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Abstract

Machine learning uses historical data to make predictions about new data. It has frequently been 

applied in healthcare to optimize diagnostic classification through discovery of hidden patterns in 

data, that may not be obvious to the human brain. Congenital heart defect (CHD) machine learning 

research entails one of the most promising clinical applications, in which timely and accurate 

diagnosis is essential. The objective of this scoping review is to summarize the application and 

clinical utility of machine learning techniques used in pediatric cardiology research, specifically 

focusing on approaches aiming to optimize diagnosis and assessment of underlying CHD. Out of 

50 full-text articles identified between 2015 and 2021, 40% focused on optimizing the diagnosis 

and assessment of CHD. Deep learning and support vector machine were the most commonly used 

algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily 

focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and 

cardiac magnetic resonance images. The range of these applications and directions of future 

research are discussed in this scoping review.
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INTRODUCTION

Clinical intuition is commonly characterized as a “feeling”. This feeling of subconscious 

pattern divergence, can be applied to the diagnosis of complex illnesses or impending 

clinical deterioration. Clinical intuition is derived from repeated exposures to similar events, 

that are stored in the human brain over time. This library of events can fine tune intuition 

so that when a future clinical event occurs, the clinician can anticipate or predict what 

will happen next. Humans are relatively efficient at taking into account multidimensional 

data (i.e., laboratory results, monitor data, diagnostic imaging). Importantly, machine 

learning can closely replicate human intuition and support the deep infrastructure that goes 

into diagnosing complex illnesses or prediction of clinical deterioration, however remains 

unbiased by the emotions and recent experiences that so often cloud our human judgement.

Machine learning is a discipline at the intersection of mathematics, statistics, and computer 

science that provides a powerful catalogue of techniques used to make predictions about 

future events. Machine learning implies training a computer algorithm on historical data 

stored in a large dataset in order to “learn” how to make predictions about future events. 

Advances in computational power to handle complex amounts of reference data at high 

speed has led to the observed exponential growth of machine learning applications in 

healthcare in recent years. Such machine learning applications are conceptually different 

from computerized algorithms based on classical statistical modeling. The latter follows 

a rule-based logic where a programmer decides a set of conditional statements derived 

from domain knowledge to automate “human-like” clinical decision making (i.e., if 

body mass index > 30 then class = “obese”). In contrast, a machine learning algorithm 

“learns” the modeling parameters from historical data to develop decision rules for future 

predictions. This “learning” process performs in a fashion completely unbiased by existing 

domain-knowledge given that there are hidden patterns in the data that might not be 

obvious to humans. Furthermore, since machine learning algorithms use a data-driven logic 

independent from that of clinicians, it has been shown that machine learning algorithms 

outperform clinicians in some scenarios.1 Figure 1 summarizes the machine learning 

pipeline, emphasizing its role in “data-driven” decision making.

Machine learning has been successfully applied to medicine in many fields, such as 

advanced cardiac imaging.2 In this context, medical images are processed and compiled 

to extract features used by the algorithm to fine tune its classification of outcomes. 

The majority of advances in medical imaging machine learning applications (i.e., artifact 

removal, augmentation of disease classification accuracy, etc.) have been developed in 

various adult populations.3-8

Neonatal and pediatric populations, especially the most vulnerable like those with congenital 

heart defects (CHD), could greatly benefit from machine learning-based improved 

diagnostic accuracy and early disease detection. One in 100 live births in the United 

States is diagnosed with CHD every year, of which nearly 7,200 have critical CHD.9-12 

These life-threatening structural malformations of the heart are present at birth and require 

intervention in the first year of life.13,14 Delays in timely diagnosis in neonates with CHD, 

and limited access to specialized cardiac programs, could result in preventable morbidity 
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or mortality in some cases. Securing access to specialized neonatal or pediatric cardiac 

programs preemptively, although challenging, has been shown to play an instrumental role 

in decreasing risk of CHD infant mortality.15 The observed benefits of machine learning 

applications in healthcare are promising for optimizing timing and accuracy of CHD 

diagnoses, thereby providing early targeted access to highly specialized cardiac care. The 

objective of this scoping review is to describe the application and clinical utility of machine 

learning techniques used for diagnosing and assessing underlying critical and non-critical 

CHD. In this review, we will briefly define the emerging research applications where 

machine learning has been applied in pediatric cardiology, describe the various machine 

learning techniques used in these categories, and summarize the specific applications used 

for diagnosis and assessment of critical and non-critical CHD.

