELATIONSHIPS UNDERLYING
MEMORY CD8 T-CELL DEVELOPMENT

CD8 T-Cell Heterogeneity

Cells found in the effector phase exhibit sub-
stantial phenotypic heterogeneity, which corre-
lates with different potentials for terminal
differentiation or developing into specific mem-
ory CD8 T-cell subclasses during infections that
resolve acutely. One of the most well-defined

phenotypic categorization schemes involves de-
lineating antigen-experienced cells using KLRG1
and CD127 expression (Kaech et al. 2003; Joshi
et al. 2007). Additional profiles defined using
CD27, CD43, CD62L, CXCR3, and CX3CR1
are also regularly applied (Buchholz et al. 2013;
Gerlach et al. 2013, 2016; Olson et al. 2013;
Youngblood et al. 2017), and we have sum-
marized many of these definitions (Table 1).
Although not all of these CD8 T-cell subsets are
necessarily stable cell “lineages” and likely in-
clude many differentiation intermediates (Jame-
son and Masopust 2018; Hudson et al. 2019),
they are nevertheless critical for the establish-
ment of immunity, and uncovering the transcrip-
tional mechanisms that accounts for this diver-
sity is of intense and long-standing interest
within the field (Kaech and Cui 2012; Chang
et al. 2014; Milner and Goldrath 2018).

BOX 1. THE VERNACULAR OF POSTACTIVATION CD8 T CELLS

Antigen-experiencedCD8T cells are classically defined as “effector” or “memory” cells in the context
of acute infections, a scenario in which the pathogen is successfully cleared. In this case, naive cells
undergo a prototypical pattern of cell accumulation and differentiation, followed by numerical “con-
traction” of the population and conversion into a stable population of memory cells (Kaech et al.
2002; Badovinac and Harty 2006). Cells in the effector and contraction phases are referred to as
“effector” cells, and those that persist after contraction abates as “memory” cells. Those classified
under each umbrella term actually manifest extensive phenotypic and functional heterogeneity
(Table 1). In addition, the postactivation cells that arise during chronic infection and tumors do not
neatly fall into either umbrella term, because in these scenarios antigen is not cleared, typical effector
phase contraction does not occur, and a prototypical memory T-cell compartment that can persist in
the absence of antigen does not form (Wherry et al. 2004; Kaech and Wherry 2007). Although the
effector and memory parlance are handy for discussion, these generalizations can be misleading or
confusing given current appreciation of the phenotypic and functional heterogeneity between cells
found in the effector and memory phases of the immune response. Furthermore, because immune
responses to chronic infections and tumors, wherein the distinct response phases observed in proto-
typical acute infections are not evident and instead antigen is not cleared, referring to cells as
“effector” or “memory” in either acute or chronic immune reaction scenarios becomes dubious.
Furthermore, because the word “activated” T cell is often used interchangeably with “effector”
T cell, confusion easily arises because the two are not necessarily equivalent. The former implies a
cell in a state of acute stimulation, and the latter a cell thatmanifests a specialized function, such as the
ability to destroy an immunological threat, as in the case of a genuine cytotoxic T lymphocyte (CTL).
This distinction is important, because many if not all postactivation CD8 T cells (including memory
cells) readily manifest “effector” functions such as cytolytic activity, especially in vivo, even though
some might be more proficient on short time scales than others (Barber et al. 2003). Thus, the terms
“effector” and “memory” do very little to distinguish a cell that has productively differentiated beyond
the naive CD8 T-cell state. A potential, if not imperfect solution is to refer to the precise features used
to experimentally enumerate the cells in question, rather than trying to oversimplifywith general terms
that could be misconstrued.
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Classical Models of CD8 T-Cell Memory
Formation and Their Conundrums

The classical theoretical models that have been
used to describe memory CD8 T-cell formation
during a prototypical acute infection can be gen-
erally grouped into three categories: (1) linear
differentiation in which naive cells first develop
into “effector” cells before some convert into
memory cells (Fig. 1A; Opferman et al. 1999;
Kaech and Wherry 2007; Kaech and Cui
2012), (2) separate fate (asymmetric) models in
which cells diverge and commit at early times
along distinct developmental paths leading to
distinct memory or terminally differentiated ef-
fector cell “fates” (Fig. 1B; Kaech and Wherry
2007; Kaech and Cui 2012; Reiner and Adams
2014), and (3) linear differentiation in which
naive cells initially differentiate into central
memory (Tcm) precursor cells that progressive-
ly develop into terminally differentiated cells in a
manner coupled to the extent of cell division
(Fig. 1C; Buchholz et al. 2016).

Each of these models and their derivatives
are built on extensive experimental support,
suggesting that they all describe important as-
pects of how the process unfolds. However, con-
sidered together they pose some contradictions.
Effector cells cannot give rise to memory cells if
memory cells actually develop first, and vice ver-
sa. In addition, if cells diverge along separate
trajectories with actual “fates,” then by defini-
tion they do not convert one into the other once
they have diverged. The actual biology appears
to be more complicated. There is clear evidence
that some cells might be on one developmental
path before altering or “reversing” course
(Youngblood et al. 2017; Herndler-Brandstetter
et al. 2018). Furthermore, these models describe
development in the context of prototypical acute
infections and might not inform what occurs in
the context of persistent infections or cancer,
even though cells in those settings also originate
from naive cells.

HYPOTHESIS

A model composed of an initial linear differen-
tiation path that establishes multilineage poten-

tial, followed by divergent developmental trajec-
tories that undergo lineage-restriction but retain
potential for interconversion that is gradually
reduced might provide a unifying framework
(Fig. 2).

