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Abstract

Machine learning uses historical data to make predictions about new data. It has frequently been
applied in healthcare to optimize diagnostic classification through discovery of hidden patterns in
data, that may not be obvious to the human brain. Congenital heart defect (CHD) machine learning
research entails one of the most promising clinical applications, in which timely and accurate
diagnosis is essential. The objective of this scoping review is to summarize the application and
clinical utility of machine learning techniques used in pediatric cardiology research, specifically
focusing on approaches aiming to optimize diagnosis and assessment of underlying CHD. Out of
50 full-text articles identified between 2015 and 2021, 40% focused on optimizing the diagnosis
and assessment of CHD. Deep learning and support vector machine were the most commonly used
algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily
focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and
cardiac magnetic resonance images. The range of these applications and directions of future
research are discussed in this scoping review.
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INTRODUCTION

Clinical intuition is commonly characterized as a “feeling”. This feeling of subconscious
pattern divergence, can be applied to the diagnosis of complex illnesses or impending
clinical deterioration. Clinical intuition is derived from repeated exposures to similar events,
that are stored in the human brain over time. This library of events can fine tune intuition

so that when a future clinical event occurs, the clinician can anticipate or predict what

will happen next. Humans are relatively efficient at taking into account multidimensional
data (i.e., laboratory results, monitor data, diagnostic imaging). Importantly, machine
learning can closely replicate human intuition and support the deep infrastructure that goes
into diagnosing complex illnesses or prediction of clinical deterioration, however remains
unbiased by the emotions and recent experiences that so often cloud our human judgement.

Machine learning is a discipline at the intersection of mathematics, statistics, and computer
science that provides a powerful catalogue of techniques used to make predictions about
future events. Machine learning implies training a computer algorithm on historical data
stored in a large dataset in order to “learn” how to make predictions about future events.
Advances in computational power to handle complex amounts of reference data at high
speed has led to the observed exponential growth of machine learning applications in
healthcare in recent years. Such machine learning applications are conceptually different
from computerized algorithms based on classical statistical modeling. The latter follows

a rule-based logic where a programmer decides a set of conditional statements derived
from domain knowledge to automate “human-like” clinical decision making (i.e., if

body mass index > 30 then class = “obese”). In contrast, a machine learning algorithm
“learns” the modeling parameters from historical data to develop decision rules for future
predictions. This “learning” process performs in a fashion completely unbiased by existing
domain-knowledge given that there are hidden patterns in the data that might not be
obvious to humans. Furthermore, since machine learning algorithms use a data-driven logic
independent from that of clinicians, it has been shown that machine learning algorithms
outperform clinicians in some scenarios.! Figure 1 summarizes the machine learning
pipeline, emphasizing its role in “data-driven” decision making.

Machine learning has been successfully applied to medicine in many fields, such as
advanced cardiac imaging.? In this context, medical images are processed and compiled
to extract features used by the algorithm to fine tune its classification of outcomes.

The majority of advances in medical imaging machine learning applications (i.e., artifact
removal, augmentation of disease classification accuracy, etc.) have been developed in
various adult populations.3-8

Neonatal and pediatric populations, especially the most vulnerable like those with congenital
heart defects (CHD), could greatly benefit from machine learning-based improved
diagnostic accuracy and early disease detection. One in 100 live births in the United

States is diagnosed with CHD every year, of which nearly 7,200 have critical CHD.9-12
These life-threatening structural malformations of the heart are present at birth and require
intervention in the first year of life.1314 Delays in timely diagnosis in neonates with CHD,
and limited access to specialized cardiac programs, could result in preventable morbidity
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or mortality in some cases. Securing access to specialized neonatal or pediatric cardiac
programs preemptively, although challenging, has been shown to play an instrumental role
in decreasing risk of CHD infant mortality.1> The observed benefits of machine learning
applications in healthcare are promising for optimizing timing and accuracy of CHD
diagnoses, thereby providing early targeted access to highly specialized cardiac care. The
objective of this scoping review is to describe the application and clinical utility of machine
learning techniques used for diagnosing and assessing underlying critical and non-critical
CHD. In this review, we will briefly define the emerging research applications where
machine learning has been applied in pediatric cardiology, describe the various machine
learning techniques used in these categories, and summarize the specific applications used
for diagnosis and assessment of critical and non-critical CHD.