MATERIALS & METHODS

Literature Search Strategy

We followed the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-

Analyses Extension for Scoping Reviews.16 All original, peer-reviewed studies published 

in PubMed database between January 2015 and February 2021 that described the use of 

machine learning or predictive analytics for predicting diagnostic outcomes in patients with 

critical and non-critical CHD were included. The most recent search was conducted on 

February 20, 2021. The search terms were “(machine learning) AND ((congenital heart 

disease) OR (cardiovascular disease in children))”. Studies focused on populations without 

a CHD diagnosis were excluded. The search was limited to English-language articles. This 

search yielded 219 journal articles. After screening the titles and abstracts, we excluded 

articles that were irrelevant (n= 169). Among the 50 full-text articles reviewed, 20 articles 

focusing on CHD diagnosis and assessment were retained for inclusion in this scoping 

review. Figure 2 briefly summarizes the work flow for article search and selection.

Data Coding Scheme

Full-text articles were analyzed using the matrix method as per recommendations 

by Whittemore and Knafl.17 A single reviewer first sorted each article into a table 

using ascending chronological order with the following eight domains: journal / author 

information, purpose, design, sample, variables, results, limitations, and implications for 

future research. These domains were selected after discussions between the coauthors, then 

the information related to each domain were abstracted by a single reviewer. In addition 

to these general domains, we defined a data dictionary for the abstracted machine learning 

elements necessary for this study. These elements included: class of machine learning 

approach (supervised vs. unsupervised, regression vs. classification, traditional learning 

vs. deep learning); specific algorithm used (logistic regression, support vector machine, 

etc.); techniques used for testing and cross-validation; and the use of independent external 

validation.

Synthesis of Findings

Results were reported using the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses Extension for Scoping Reviews guidelines.16 Each article was assessed for 
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its standard of documentation using the Minimum Information About Clinical Artificial 

Intelligence Modeling checklist.18 Simple descriptive statistics and pie charts were used 

to report frequencies of different machine learning algorithms applied across eligible 

studies. Next, the content of the abstracted domains of eligible studies were qualitatively 

synthesized. Based on domain expertise and discussions among coauthors, three categories 

of machine learning applications for the diagnosis and assessment of CHD emerged and 

results were summarized for each of these categories.

RESULTS

There were 50 studies that broadly focused on the application of machine learning in 

pediatric cardiology research. These studies were categorized and focused on various 

intentions for clinical use (Figure 3): diagnosis and assessment of underlying critical and 

non-critical CHD (n= 20),1,19-37 prediction and risk stratification of outcomes in CHD (n= 

15),38-52 management of patients with CHD (n= 2),53,54 medical device research (n= 4),55-58 

novel genetics and biomarkers in CHD (n= 5),59-63 CHD in pregnancy (n= 3),64-66 and 

social media research (n= 1).67 The distribution of various machine learning algorithms used 

in these studies is summarized in Figure 4. The two most common algorithms were deep 

neural networks (deep learning) and support vector machines. Hidden Markov models and 

linear discriminant analysis were the least common algorithms.

There were 20 studies focusing on the diagnosis and assessment of critical and non-critical 

CHD. The Table summarizes the details of these studies, including purpose, design, sample, 

machine learning technique, and primary findings. All studies were observational, generally 

of small sample size. None of the studies provided 100% of the Minimum Information 

About Clinical Artificial Intelligence Modeling checklist items (standard documentation 

guidelines).18 Included studies applied machine learning to auscultation of heart sounds in 

patients with CHD, interpreting transthoracic echocardiogram data, or processing medical 

images (cardiovascular magnetic resonance imagining). As shown in Figure 5, deep neural 

networks and support vector machines were also the most commonly used classification 

algorithms in these studies. More importantly, the Table highlights that using cross 

validation on existing retrospective data, the overall accuracy of the various machine 

learning algorithms exceeded 80%, with some techniques reaching 95% to 100%. With 

the exception of two studies, none of these models were externally validated on independent 

datasets. The remainder of this scoping review will focus on the qualitative synthesis of 20 

studies that focused on machine learning applications for the diagnosis and assessment of 

CHD.