EVIDENCE FOR UNCOMMITTED COMMON
PROGENITORS BEFORE LINEAGE
DIVERGENCE

Effector and Memory Cell Potential at the
Peak Response

During amodel acute intracellular infection, such
as infection with the Armstrong strain of lym-
phocytic choriomeningitis virus (LCMVArm), a
spectrum of CD8 T-cell progenies exists near
the peak response (Table 1; Kaech and Wherry
2007; Kaech and Cui 2012). For simplicity, the
KLRG1/CD127 system suffices to convey the
concepts. At this time, cells that are KLRG1hi

CD127lo generally predominate numerically de-
pending on the infection type (Obar et al. 2011)
and are classified definitively as short-lived effec-
tor cells (terminal effector [TE]) because they
inefficiently form memory cells (Kaech et al.
2003; Joshi et al. 2007; Obar et al. 2011; Plumlee
et al. 2015; Youngblood et al. 2017). Conversely,
KLRG1loCD127hi cells are numerically small and
deemedmemory precursor effector cells (MPECs
[MP]), because they efficiently form memory
cells (Kaech et al. 2003; Joshi et al. 2007; Obar
et al. 2011; Plumlee et al. 2015; Youngblood et al.
2017). The TE and MP subsets are relatively sta-
ble phenotypes that do not efficiently intercon-
vert after transfer into timed, infection-matched
hosts (Kaech et al. 2003; Joshi et al. 2007; Obar
et al. 2011; Plumlee et al. 2015; Youngblood et al.
2017). However, cells from theKLRG1lo CD127lo

population, which are referred to as early effector
cells (EECs) are not phenotypically stable, and
give rise to all classes of KLRG1/CD127 subsets
and circulating memory cells after transfer (Joshi
et al. 2007; Obar et al. 2011; Plumlee et al. 2015).
Thus, many postactivated CD8 T cells are actu-
ally common precursors of both effector and
memory CD8 T-cell lineages (Plumlee et al.
2015; Diao and Pipkin 2019).

Transcriptional Regulation of Memory CD8 T-Cell Formation
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Linear effector to memory-decreasing potential
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Figure 1. Classical models of memory CD8 T-cell formation during acute infection. (A) Linear differentiation
decreasing potential model. The responding population differentiates into effector cells, but some cells accumu-
late more differentiation signals than others, which drives terminal differentiation. (B) Separate fate with pro-
gressive differentiation model. Activated cells initially diverge into distinct effector and memory developmental
paths based on early signal strength. Cells in the memory pathway that continue to receive stimulation progres-
sively differentiate and ultimately join the effector pathway. (C) Linear differentiation, stochastic model. Indi-
vidual naive cells unpredictably commit to a proliferative fate that is coupled to the degree of differentiation.
Naive cells first develop into slow cycling central memory precursors (Tcmp), then faster dividing effector
memory precursors (Temp), and ultimately highly proliferative terminally differentiated progenies.
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Multilineage Priming and Lineage Bias
Develop before Definitive TE and MP
Cells Arise

Cellswith bothTEandMPpotentials are present
at early times in the response. Up until approx-
imately day 5 postinfection (pi) with LCMVArm,
responding cells manifest substantial flexibility
in differentiation outcomes, both in terms of bias
toward differentiating into either TE orMP cells
at the peak response, as well as the balance in
formation of circulating memory CD8 T-cell
subsets (Obar et al. 2011; Plumlee et al. 2015;
Gerlach et al. 2016), and cells that depart second-
ary lymphoid organs and generate tissue-resi-
dent memory (Trm) cells in nonlymphoid
tissues (Masopust et al. 2010). KLRG1 up-regu-
lation indicates commitment toward terminal

differentiation in this early time frame (Joshi
et al. 2007). However, both KRLG1hi and
KLRG1lo cells isolated from day 4.5 post-
LCMVArm infection exhibit memory formation
potential (albeit KLRG1hi cells less so) (Sarkar
et al. 2008) compared to those isolated at the
peak response (Joshi et al. 2007). This suggests
that regardless of KLRG1 expression, cells at
early times are not strongly differentiated or
committed. Consistent with this, overall gene
expression of KLRG1hi and KLRG1lo cells on
day 5 pi is more similar to each other than either
subset compared to naive cells, and gene expres-
sion in either KLRG1 subset on day 5 is distinct
from that found in definitive early effector (EE),
TE, and MP phenotypic cells at the peak re-
sponse on day 8 post-LCMVArm infection (Sar-
kar et al. 2008; Wang et al. 2018).

Linear pathA B C

Multilineage
priming

Lineage
bias

Chromatin
opening

Naive 
CD8

APC

Divergence

Terminal effector path

Tissue residency path

Memory path

MP Tcm

Trm

Tem

TE

Tlle

Reinforcement

Figure 2. Common linear differentiation, lineage divergence, and progressive restriction. (A) Upon activation,
naive cells establish a common linear differentiation program that installs multiple capacities in postactivation
cells, such as responsiveness to multiple chemokines, cytokines, and additional costimulatory and coinhibitory
receptors, engages migratory capabilities, metabolic capacities, effector functions, and, importantly, comingles
expression of regulatory factors that are normally associated with one or another dedicated cell fate. This initial
process would facilitate cells to ultimately adopt one of many potential differentiated outcomes later, while being
committed to none of them initially, rather serving as progenitors of both terminally differentiated and memory
cell progenies. (B) Stochastic transcriptional events result in metastable gene and protein expression states that
causes transient lineage bias in some cells among an otherwise homogeneous population (Chang et al. 2008). (C)
Cell fate–determining factors reinforce these spontaneous fluctuations, encouraging differentiation along one
pathway by enhancing gene expression of the chosen direction, while silencing gene expression that opposes the
alternative path at the chromatin level. Cells may interconvert (arrows) until late in their paths.
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Gene expression in responding cells at early
times is dynamic and probably unstable at the
single-cell level, which suggests cellsmightunder-
go substantial gene expression programming be-
fore adopting a definitive phenotype. Single-cell
RNA sequencing (scRNA-seq) studies have
shown that gene expression signatures of either
mature TE or Tcm cells are enriched within cells
that have undergone their first cell division (Ka-
karadov et al. 2017).However, this extreme polar-
ity is not evident in their progeny several days
later, although expression of effector andmemory
“fate-classifier” genes indicates lineage bias in
some cells (Kakaradov et al. 2017). Moreover,
prior to the peak response, additional heteroge-
neity in single-cell gene expression appears to ex-
ist in the spleen and nonlymphoid tissues, which
indicates cells begin to diverge toward distinct
differentiation outcomes at early times, although
the developmental routes to these cell states are
not yet defined (Boland et al. 2020; Milner et al.
2020b). These studies argue that gene expression
in activated cells early in the response is less dif-
ferentiated and more flexible than in cells at the
peak response, and that individual cells several
days after the response has begun are still uncom-
mitted to either TE or memory cell differentia-
tion, but many have become lineage biased.