MATERIALS & METHODS

Literature Search Strategy

We followed the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-
Analyses Extension for Scoping Reviews.18 All original, peer-reviewed studies published
in PubMed database between January 2015 and February 2021 that described the use of
machine learning or predictive analytics for predicting diagnostic outcomes in patients with
critical and non-critical CHD were included. The most recent search was conducted on
February 20, 2021. The search terms were “(machine learning) AND ((congenital heart
disease) OR (cardiovascular disease in children))”. Studies focused on populations without
a CHD diagnosis were excluded. The search was limited to English-language articles. This
search yielded 219 journal articles. After screening the titles and abstracts, we excluded
articles that were irrelevant (n= 169). Among the 50 full-text articles reviewed, 20 articles
focusing on CHD diagnosis and assessment were retained for inclusion in this scoping
review. Figure 2 briefly summarizes the work flow for article search and selection.

Data Coding Scheme

Full-text articles were analyzed using the matrix method as per recommendations

by Whittemore and Knafl.1” A single reviewer first sorted each article into a table

using ascending chronological order with the following eight domains: journal / author
information, purpose, design, sample, variables, results, limitations, and implications for
future research. These domains were selected after discussions between the coauthors, then
the information related to each domain were abstracted by a single reviewer. In addition
to these general domains, we defined a data dictionary for the abstracted machine learning
elements necessary for this study. These elements included: class of machine learning
approach (supervised vs. unsupervised, regression vs. classification, traditional learning
vs. deep learning); specific algorithm used (logistic regression, support vector machine,
etc.); techniques used for testing and cross-validation; and the use of independent external
validation.

Synthesis of Findings

Results were reported using the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses Extension for Scoping Reviews guidelines.1® Each article was assessed for
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its standard of documentation using the Minimum Information About Clinical Artificial
Intelligence Modeling checklist.1® Simple descriptive statistics and pie charts were used

to report frequencies of different machine learning algorithms applied across eligible
studies. Next, the content of the abstracted domains of eligible studies were qualitatively
synthesized. Based on domain expertise and discussions among coauthors, three categories
of machine learning applications for the diagnosis and assessment of CHD emerged and
results were summarized for each of these categories.

There were 50 studies that broadly focused on the application of machine learning in
pediatric cardiology research. These studies were categorized and focused on various
intentions for clinical use (Figure 3): diagnosis and assessment of underlying critical and
non-critical CHD (n= 20),1:19-37 prediction and risk stratification of outcomes in CHD (n=
15),38-52 management of patients with CHD (n= 2),%3:>4 medical device research (n= 4),55-58
novel genetics and biomarkers in CHD (n= 5),59-63 CHD in pregnancy (n= 3),64-66 and
social media research (n= 1).87 The distribution of various machine learning algorithms used
in these studies is summarized in Figure 4. The two most common algorithms were deep
neural networks (deep learning) and support vector machines. Hidden Markov models and
linear discriminant analysis were the least common algorithms.

There were 20 studies focusing on the diagnosis and assessment of critical and non-critical
CHD. The Table summarizes the details of these studies, including purpose, design, sample,
machine learning technique, and primary findings. All studies were observational, generally
of small sample size. None of the studies provided 100% of the Minimum Information
About Clinical Artificial Intelligence Modeling checklist items (standard documentation
guidelines).18 Included studies applied machine learning to auscultation of heart sounds in
patients with CHD, interpreting transthoracic echocardiogram data, or processing medical
images (cardiovascular magnetic resonance imagining). As shown in Figure 5, deep neural
networks and support vector machines were also the most commonly used classification
algorithms in these studies. More importantly, the Table highlights that using cross
validation on existing retrospective data, the overall accuracy of the various machine
learning algorithms exceeded 80%, with some techniques reaching 95% to 100%. With

the exception of two studies, none of these models were externally validated on independent
datasets. The remainder of this scoping review will focus on the qualitative synthesis of 20
studies that focused on machine learning applications for the diagnosis and assessment of
CHD.