SYNTHESIS OF LITERATURE

It is apparent that machine learning in pediatric cardiology research is an evolving 

field. Diagnosing and assessing patients with CHD can typically be done non-invasively, 

using examination findings and diagnostic tools based on auditory or visual pattern 

recognition. However, such medical images and signal data are considered unstructured; 

they are not stored as tabular data or in formatted fields.68 This type of data historically 

requires the time-consuming process of clinician review and interpretation. Thus, in 
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individuals with CHD, machine learning techniques described in the Table have focused on 

accurate diagnosis and assessment based on the classification of auscultatory heart sounds, 

transthoracic echocardiograms, or cardiovascular magnetic resonance images.

Auscultation

Aortic valves are normally tricuspid in nature and provide an outlet for blood flow from 

the heart to the body. Bicuspid aortic valves occur in 0.5% to 2% of children.1,69-72 A 

subset of these patients develop progressive valve disease and/or aortic dilatation, with risk 

of life-threatening aortic aneurysm and dissection. Children with known bicuspid aortic 

valves must be monitored throughout their lives to measure risk for aortic aneurysm. 

Diagnosis of bicuspid aortic valves can be done via phonocardiogram, which records 

cyclical sounds produced by the heart.1 Patients with a bicuspid aortic valve typically have 

a systolic ejection click. Identification of this click through traditional auscultation methods 

can be limited due to provider expertise and skill, as well as rapid heart rates in young 

children. Gharehbaghi and colleagues performed a study that collected phonocardiogram 

data prospectively.1 This study created a statistical time growing neural network that 

automatically classified bicuspid aortic valves through use of recorded heart sounds 

produced by the phonocardiogram.1 The phonocardiogram recordings were preprocessed, 

so that the cardiac cycle could be segmented to recognize the additional heart sound (systolic 

ejection click). This segmentation was used to build a classifier to identify healthy subjects 

and those with a bicuspid aortic valve. The model was able to classify the 865 cardiac cycles 

with 98.5% accuracy. This improved diagnostic sensitivity for a subtle exam finding stands 

to bring many previously unrecognized children and adults to appropriate cardiac care.

Several other investigators are also using non-invasively recorded heart sounds to diagnose 

cardiac disease.29,30,34 For example, Elgendi and colleagues27 used linear discriminant 

analysis to detect pulmonary arterial hypertension using digital auscultation to record the 

unique vibrations of the hypertensive pulmonary circulation. Their model performed well, 

with a sensitivity of 84% and specificity of 88.6% for entropy (disorder of heart sound 

pattern) of the first sinusoid formant (frequency resonance of heart sounds). Sun and 

colleagues,20 aimed to diagnose small, medium, and large ventricular septal defects based on 

heart sound feature extraction, using classification boundary curves and ellipse models. The 

ellipse model outperformed five other models used in the study for normal, small, medium, 

and large ventricular septal defect classification (accuracy 99%, 95.5%, 92.1%, 96.2%). 

Cardiac auscultation is nuanced, but clearly machine learning holds promise for improving 

diagnostic accuracy for providers at all experience levels.

Transthoracic Echocardiogram

Echocardiography is the mainstay of non-invasive assessment for CHD, but requires 

experienced reviewers that remain susceptible to biases. Coarctation of the aorta, a common 

form of critical CHD characterized by narrowing of the thoracic aorta, is particularly well-

suited for echocardiographic diagnosis, though poses challenges when it comes to image 

interpretation.23 Narrowing of the aorta causes obstruction of normal blood flow to the 

body, and excessive pressure to be generated by the left ventricle. If the obstruction is 

not diagnosed in a timely manner it can lead to heart failure and poor systemic perfusion. 
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Pereira and colleagues23 retrospectively collected 2-dimensional echocardiographic images 

of the aortic arch. The aim of this study was to develop a fully automated algorithm to 

detect coarctation of the aorta from 2-dimensional echocardiographic images using standard 

view planes (suprasternal, apical, and parasternal windows). Static images representing a 

single cardiac cycle (end diastolic and end systolic phase) were pre-selected for model 

development. Neonates born with coarctation of the aorta alone, and healthy neonates 

born without coarctation of the aorta were included in the sample. A stacked denoising 

autoencoder neural network was used for feature extraction over predefined image regions 