Early Gene Expression Is Not Reinforced in All
Resulting Progenies

Before developing into definitive TE orMP cells,
activated CD8 T cells manifest promiscuous ex-
pression of key regulatory factors that are other-
wise selectively expressed in the definitive sub-
sets. In other settings, this process underlies the
propensity of progenitor cells to be able to un-
dergo differentiation along multiple potential
paths (Laslo et al. 2006; Chang et al. 2008; Sol-
datov et al. 2019). Analysis of mice with gene-
targeted Id2-YFP and Id3-GFP reporter alleles
demonstrated that CD8 T cells coexpress both
Id2 and Id3 at early times after infection, before
their expression becomes more polarized later
(Yang et al. 2011). Likewise, using a targeted
Tcf7-GFP allele to trace cells expressing TCF1
(encoded by Tcf7), a TF that is important for
Tcm and T-stem-cell-like (Tscm) qualities,

shows that its expression is initially sustained
for several generations postactivation (Lin et al.
2016), before down-regulation in extensively di-
vided cells that acquire a terminally differentiat-
ed phenotype (Zhou et al. 2010; Im et al. 2016;
Jadhav et al. 2019; Siddiqui et al. 2019). Notably,
considerable fractions of Tcf7-GFPhi cells at ear-
ly times also express granzyme B or KLRG1 (Lin
et al. 2016), which demonstrates coexpression of
both effector andmemory traits manifest in cells
prior to their selective expression in definitive
TE or MP cells several days later. These results
are consistent with analyses of CD8 T cells from
GzmbCre and Klrg1Cre “fate-reporter” mice,
which have shown that many memory cells de-
rive from ancestor cells that expressed these ef-
fector-cell-associated genes at some point in
their history, and subsequently down-regulated
them (Bannard et al. 2009; Herndler-Brandstet-
ter et al. 2018). Therefore,many activatedCD8T
cellsmanifest lineage-promiscuous and unstable
gene expression that is only reinforced at later
times in some fully developed progenies, a pro-
cess that is a key hallmark of uncommitted pro-
genitors undertaking lineage choice (Laslo et al.
2006; Chang et al. 2008; Soldatov et al. 2019).

LINEAGEDIVERGENCEANDSTABILIZATION
OF EARLY LINEAGE BIAS

The quality and quantity of signals that recently
activated naive CD8 T-cell experience regulate
the extent to which the emerging progenies pro-
liferate, which is coupled to terminal differenti-
ation and loss of memory potential (Kaech and
Cui 2012; Buchholz et al. 2016). These signals
likely function in a cooperative and opposing
manner to reinforce or antagonize transcrip-
tional fluctuations that develop in lineage-
biased cells early during differentiation to drive
lineage commitment (Laslo et al. 2006; Chang
et al. 2008; Singer et al. 2008; Pipkin and Rao
2009; Soldatov et al. 2019).

Signals and TF Activities that Reinforce
Terminal Differentiation

The collective input of T-cell receptor (TCR)
signals, costimulation, and inflammatory cyto-
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kine stimulation (e.g., IL-12 and IL-2) predict
the extent to which activated CD8 T cells will
divide, with greater sums of stimulation increas-
ing proliferative capacity (Marchingo et al.
2014). Cells from progenies with greater cell
division history correlate positively with termi-
nally differentiated states because of positive
feedback initiated by early inflammatory cyto-
kines. These signals promote proliferation by
prolonging expression of IL-2Rα and IL-2 re-
sponsiveness, and enhancing transcriptional ac-
tivities that directly induce effector cell gene ex-
pression (Curtsinger et al. 2005; Joshi et al. 2007;
Kalia et al. 2010; Pipkin et al. 2010; Starbeck-
Miller et al. 2014). For example, inflammatory
cytokines and IL-2 each enhance expression of
TFs such as T-bet, Zeb2, and Blimp-1 (encoded
by Prdm1) that coordinately promote terminal
differentiation (Joshi et al. 2007; Rutishauser
et al. 2009; Kalia et al. 2010; Pipkin et al. 2010;
Xin et al. 2016). Most if not all activated CD8 T
cells initially induce T-bet upon initial TCR stim-
ulation, but its enhanced expression in response
to inflammatory cues is what drives terminal dif-
ferentiation (Joshi et al. 2007; Harty and Badovi-
nac 2008). Although T-bet drives terminal differ-
entiation, it requires additional TFs to do so
(Kaech and Cui 2012; Chang et al. 2014; Xin
et al. 2016). T-bet and Zeb2 positively regulate
terminal differentiation through a canonical
feedforward pathway (Dominguez et al. 2015;
Omilusik et al. 2015). T-bet binds to the Zeb2
locus, induces Zeb2 expression, and both TFs
facilitate optimal T-bet binding to cis-regulatory
regions in other downstream genes that they both
control (Dominguez et al. 2015).