SYNTHESIS OF LITERATURE

It is apparent that machine learning in pediatric cardiology research is an evolving

field. Diagnosing and assessing patients with CHD can typically be done non-invasively,
using examination findings and diagnostic tools based on auditory or visual pattern
recognition. However, such medical images and signal data are considered unstructured;
they are not stored as tabular data or in formatted fields.58 This type of data historically
requires the time-consuming process of clinician review and interpretation. Thus, in
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individuals with CHD, machine learning techniques described in the Table have focused on
accurate diagnosis and assessment based on the classification of auscultatory heart sounds,
transthoracic echocardiograms, or cardiovascular magnetic resonance images.

Auscultation

Aortic valves are normally tricuspid in nature and provide an outlet for blood flow from

the heart to the body. Bicuspid aortic valves occur in 0.5% to 2% of children.1.6972 A

subset of these patients develop progressive valve disease and/or aortic dilatation, with risk
of life-threatening aortic aneurysm and dissection. Children with known bicuspid aortic
valves must be monitored throughout their lives to measure risk for aortic aneurysm.
Diagnosis of bicuspid aortic valves can be done via phonocardiogram, which records
cyclical sounds produced by the heart.! Patients with a bicuspid aortic valve typically have

a systolic ejection click. Identification of this click through traditional auscultation methods
can be limited due to provider expertise and skill, as well as rapid heart rates in young
children. Gharehbaghi and colleagues performed a study that collected phonocardiogram
data prospectively.! This study created a statistical time growing neural network that
automatically classified bicuspid aortic valves through use of recorded heart sounds
produced by the phonocardiogram.! The phonocardiogram recordings were preprocessed,

so that the cardiac cycle could be segmented to recognize the additional heart sound (systolic
ejection click). This segmentation was used to build a classifier to identify healthy subjects
and those with a bicuspid aortic valve. The model was able to classify the 865 cardiac cycles
with 98.5% accuracy. This improved diagnostic sensitivity for a subtle exam finding stands
to bring many previously unrecognized children and adults to appropriate cardiac care.

Several other investigators are also using non-invasively recorded heart sounds to diagnose
cardiac disease.2%:39:34 For example, Elgendi and colleagues?’ used linear discriminant
analysis to detect pulmonary arterial hypertension using digital auscultation to record the
unique vibrations of the hypertensive pulmonary circulation. Their model performed well,
with a sensitivity of 84% and specificity of 88.6% for entropy (disorder of heart sound
pattern) of the first sinusoid formant (frequency resonance of heart sounds). Sun and
colleagues,?0 aimed to diagnose small, medium, and large ventricular septal defects based on
heart sound feature extraction, using classification boundary curves and ellipse models. The
ellipse model outperformed five other models used in the study for normal, small, medium,
and large ventricular septal defect classification (accuracy 99%, 95.5%, 92.1%, 96.2%).
Cardiac auscultation is nuanced, but clearly machine learning holds promise for improving
diagnostic accuracy for providers at all experience levels.

Transthoracic Echocardiogram

Echocardiography is the mainstay of non-invasive assessment for CHD, but requires
experienced reviewers that remain susceptible to biases. Coarctation of the aorta, a common
form of critical CHD characterized by narrowing of the thoracic aorta, is particularly well-
suited for echocardiographic diagnosis, though poses challenges when it comes to image
interpretation.23 Narrowing of the aorta causes obstruction of normal blood flow to the
body, and excessive pressure to be generated by the left ventricle. If the obstruction is

not diagnosed in a timely manner it can lead to heart failure and poor systemic perfusion.
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Pereira and colleagues?? retrospectively collected 2-dimensional echocardiographic images
of the aortic arch. The aim of this study was to develop a fully automated algorithm to
detect coarctation of the aorta from 2-dimensional echocardiographic images using standard
view planes (suprasternal, apical, and parasternal windows). Static images representing a
single cardiac cycle (end diastolic and end systolic phase) were pre-selected for model
development. Neonates born with coarctation of the aorta alone, and healthy neonates

born without coarctation of the aorta were included in the sample. A stacked denoising
autoencoder neural network was used for feature extraction over predefined image regions
(sectors). A support vector machine classifier was trained on a random subset of training
data features. The parasternal long axis view had the lowest coarctation error rate (end
diastolic phase [7.7], end systolic phase [11.5]), and the apical view had the lowest healthy
error rate (end diastolic phase [20.0], end systolic phase [20.0]).23 When the views were
combined, more undecided cases resulted. The increase in undecided cases with inclusion
of multiple views is not surprising given the increased model complexity, and therefore
difficulty for the model to classify outcomes.