(sectors). A support vector machine classifier was trained on a random subset of training 

data features. The parasternal long axis view had the lowest coarctation error rate (end 

diastolic phase [7.7], end systolic phase [11.5]), and the apical view had the lowest healthy 

error rate (end diastolic phase [20.0], end systolic phase [20.0]).23 When the views were 

combined, more undecided cases resulted. The increase in undecided cases with inclusion 

of multiple views is not surprising given the increased model complexity, and therefore 

difficulty for the model to classify outcomes.

Further research has focused on image denoising, automatic detection, and clustering 

subjects based on quantitative image data to further support clinical decision making and 

diagnosis of critical and non-critical CHD.33 Diller et al,19 aimed to remove acoustic 

shadowing artifacts that occur during transthoracic echocardiograms through use of a deep 

neural network and autoencoder. Cross-entropy (a loss function that measures differences 

between two probability distributions-original image vs. reconstructed image)19,73 and sum 

of squared differences (measures image quality) were performance evaluation metrics used 

on the test dataset. Autoencoders extracted features and trained significantly better on CHD 

samples compared to healthy samples, represented by a lower cross-entropy and lower 

mean squared difference (0.2597 ± 0.0327 and 118.86 ± 61.52).19 Finally, Meza et al,21 

used an unsupervised hierarchical cluster analysis in 651 neonates with critical left heart 

obstruction to determine if subjects could be defined using more clinically meaningful 

clusters. Images were derived from transthoracic echocardiograms, and three distinct groups 

emerged (n= 215, 338, 98). Aortic valve atresia and left ventricular end diastolic volume 

variables significantly distinguished the groups. Median left ventricular end diastolic area 

for groups 1, 2, 3 was 1.35, 0.69, and 2.47 cm2 (p < 0.0001). Aortic atresia in groups 1, 

2, 3 was present in 11%, 87%, and 8%, (p < 0.0001).21 The authors suggest that clustering 

analyses yield more reliable delineation of subject heart structure characteristics. These data 

support the use of clustering approaches to more accurately diagnose CHD. The added 

complexity and volume of data in diagnostic imaging poses a challenge to machine learning, 

but these investigators demonstrate the potential value machine learning brings to clinical 

pattern-fitting and decision making.

Cardiovascular Magnetic Resonance Imagining

Cardiovascular magnetic resonance imaging is considered the clinical gold standard for 

accurate assessment of ventricular volumes and function. Obtaining quality images requires 

repetitive breath holding, which can be a challenge for patients with CHD who may 

suffer from shortness of breath at baseline or who are simply too young to comply 

with breath-holding instructions. The investigators of the next study explored alternative 
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ways to denoise cardiovascular magnetic resonance images that were captured during free-

breathing. Specifically, they aimed to use real-time imaging, while applying reconstruction 

techniques to denoise the images (artifact versus artifact free images).28 Metrics used to 

evaluate the performance of their convolutional neural network were the signal-to-noise 

ratio, acceleration factor, and image cropping. The root-mean square error and the structural 

similarity index were used to evaluate the test dataset reconstructed image accuracy. The 

continuously rotating tiny golden angle sampling pattern had the lowest root-mean square 

error, and the highest structural similarity index (p < 0.0001) compared to all other sampling 

methods. The signal-to-noise ratio decreased from 20 dB to 10 dB, and the acceleration 

factor increased from 10x to 16x. Finally, the reconstruction time for all slices originating 

from raw data was 5.6x faster for the convolutional neural network (22 seconds).28 This 

study demonstrates that machine learning models have the potential to successfully remove 

artifact, while decreasing reconstruction times to produce better quality images and more 

accurate measurements in real time. More importantly, if these models become widely used, 

they have the potential to improve patient comfort or decrease the need for sedation in 

infants and younger children during cardiovascular magnetic resonance imaging, as the need 

for frequent breath holding is no longer required.