Despite the potency of these regulatory cir-
cuits, not all cells that presumably experience
early inflammatory signals necessarily commit
to terminal differentiation (Buchholz et al. 2013;
Gerlach et al. 2013; Buchholz et al. 2016). Many
cells show evidence of having activated some
degree of gene expression that is normally in-
duced by inflammatory cytokines but neverthe-
less develop into memory cells. For example,
20%–40% all memory cells develop from cells
that previously expressed KLRG1 and then
down-regulated it after pathogen clearance (re-
ferred to as “ex-KLRG1” cells) (Joshi et al. 2007;

Herndler-Brandstetter et al. 2018). Thus, addi-
tional factors operating in the face of inflamma-
tory cues arbitrate commitment to terminal
differentiation.

Signals and TF Activities that Preserve
Memory Potential

The TF Zeb1 is induced in response to TGF-β
signals and is necessary for memory CD8 T-cell
differentiation. Both Zeb1 and action ofmir-200
family microRNAs repress Zeb2 expression
(Guan et al. 2018), which provides a mechanism
that could interrupt the T-bet-driven program
that otherwise drives the terminal differentiation
program forward. In addition, the TFs Runx3
andBach2 both restrain terminal differentiation.
Runx3 prevents high expression of T-bet and
Zeb2 at early times during infection and also
promotes chromatin accessibility to Bach2 mo-
tifs during initial TCR stimulation (Wang et al.
2018). Bach2 is a bZIP family TF that can com-
pete with Jun proteins to block TCR-induced
AP-1 binding in cis-regulatory regions (Hu
and Chen 2013; Roychoudhuri et al. 2016).
Bach2 is necessary for the conversion of
KLRG1-expressing effector cells into exKLRG1
cells that down-regulate KLRG1 and develop
into memory cells (Herndler-Brandstetter et al.
2018). Although Runx3 promotes accessibility
to Bach2 motifs during acute LCMV infection,
it also represses Bach2 gene expression, and both
TFs appear to function antagonistically in the
formation of Tscm cells during chronic LMCV
infection (Yao et al. 2021). Thus, a complex in-
terplay and perhaps a critical balance between
Runx3 and Bach2 activity appears to be impor-
tant for establishing distinctmemory-like T cells
during both acute and chronic infections.

Cells that develop intoMP cells are insulated
from terminal differentiation by the cytokines
IL-10 and IL-21 via the TF STAT3. CD8 T cells
lacking in any of these factors preferentially
manifest a terminally differentiated phenotype
and do not normally form Tcm cells (Cui et
al. 2011). Stat3 is necessary for expression of
SOCS3, which negatively regulated IL-12 re-
sponsiveness, and thus counteracts signals that
promote terminal differentiation. Stat3 is also
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necessary for expression of the TFs Bcl6 and
Blimp-1, mutual antagonists (Johnston et al.
2009), which regulate formation of distinct
memory CD8 T-cell subclasses. Disruption of
Bcl6 impairs formation of KLRG1lo CD127hi

cells and Tcm cells with self-renewal capacity
(Cui et al. 2011). Conversely, disruption of
Prdm1 impairs terminal differentiation and re-
sults in inflation of Tcm-like cells (Kallies et al.
2009; Rutishauser et al. 2009; Shin et al. 2009).
Therefore, signals that govern the early expres-
sion of Bcl6 and Prdm1 could be important for
differentially regulating terminal differentiation
andmemory precursor cell formation. However,
the fact that Stat3 seems necessary for expression
of bothof theseTFs implies it could contribute to
maintaining multilineage potential, in addition
to more specifically being required for Tcm for-
mation.

Bcl6 and Blimp1 Regulation Suggests Memory
Cell Developmental Paths Are NotMonolithic

Differential regulation of Bcl6 and Blimp1 is
complex andmight account for early heterogene-
ity in gene expression that leads to distinct mem-
ory developmental potentials that generate Tscm
cells, which are embedded within the Tcm phe-
notype population (Gattinoni et al. 2011, 2012;
Graef et al. 2014) and other circulating Tem and
Trm subsets. On the one hand, Prdm1 expression
is maintained in certain memory cell subsets well
after contraction but not those that up-regulate
CD62L, which implies that Prdm1-expressing
cells cannot develop into Tcm cells or that they
down-regulate Prdm1 to do so (Rutishauser et al.
2009; Behr et al. 2019).Prdm1-deficiency impairs
formation of Trm and TE cells (Mackay et al.
2016; Milner and Goldrath 2018; Behr et al.
2019). Thus, the amount of Blimp1 activity in
cells at early times appears to influence the bal-
ance of circulating and noncirculating effector
and memory cell lineages. On the other hand,
Tcm and Tscm cells that arise during acute infec-
tion, and Tscm cells that arise during chronic
infection, which exhibit traits found in follicular
CD4 T cells that function in germinal centers, are
known to depend on the TFs Bcl6, Id3, and TCF1
(Tcf7), which are down-regulated in response to

Blimp1 activity (Gattinoni et al. 2012; He et al.
2016b; Im et al. 2016; Crotty 2019). Exactly how
early regulationofBcl6 andBlimp1contributes to
these differential regimes is still unclear.