Further research has focused on image denoising, automatic detection, and clustering
subjects based on quantitative image data to further support clinical decision making and
diagnosis of critical and non-critical CHD.33 Diller et al,1® aimed to remove acoustic
shadowing artifacts that occur during transthoracic echocardiograms through use of a deep
neural network and autoencoder. Cross-entropy (a loss function that measures differences
between two probability distributions-original image vs. reconstructed image)!%73 and sum
of squared differences (measures image quality) were performance evaluation metrics used
on the test dataset. Autoencoders extracted features and trained significantly better on CHD
samples compared to healthy samples, represented by a lower cross-entropy and lower
mean squared difference (0.2597 + 0.0327 and 118.86 + 61.52).19 Finally, Meza et al,2
used an unsupervised hierarchical cluster analysis in 651 neonates with critical left heart
obstruction to determine if subjects could be defined using more clinically meaningful
clusters. Images were derived from transthoracic echocardiograms, and three distinct groups
emerged (n= 215, 338, 98). Aortic valve atresia and left ventricular end diastolic volume
variables significantly distinguished the groups. Median left ventricular end diastolic area
for groups 1, 2, 3 was 1.35, 0.69, and 2.47 cm? (p < 0.0001). Aortic atresia in groups 1,

2, 3 was present in 11%, 87%, and 8%, (p < 0.0001).21 The authors suggest that clustering
analyses yield more reliable delineation of subject heart structure characteristics. These data
support the use of clustering approaches to more accurately diagnose CHD. The added
complexity and volume of data in diagnostic imaging poses a challenge to machine learning,
but these investigators demonstrate the potential value machine learning brings to clinical
pattern-fitting and decision making.

Cardiovascular Magnetic Resonance Imagining

Cardiovascular magnetic resonance imaging is considered the clinical gold standard for
accurate assessment of ventricular volumes and function. Obtaining quality images requires
repetitive breath holding, which can be a challenge for patients with CHD who may

suffer from shortness of breath at baseline or who are simply too young to comply

with breath-holding instructions. The investigators of the next study explored alternative
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ways to denoise cardiovascular magnetic resonance images that were captured during free-
breathing. Specifically, they aimed to use real-time imaging, while applying reconstruction
techniques to denoise the images (artifact versus artifact free images).28 Metrics used to
evaluate the performance of their convolutional neural network were the signal-to-noise
ratio, acceleration factor, and image cropping. The root-mean square error and the structural
similarity index were used to evaluate the test dataset reconstructed image accuracy. The
continuously rotating tiny golden angle sampling pattern had the lowest root-mean square
error, and the highest structural similarity index (p < 0.0001) compared to all other sampling
methods. The signal-to-noise ratio decreased from 20 dB to 10 dB, and the acceleration
factor increased from 10x to 16x. Finally, the reconstruction time for all slices originating
from raw data was 5.6x faster for the convolutional neural network (22 seconds).28 This
study demonstrates that machine learning models have the potential to successfully remove
artifact, while decreasing reconstruction times to produce better quality images and more
accurate measurements in real time. More importantly, if these models become widely used,
they have the potential to improve patient comfort or decrease the need for sedation in
infants and younger children during cardiovascular magnetic resonance imaging, as the need
for frequent breath holding is no longer required.

Further, clustering subjects based on their cardiovascular magnetic resonance imaging data
is a very popular approach presented in the literature. While cardiac imaging has already
been established as a standard and definitive way to diagnose complex heart disease,
investigators are now taking advantage of the machine learning applications that can unveil
hidden patterns in these data to boost diagnostic accuracy.31:32:35 Bruse and colleagues?*
used agglomerative hierarchical clustering and principal component analysis to detect
clinically meaningful shape clusters using anatomical cardiovascular magnetic resonance
image data. Subjects with and without surgically corrected coarctation of the aorta, and
subjects with healthy aortic arches were included. For each cross-validated run, 83% of
healthy aortic arches were assigned to the healthy group, 85% of the coarctation shapes were
correctly assigned, and 100% of the surgically corrected shapes were accurately assigned.
Human clinicians would ideally use the results provided by the machine learning model to
either compare or validate their own interpretation of the image data. This suggests that
clustering techniques have the potential to inform clinical decision making at the time of
diagnosis, thus improving accuracy and efficiency.