Further, clustering subjects based on their cardiovascular magnetic resonance imaging data 

is a very popular approach presented in the literature. While cardiac imaging has already 

been established as a standard and definitive way to diagnose complex heart disease, 

investigators are now taking advantage of the machine learning applications that can unveil 

hidden patterns in these data to boost diagnostic accuracy.31,32,35 Bruse and colleagues24 

used agglomerative hierarchical clustering and principal component analysis to detect 

clinically meaningful shape clusters using anatomical cardiovascular magnetic resonance 

image data. Subjects with and without surgically corrected coarctation of the aorta, and 

subjects with healthy aortic arches were included. For each cross-validated run, 83% of 

healthy aortic arches were assigned to the healthy group, 85% of the coarctation shapes were 

correctly assigned, and 100% of the surgically corrected shapes were accurately assigned. 

Human clinicians would ideally use the results provided by the machine learning model to 

either compare or validate their own interpretation of the image data. This suggests that 

clustering techniques have the potential to inform clinical decision making at the time of 

diagnosis, thus improving accuracy and efficiency.

Finally, cardiac segmentation applied to cardiovascular magnetic resonance images is a 

process that takes a complex multidimensional image of the heart and separates its major 

sections, for example, the ventricles and coronary arteries. Segmentation is necessary 

because each ventricle or vessel can then be assessed quantitatively. Particularly, ventricular 

mass, volume, or ejection fraction can be quantitively measured. Segmentation driven 

by deep learning; specifically convolutional neural networks require large amounts of 

training data. Research studies aiming to optimize cardiac segmentation driven by deep 

learning in patients with CHD are faced with data accessibility challenges related to the 

extreme heterogeneity of cardiac anatomy and rarity of disease within the CHD population. 

Generative adversarial networks learn from real images in order to generate synthetic 

image data. The generative adversarial network has two networks that compete with one 

another. A generator network creates false images that the discriminator network will use 
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to decipher between real and false images.74 Through these networks, new synthetic images 

are produced and can increase the size of training datasets in populations with limited 

image data.75 Investigators used these methods to create synthetic image data in patients 

with Tetralogy of Fallot, an extremely rare heart condition and found the images to be 

anatomically accurate.76 Generative adversarial networks may have major implications in 

CHD diagnostic image research, as they can potentially expand training datasets and allow 

models to predict rare and life-threatening diseases.

DISCUSSION

This scoping review demonstrates that machine learning is a rapidly evolving field of 

pediatric cardiology with a myriad of potential functions. The majority of these applications 

focused on the diagnosis and assessment of underlying CHD, including classification 

of auscultatory heart sounds, transthoracic echocardiograms, or cardiovascular magnetic 

resonance images.

Deep neural networks and support vector machines were commonly used algorithms for 

such tasks. Deep neural networks are popular to use when analyzing human data because 

they are robust and can handle inconsistent data. They are designed to model human 

cognitive abilities, which process, store, and retrieve information. Deep neural networks 

are extremely complex and often not interpretable to clinicians; therefore, their utility is 

somewhat controversial when applied to clinical decision making tasks. On the other hand, 

support vector machines are a popular technique used for binary outcome classification 

(i.e.; diseased versus healthy). Support vector machines use features and can separate 

classes by maximizing the distance between data points in each class. For healthcare related 

classification problems, support vector machines have high accuracy and do not suffer from 

multicollinearity (highly correlated features), which is an issue with human data as many 

features are often highly correlated (i.e.; systolic, diastolic, mean blood pressure values). 

Although support vector machines have their advantages, this technique is computationally 

intensive, with the non-linear support vector machine being more exhaustive than linear.

Implementing and translating machine learning results into clinically meaningful tools is a 

necessary path to improving diagnostic accuracy and efficiency.

Importantly, there are techniques to improve deep neural network interpretability, which 

is one of the most used algorithm types for diagnosing and assessing CHD. Heat maps 

are one example that can ensure models are capturing valid image signatures to further 

expand clinical usefulness. The integrated gradient method is another technique used to 

explain how a deep neural network predicted an outcome by visualizing input feature 

importance. The linear interpretable model-agnostic explanation is an application used 

with convolutional neural networks to discover what the convolutional neural network 

learns while deriving predictions, providing more interpretability to clinical end-users. 