Naive CD8T cells expressBcl6 andmaintain
its expression during TCR stimulation, before
up-regulation of Prdm1 (Kalia et al. 2010; Pipkin
et al. 2010). Bcl6 is repressed upon cessation of
TCR stimulation, and coincides with Prdm1 up-
regulation. This process requires IL-2Rα and is
governed by IL-2R signal strength (Kalia et al.
2010; Pipkin et al. 2010; Boulet et al. 2014; Xin
et al. 2016), suggesting that initial Bcl6 activi-
ty could titrate early Blimp1 concentrations
(Crotty 2019). In addition, Runx3 participates
in this regulation, and is integrated with regula-
tion by both Tcf7 and Id3; Runx3-deficient CD8
T cells overexpress Bcl6, Tcf7, and Id3, and
underexpress both Il2ra and Prdm1, and these
cells aberrantly acquire follicular T-helper-cell-
like characteristics during infection (Kalia et al.
2010; Pipkin et al. 2010; Shan et al. 2017; Wang
et al. 2018). Thus, reduced Prdm1 expression in
Runx3-deficient cells could result from ectopic
expression of Bcl6 and Tcf7 (both repress Prdm1
in CD4s) (Shao et al. 2019), and/or a failure of
Runx3 to activate Prdm1 and Il2ra. Runx3 binds
to cis-acting regions in all of these genes, sug-
gesting it functions directly in these loci (Shan
et al. 2017; Wang et al. 2018), but the order of
operations in these regulatory networks is still
ill-defined. Elucidating the transcriptional con-
trol of Bcl6 and Prdm1 could be important for
clarifying the early developmental paths that
CD8 T cells take in the context of both acute
and chronic infections as well as in cancer
(Shin et al. 2009; Chen et al. 2019; Hudson
et al. 2019; Miller et al. 2019).

CHROMATIN REMODELING INITIATES
TRANSCRIPTIONAL REPROGRAMMING
DURING MEMORY CD8 T-CELL
FORMATION

Chromatin Accessibility inNaive, Effector, and
Memory Cells Suggest a Common History

Chromatin regions that are hypersensitive
to cleavage with nucleases such as DNase I
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(Weintraub and Groudine 1976) and transpo-
sase occur where locally disrupted nucleosomes
give way to bound TFs, and these accessible
regions can be mapped genome-wide by using
the assay for transposase-accessible chromatin
and high-throughput sequencing (ATAC-seq)
(Buenrostro et al. 2013). Compared to naive
cells, widespread alterations in chromatin acces-
sibility develop at cis-regulatory regions in ma-
ture TE, MP, and KRLG1lo Tmem (day 35) CD8
T-cell populations from mice after acute infec-
tion with LCMVArm and in progenitor-like and
exhaustedCD8T-cell subsets isolated frommice
chronically infected with the clone 13 strain of
LCMV (LCMVCl13) (Pauken et al. 2016; Scott-
Browne et al. 2016; Sen et al. 2016; Scharer et al.
2017; Yu et al. 2017; Jadhav et al. 2019). Bulk
effector (day 8 pi) and memory (day 35 pi) cells
after LCMVArm infection each exhibit several
thousand regions with altered accessibility com-
pared to naive cells but overlap extensively with
each other. Moreover, there are only several
hundred regions where accessibility is different
when comparing purified TE or MP cells. The
remarkable dissimilarity between either Tmem
or TE cells and naive cells, in contrast to the
relative similarity between TE and MP cells, is
consistent with the idea that all cells might ini-
tially share a common differentiation history
before acquiring more subtle differences along
terminal or memory cell paths. Notably, the
chromatin accessibility landscape of human ef-
fector cells elicited initially by yellow fever vac-
cine is remarkably similar to that found in the
resulting Tmem cells that persist nearly a decade
later (Akondy et al. 2017).

Pioneering Chromatin Accessibility upon
Naive Cell Activation Establishes Multilineage
Potential

Consistent with the notion of a common early
differentiation program, chromatin remodeling
in naive CD8 T cells that is induced prior to the
first cell division upon initial TCR and costimu-
lation alters accessibility of ∼15% of all regions
that are accessible later in mature TE, MP, and
Tmem subsets (Wang et al. 2018).Manyof these
de novo accessible regions correspond to those

that are stably maintained in mature memory
CD8 T cells (Wang et al. 2018; van der Veeken
et al. 2019), which demonstrates that chromatin
remodeling of memory CD8 T-cell-associated
cis-regulatory regions occurs well before “effec-
tor” cell differentiation is manifest. DNA se-
quences underlying de novo accessible regions
most frequently encode enriched motifs recog-
nized by RUNX, ETS, bZIP, T-BOX, IRF, RHD,
PRDM1, and ZF-KLF TF families, which sug-
gests that TFs in these families account for initial
transcriptional reprogramming during naive
CD8 T-cell activation (Scott-Browne et al.
2016; Scharer et al. 2017; Wang et al. 2018; van
der Veeken et al. 2019). Specific factors from all
of the TF families that recognize these motifs
have differential requirements for the in vivo
development of currently recognized effector
and memory CD8 T-cell subsets (Kaech and
Wherry 2007; Kaech and Cui 2012; Milner and
Goldrath 2018), implying these TF-binding sites
function at early times to establish multiple av-
enues of T-cell differentiation.