Finally, cardiac segmentation applied to cardiovascular magnetic resonance images is a
process that takes a complex multidimensional image of the heart and separates its major
sections, for example, the ventricles and coronary arteries. Segmentation is necessary
because each ventricle or vessel can then be assessed quantitatively. Particularly, ventricular
mass, volume, or ejection fraction can be quantitively measured. Segmentation driven

by deep learning; specifically convolutional neural networks require large amounts of
training data. Research studies aiming to optimize cardiac segmentation driven by deep
learning in patients with CHD are faced with data accessibility challenges related to the
extreme heterogeneity of cardiac anatomy and rarity of disease within the CHD population.
Generative adversarial networks learn from real images in order to generate synthetic
image data. The generative adversarial network has two networks that compete with one
another. A generator network creates false images that the discriminator network will use
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to decipher between real and false images.”® Through these networks, new synthetic images
are produced and can increase the size of training datasets in populations with limited
image data.”® Investigators used these methods to create synthetic image data in patients
with Tetralogy of Fallot, an extremely rare heart condition and found the images to be
anatomically accurate.”® Generative adversarial networks may have major implications in
CHD diagnostic image research, as they can potentially expand training datasets and allow
models to predict rare and life-threatening diseases.

DISCUSSION

This scoping review demonstrates that machine learning is a rapidly evolving field of
pediatric cardiology with a myriad of potential functions. The majority of these applications
focused on the diagnosis and assessment of underlying CHD, including classification

of auscultatory heart sounds, transthoracic echocardiograms, or cardiovascular magnetic
resonance images.

Deep neural networks and support vector machines were commonly used algorithms for
such tasks. Deep neural networks are popular to use when analyzing human data because
they are robust and can handle inconsistent data. They are designed to model human
cognitive abilities, which process, store, and retrieve information. Deep neural networks
are extremely complex and often not interpretable to clinicians; therefore, their utility is
somewhat controversial when applied to clinical decision making tasks. On the other hand,
support vector machines are a popular technique used for binary outcome classification
(i.e.; diseased versus healthy). Support vector machines use features and can separate
classes by maximizing the distance between data points in each class. For healthcare related
classification problems, support vector machines have high accuracy and do not suffer from
multicollinearity (highly correlated features), which is an issue with human data as many
features are often highly correlated (i.e.; systolic, diastolic, mean blood pressure values).
Although support vector machines have their advantages, this technique is computationally
intensive, with the non-linear support vector machine being more exhaustive than linear.

Implementing and translating machine learning results into clinically meaningful tools is a
necessary path to improving diagnostic accuracy and efficiency.

Importantly, there are techniques to improve deep neural network interpretability, which
is one of the most used algorithm types for diagnosing and assessing CHD. Heat maps
are one example that can ensure models are capturing valid image signatures to further
expand clinical usefulness. The integrated gradient method is another technique used to
explain how a deep neural network predicted an outcome by visualizing input feature
importance. The linear interpretable model-agnostic explanation is an application used
with convolutional neural networks to discover what the convolutional neural network
learns while deriving predictions, providing more interpretability to clinical end-users.
Investigators have used this technique after comparing diagnostic performance of a
convolutional neural network versus trained cardiologists and MUSE (GE Healthcare)
automated analysis. The linear interpretable model-agnostic explanation technique presented
physiologically relevant electrocardiogram segments chosen by the convolutional neural
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network when predicting diagnostic classes.”” Implementing any of these techniques is
equivalent to feature importance ranking in random forest or coefficients in support vector
machine for interpretability purposes. These methods can be applied to validate and
corroborate that a model is predicting a legible signal, further supporting clinical end-user
interpretability. For clinicians, the algorithm outputs must be relevant and trustworthy to
garner clinician support. If implemented, clinicians will use machine learning models

to classify healthy individuals versus those with diseases. Clinicians have a desire to
understand how classification results are derived. Achieving this understanding will support
machine learning prediction translation and clinical uptake.