Specialized TFs pioneer entry into nucleo-
some-occluded sites to establish initial chroma-
tin accessibility of previously “inaccessible”
cis-regulatory regions (Iwafuchi-Doi and Zaret
2016). In naive CD8 T cells, cooperative activity
between multiple TFs whose DNA-binding ac-
tivity increases in response to TCR stimulation is
most likely what initiates pioneering of chroma-
tin accessibility. TCR stimulation transiently
activates RHD and bZIP TFs (i.e., NFAT and
AP-1) and chromatin accessibility develops
transiently at “inducible” regions at NFAT/
AP-1-binding sites, adjacent to “primed” regions
enrichedwithRUNXandETSmotifs that remain
accessible persistently after cessation of TCR sig-
nals (Bevington et al. 2016, 2017a,b). Consistent
with this, development of chromatin accessibility
at regulatory regions bound by Runx3 or AP-1
during initial TCR stimulation is severely im-
paired in Runx3-deficient cells (Wang et al.
2018), or cells in which AP-1 TF activity is
blocked using a dominant-negative FOS protein
(Yukawa et al. 2020). In the absence of Runx3,
many fewer cis-regulatory regions encoding
RUNX, IRF, bZIP, RHD, PRDM1, and T-BOX
motifs become accessible in naive cells upon
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TCR stimulation (Wang et al. 2018). Notably, Fos
and Jun (AP-1) expression is induced during cell
activation, whereas Runx3 is expressed prior to
stimulation and binds tightly to bulk chromatin
in naive cells, wherein it is unable to be extracted
fully unless salt concentrations that completely
disassemble nucleosomes are used (Wang et al.
2018). Thus, pre-engagement of Runx3 on chro-
matin prior to stimulation could be an antecedent
to chromatin remodeling initiated by TCR stim-
ulation. Direct or indirect cooperativity between
Runx proteins and AP-1 (or other bZIP family
members) and presumably other TFs, especially
those in the ETS-family, which can dimerizewith
Runx TFs on DNA (Ito 1999), might stabilize the
remodeled state.

CHROMATIN REMODELING GOVERNS
LINEAGE RESTRICTION OF EFFECTOR AND
MEMORY CELL SUBSETS

Important General Features of Chromatin
Structure

Differential remodeling of chromatin structure
is a key mechanism of cell fate determination
that facilitates activating one developmental
program and silencing an alternative, opposing
program(s) (Pipkin and Rao 2009). However, an
easily misconstrued concept is that epigenetic
changes to chromatin structure imply develop-
mentally fixed states that are passively inherited
through cell generations (Ptashne 2013). In con-
trast, most available evidence points to the fact
that chromatin configurations and transcrip-
tional activity is activelymaintained by the func-
tion of specific regulatory factors that continu-
ously provide the enzymatic tools to affect
transcriptional outputs.More to the point, chro-
matin structure is known to be extremely dy-
namic in vitro and in vivo. DNA surrounding
nucleosomes spontaneously and rapidly un-
wraps and rewraps (Li et al. 2005), and histones
in nucleosomes at cis-regulatory regions are dy-
namic in vivo and turn over repeatedly during a
single cell generation (Deal et al. 2010). All chro-
matin modifications can be “erased,” and the
overall in vivo topology of chromatin is likely
to be a decondensed fiber, as opposed to a hier-

archically folded, compacted filament, even at
repressed loci (Ou et al. 2017). Thus, chromatin
structure can provide both stability and flexibil-
ity for dynamically regulating transcriptional
programs during cell fate determination.

Differential Activity of Enhancers and
Transcription Stabilizes Terminal andMemory
Cell Subsets

Definitive TE cells exhibit chromatin structure
profiles that reflectmore extensive consolidation
of transcriptional activity that reinforces termi-
nal differentiation. The overall signal of chroma-
tin accessibility in cis-regulatory regions that are
more accessible in TE cells relative to MP cells is
substantially greater than the signal in those that
are more accessible in MP cells relative to TE
cells, which suggests that the TE-specific regions
are more strongly occupied by TFs that drive
their activity. TE-specific accessible regions are
more strongly enriched with T-box and bZIP
family TF motifs and more frequently occupied
by T-bet and BATF as judged by ChIP-seq
compared to regions that are more accessible
in MP cells (Kurachi et al. 2014; Scott-Browne
et al. 2016). In addition, ChIP-seq mapping of
histone modifications (H3K4me1, H3K4me3,
H3K27me3, and H3K27Ac) analyzed with algo-
rithms trained to identify enhancer regions and
infer their activity indicates that TE cells gain
approximately twofold more active enhancers
than MP or Tmem cells relative to naive cells;
these enhancers are positively correlated with
genes that are more highly expressed in TE cells,
which implies that development of these cells
results from enhanced transcriptional activity
(Firpi et al. 2010; Calo and Wysocka 2013;
Rajagopal et al. 2013; He et al. 2016a; Yu et al.
2017). Consistent with this, depletion of P-TEFb
(positive transcription elongation factor b),
which normally induces transcriptional elonga-
tion of paused RNApolymerase II and enhances
both transcription and maturation of spliced
mRNAs (Adelman and Lis 2012), impairs TE
cell differentiation and redirects cells into an
MP phenotype (Chen et al. 2014). Conversely,
cis-regulatory regions that are specifically acces-
sible and active in Tcm cells relative to TE cells
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encode binding motifs for Tcf1, Lef1, Foxo1,
Foxp1, Eomes, Stat5, Gabpa, Gfi1, and Nr3c1
(as well as others) (He et al. 2016a; Yu et al.
2017). Many of these TFs have established roles
for activating gene expression that promote T-
cell quiescence, lymphoid homing, homeostasis,
and the potential for self-renewal (Chandele
et al. 2008; Kerdiles et al. 2009; Banerjee et al.
2010; Zhou et al. 2010; Lin et al. 2016). Thus, the
activity of cis-regulatory regions as judged at
the level of chromatin structure predicts that
continuous TF activity maintains the specific
transcriptional identities of distinct CD8 T-cell
subsets.

Transcription Factors Actively Maintain
Lineage Stability in Mature Memory Cells

Runx and T-box motifs frequently co-occur in
stably remodeled cis-regulatory regions ofmem-
ory CD8 T cells, and many are occupied by the
T-box TFs, T-bet, and Eomesodermin, and the
obligate Runx-TF partner Cbfb (van der Veeken
et al. 2019). This suggests that cooperativity be-
tween Runx and T-box proteins establishes and
maintains the identity of effector and memory
CD8 T cells after naive cell stimulation (Intle-
kofer et al. 2005; Cruz-Guilloty et al. 2009; Hu
and Chen 2013; Olesin et al. 2018; Wang et al.
2018; van der Veeken et al. 2019), perhaps by
outcompeting nucleosomes that would other-
wise form at these sites (Li et al. 2005). Further-
more, binding of Runx3, IRF4, and multiple
bZIP family TFs overlaps extensively (Lotem
et al. 2013; Kurachi et al. 2014; Wang et al.
2018), which suggests that potential concerted
action of these TFs initially establishes chroma-
tin accessibility of cis-regulatory regions during
initial CD8T-cell stimulation, some ofwhich are
preserved at later times.

The stability of mature memory CD8 T-cell
phenotypes is actively enforced by TFs. Many
KLRG1hi cells develop at the peak response
that persist into the early aspects of the memory
phase (Olson et al. 2013; Milner et al. 2020a).
The proteins Id2 and Zeb2 are both important
for maintaining the phenotype of these cells,
which otherwise decay toward a Tcm-like phe-
notype if either factor is depleted after memory

cells form (Omilusik et al. 2015, 2018). The per-
sistent expression ofmultiple other TFs inmem-
ory cells that are expressed during initial acti-
vation or are associated with effector cell
differentiation (e.g., Tbx21 and Prdm1) implies
that they also are critical for maintaining the
differentiated states of various memory CD8
T-cell subsets (Intlekofer et al. 2005; Rutishauser
et al. 2009; Yu et al. 2017; Wang et al. 2018).
Approaches that can reversibly inactivate these
and other factors at different times during cell
development will be instrumental for delineat-
ing the time-resolved contribution of these fac-
tors to specific cell fates.

Chromatin Modifications that Promote
Transcriptional Silencing Enforce Terminal
Differentiation

Terminal differentiation is enforced by repress-
ing genes that promote lymphoid homing and
quiescence and other features of memory cells
that promote their maintenance during homeo-
stasis (Best et al. 2013; Gray et al. 2017; Young-
blood et al. 2017; Pace et al. 2018). Methylation
of histone H3K9 and H3K27 are two well-de-
fined examples of histone modifications that
promote gene silencing during cell development
(Blackledge et al. 2015). Following TCR stimu-
lation, naive CD8 T cells develop islands of
H3K9 trimethylation (H3K9me3) including at
the pro-memory genes Il7r and Sell, which cor-
relates with their down-regulation (Pace et al.
2018). The Suppressor Of Variegation 3–9 Ho-
molog 1 (Suv39h1) is one histonemethylase that
deposits H3K9me3, and Suv39h1-deficient CD8
T cells fail to repress naive and stem-cell-asso-
ciated genes, and lose the inverse correlation
between H3K9me3 density and stem cell gene
expression (Pace et al. 2018). These cells accu-
mulate poorly, inefficiently develop a normal TE
CD8 T-cell phenotype, and the resulting mem-
ory cells are not protective (Pace et al. 2018).

Regions marked by trimethylated histone
H3K9 (H3K9me3) can occlude chromatin via
multiple Chromobox (Cbx) family proteins,
which bind H3K9me3 on adjacent nucleo-
somes, linking them together, and in some cases
promote additional spreading of H3K9me3
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deposition (Bannister et al. 2001; Lachner et al.
2001). Extensive diversity among Cbx-family
proteins likely provides specificity in how CD8
T cells read H3K9me3-modified genes. For ex-
ample, CD8 T cells deficient in Cbx3 under-
go more effector-like differentiation following
activation, and provide stronger antitumor
responses in vivo, because Cbx3 naturally
represses genes that promote effector cell dif-
ferentiation and appears to direct H3K9me3
deposition (Sun et al. 2017).

Deposition of H3K27me3 in cis-regulatory
regions also appears to be a key step in terminal
differentiation. Notably, this occurs after sub-
stantial commitment to terminal differentiation
is evident, around the peak response, but not
earlier (Gray et al. 2017; Kakaradov et al.
2017). Ezh2 catalyzes H3K27me3 deposition,
is up-regulated upon stimulation of naive CD8
T cells (Gray et al. 2017), and is more highly
expressed in individual “preterminal” effector
cells (Kakaradov et al. 2017). Disruption of
Ezh2 impairs CD8 T-cell accumulation and ef-
fector cell differentiation (Gray et al. 2017; Ka-
karadov et al. 2017), and correlates with reduced
H3K27me3 at the Eomes, Tcf7, and Klf2 genes
whose expression increases. These genes encode
TFs that promote competitive fitness of Tcm,
their maintenance, and their lymphoid reten-
tion (Schober et al. 1999; Banerjee et al. 2010;
Zhou et al. 2010; Kakaradov et al. 2017). Thus,
genes encoding memory-cell-associated deter-
minants are targeted for H3K9 and H3K27 tri-
methylation in effector cells by distinct histone
methyltransferases, which repress memory-cell-
specific gene expression and promotes terminal
differentiation.

Conversion of cytosine residues in DNA to
5-methylcytosine (5mC) promotes gene repres-
sion and contributes to reduced expression of
memory-cell-associated genes and terminal dif-
ferentiation. 5mC leads to gene repression
through several mechanisms, including recruit-
ment of chromatin reader proteins containing
methyl-DNA-binding domains (Mbd), which
bind 5mC-modified DNA and recruit enzymat-
ic corepressor complexes (Li and Zhang 2014),
such as the nucleosome remodeling and deace-
tylase complex (NuRD) (Bowen et al. 2004;Wil-

liams et al. 2004). Genome-wide 5mC develops
in activated cells as early as day 4.5 after infec-
tion, and marks memory-associated genes such
as Sell (CD62L) and Tcf7 in both definitive TE
and MP cells, correlating with their reduced ex-
pression at this time (Youngblood et al. 2017).
Disruption of the de novo methyltransferase
Dnmt3a in CD8T cells shows thatmany of these
de novo methylated regions are Dnmt3a depen-
dent in cells responding to infection. Although
these cells did not show a major defect in cell
accumulation or initial repression of Sell during
the effector phase, they more rapidly up-regu-
lated CD127 and CD62L after viral clearance.
Thus, de novoDNAmethylation appears to pro-
mote repression of genes that normally remain
silent in terminally differentiated effector cells.
Although unexplored, it is possible that target-
ing of both H3K9me3 and H3K27me3 deposi-
tion at certain pro-memory genes could initially
involve recruitment to sites of methylated DNA
by Mbd-family proteins that interact with
Suv39h1 and Ezh2 enzymes (Rose and Klose
2014; Gray et al. 2017; Kakaradov et al. 2017;
Youngblood et al. 2017; Pace et al. 2018). Such
a model suggests a stepwise mechanism that
could restrict memory-cell-lineage gene expres-
sion.