To date, machine learning has been successfully explored and applied to support clinicians
in many ways including, early recognition of cardiorespiratory instability. Bose and
colleagues found that in 634 individuals with in-hospital cardiac arrest, 79% of these
patients also had cardiorespiratory instability four to 24-hours prior to arrest.”®79 Predicting
cardiorespiratory instability risk is significant because patients who experience this type

of instability, if not attended to, can progress to in-hospital cardiac arrest. However, if
cardiorespiratory instability is recognized early, cardiac arrest may be prevented.

Machine learning based technologies have the opportunity to not only advance expert

care at tertiary centers, but to provide access to quality care in remote areas without

local subspecialty expertise. Udine and colleagues found that CHD infant mortality was
associated with higher poverty levels.1®> The American Academy of Family Physicians’
position paper on poverty and health describes that poverty affects the built environment,
which includes buildings, infrastructure, and services.80:81 In the case of limited access to
expert care, machine learning can be used as a tool to connect specialized cardiac programs
with distant primary care providers. Machine learning can systematically be applied to
clinical data, process it, and provide improved accuracy and timely diagnosis of CHD for
patients in various clinical settings. For patients in remote clinical settings, diagnostic data
could be sent to a tertiary care center for consultation (machine learning output analysis
and patient triage). Even for patients with access to specialized cardiac programs, they

too may benefit from having their clinical data processed by machine learning algorithms.
Specifically, advanced cardiac imaging data could result in automated detection of cardiac
diseases. Machine learning models are likely to save time, while boosting diagnostic
accuracy.

Although, machine learning appears to be an evolving and promising tool for CHD
diagnostics, there are still several limitations to consider. General limitations of machine
learning in healthcare include lack of diverse and large datasets, poor standardization across
hospital systems, expertise and time challenges related to ground-truth labeling, lack of
comparable testing sets, poor transparency of algorithm design, and inadequate prospective
integration into clinical workflow. Specifically for the models addressed in this scoping
review, their limitations are as follows: 1.) deep neural network requires large amounts of
data, and carries the black box concept (you don’t know how or why the network came up
with the output); 2.) support vector machine is computationally exhaustive and not ideal for
problems with many training examples; 3.) principal component analysis reduces variables
and dimensionality to improve interpretability, but will sacrifice prediction accuracy in doing
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s0; 4.) cluster analyses are used when the outcome is unknown, so accuracy cannot be
determined, and results tend to not be representative of real-world problems; 5.) Hidden
Markov models require a priori knowledge about the problem, otherwise severe overfitting
will result; 6.) linear discriminant analyses require a normal distribution, but do not impose
assumptions which will increase bias. Linear discriminant analysis also suffers from issues
with multicollinearity; 7.) decision trees are considered an unstable classifier, meaning
small changes in data can cause large changes in decision tree structure. Decision trees are
expensive and time consuming as it takes a lot of time to train the model. Overfitting can
also be a problem with this type of classifier.

Further limitations related to this scoping review include using a broad literature search
strategy. Our goal was to describe the comprehensive applications of machine learning

used in pediatric cardiology research, and then focus on machine learning techniques

used for diagnosis and assessment. This approach required screening an extensive amount
of journal article titles and abstracts. In the future, it will be interesting to explore the
predictive capabilities of other non-invasive diagnostic technologies, such as the 12-lead
electrocardiogram. Few pediatric focused studies have considered the disease detection
capabilities of this technology.82 In adult focused machine learning cardiac research, 12-lead
electrocardiograms are already being leveraged to detect acute coronary syndrome.83.84

In conclusion, these findings indicate that machine learning is a very promising tool for
diagnosing and assessing critical and non-critical CHD, yet extensive research is still needed
to build robust and generalizable models for clinical use, especially considering the extreme
heterogeneity of complex CHD.
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The most common neural network types were the convolutional neural network, time
growing neural network, autoencoder, and generative adversarial network.

The most common kernel among the studies who used support vector machine was a
Gaussian kernel.

*Congenital Heart Defect (CHD)
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