Reversible Chromatin Modifications Indicate
Lineage Interconversion Is a Facet of Memory
Formation

The regulation of histonemodifications following
naive CD8 T-cell activation and differentiation
into distinct effector and memory cell subsets is
dynamic. Many genes in naive cells are co-en-
richedwithH3K4me3, a correlate of active genes,
as well as H3K27me3, a correlate of inactive
genes, and then loseH3K27me3 enrichment after
differentiation into effector or memory cells
(Russ et al. 2014). Other genes undergo de novo
acquisition of H3K4me3 or H3K27me3 deposi-
tion during effector and memory cell differentia-
tion. These studies demonstrate that regulation of
histone modifications is dynamic during effector
and memory cell differentiation. The mammali-
an genome encodes multiple methylase proteins
that can deposit these marks and demethylase
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proteins that can remove them (Kouzarides 2007;
Swigut and Wysocka 2007). Exactly how these
different family members function concertedly
to control gene activity and stabilize, or repro-
gram, distinct effector and memory cell lineages
is incompletely understood.

There is clear evidence that some effectorcells
reverse course to develop into memory cells. MP
cells at the peak antiviral response are CD62Llo

but, after isolation and adoptive transfer, some
undergo DNA demethylation in the Sell locus
(encodes CD62L) and induce its expression prior
to their initial homeostatic cell division (Young-
blood et al. 2017). Thus, active removal of 5mC in
someMP cells from the effector phase appears to
drive their conversion into memory cells. Active
DNA demethylation also occurs in the Il2 locus
upon TCR stimulation (Bruniquel and Schwartz
2003), but how this occurs is still unknown. In-
terestingly, deficiency in the proteinMbd2,which
bindsmethylatedDNA and could have demethy-
lase activity, impairs normal memory CD8 T-cell
formation during LCMV infection (Detich et al.
2002; Kersh 2006). Conversely, DNA hyper-
methylation and enhanced formation of mem-
ory cells occurs in CD8 T cells deficient in ten-
eleven translocation 2 (Tet2), a dioxygenase that
converts 5mC to 5-hydroxymethylcytosine, and
ultimately relieves DNAmethylation (Carty et al.
2018). These results generally emphasize the ex-
tent to which modifications to chromatin are dy-
namic, and specifically demonstrate that revers-
ible control of 5mC is pivotal in the formation of
memory cells.

Whether and to what extent the develop-
mental potential of memory cells becomes fixed
is incompletely understood. Some fully devel-
oped Trm cells, after purification from the small
intestine epithelium and serial transfer to new
hosts subjected to repeated infections, are able to
differentiate into Tcm cells (Fonseca et al. 2020).
However, these cells retain gene expression and
a predilection to take up residence again in their
initial tissue of origin, indicating that the origi-
nal developmental imprint has been, to a degree,
maintained over many cell generations. Thus,
although cells might initially develop along
one path, they retain the ability to change course
given the necessary signals but tend to remain

fashioned according to their initial developmen-
tal origins.

CONCLUDING REMARKS

Antigen-specific responses initially emerge from
naive CD8 T cells, whether the inciting stimulus
is a pathogen that is successfully cleared, or per-
sists chronically, or is a tumor. One hypothesis is
that all responses initially involve an early set of
differentiation steps that might be common in all
of these settings, and then adopt distinct trajec-
tories in response to external cues that impact
theirfluctuating cell-intrinsic gene-expression re-
gimes (Fig. 2). The stochasticity in transcriptional
events and inherentflexibility of chromatin struc-
ture indicates that, in the end, most or all of the
developed cell subsets can be effectively repro-
grammed if exposed to the required set of regu-
latory inputs. Somatic cells can be reprogrammed
into pluripotent stem cells with ectopic manipu-
lation of a limited number of factors (Rais et al.
2013), and achromosomeencodinghumanPRF1
isolated from a fibroblast cell can be directly re-
programmed to express physiological amounts of
perforin upon transfer into cytotoxic lympho-
cytes (Pipkin et al. 2007). These observations ar-
gue that CD8 T-cell states can be reprogrammed
directly. Of the nearly 2000 genes encoding con-
ventional DNA-sequence-specific TFs, and the
more than 300 genes encoding chromatin regu-
latory factors in themammalian genome,we have
only scratched the surface in terms of our knowl-
edge about how the regulatory regimes are con-
figured and implemented in activated T cells (re-
viewed comprehensively in Kaech and Cui 2012;
Chang et al. 2014; Milner and Goldrath 2018).
Development and application of new single-cell
and computational approaches to link cell gene-
alogies to transcriptomes should facilitate clarify-
ing how transcriptional histories influence cell
developmental paths and the trajectories that in-
dividual cells chart to their fates. Combining con-
ditional and reversible RNA interference and
CRISPR-guided tools to perturb the spatiotem-
poral functions of genes during different types of
responses should help to rapidly elucidate key
regulators that can be used to engineer durable
immunity to a wide range of challenges.
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