Investigators have used this technique after comparing diagnostic performance of a 

convolutional neural network versus trained cardiologists and MUSE (GE Healthcare) 

automated analysis. The linear interpretable model-agnostic explanation technique presented 

physiologically relevant electrocardiogram segments chosen by the convolutional neural 
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network when predicting diagnostic classes.77 Implementing any of these techniques is 

equivalent to feature importance ranking in random forest or coefficients in support vector 

machine for interpretability purposes. These methods can be applied to validate and 

corroborate that a model is predicting a legible signal, further supporting clinical end-user 

interpretability. For clinicians, the algorithm outputs must be relevant and trustworthy to 

garner clinician support. If implemented, clinicians will use machine learning models 

to classify healthy individuals versus those with diseases. Clinicians have a desire to 

understand how classification results are derived. Achieving this understanding will support 

machine learning prediction translation and clinical uptake.

To date, machine learning has been successfully explored and applied to support clinicians 

in many ways including, early recognition of cardiorespiratory instability. Bose and 

colleagues found that in 634 individuals with in-hospital cardiac arrest, 79% of these 

patients also had cardiorespiratory instability four to 24-hours prior to arrest.78,79 Predicting 

cardiorespiratory instability risk is significant because patients who experience this type 

of instability, if not attended to, can progress to in-hospital cardiac arrest. However, if 

cardiorespiratory instability is recognized early, cardiac arrest may be prevented.

Machine learning based technologies have the opportunity to not only advance expert 

care at tertiary centers, but to provide access to quality care in remote areas without 

local subspecialty expertise. Udine and colleagues found that CHD infant mortality was 

associated with higher poverty levels.15 The American Academy of Family Physicians’ 

position paper on poverty and health describes that poverty affects the built environment, 

which includes buildings, infrastructure, and services.80,81 In the case of limited access to 

expert care, machine learning can be used as a tool to connect specialized cardiac programs 

with distant primary care providers. Machine learning can systematically be applied to 

clinical data, process it, and provide improved accuracy and timely diagnosis of CHD for 

patients in various clinical settings. For patients in remote clinical settings, diagnostic data 

could be sent to a tertiary care center for consultation (machine learning output analysis 

and patient triage). Even for patients with access to specialized cardiac programs, they 

too may benefit from having their clinical data processed by machine learning algorithms. 

Specifically, advanced cardiac imaging data could result in automated detection of cardiac 

diseases. Machine learning models are likely to save time, while boosting diagnostic 

accuracy.

Although, machine learning appears to be an evolving and promising tool for CHD 

diagnostics, there are still several limitations to consider. General limitations of machine 

learning in healthcare include lack of diverse and large datasets, poor standardization across 

hospital systems, expertise and time challenges related to ground-truth labeling, lack of 

comparable testing sets, poor transparency of algorithm design, and inadequate prospective 

integration into clinical workflow. Specifically for the models addressed in this scoping 

review, their limitations are as follows: 1.) deep neural network requires large amounts of 

data, and carries the black box concept (you don’t know how or why the network came up 

with the output); 2.) support vector machine is computationally exhaustive and not ideal for 

problems with many training examples; 3.) principal component analysis reduces variables 

and dimensionality to improve interpretability, but will sacrifice prediction accuracy in doing 
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so; 4.) cluster analyses are used when the outcome is unknown, so accuracy cannot be 

determined, and results tend to not be representative of real-world problems; 5.) Hidden 

Markov models require a priori knowledge about the problem, otherwise severe overfitting 

will result; 6.) linear discriminant analyses require a normal distribution, but do not impose 

assumptions which will increase bias. Linear discriminant analysis also suffers from issues 

with multicollinearity; 7.) decision trees are considered an unstable classifier, meaning 

small changes in data can cause large changes in decision tree structure. Decision trees are 

expensive and time consuming as it takes a lot of time to train the model. Overfitting can 

also be a problem with this type of classifier.

Further limitations related to this scoping review include using a broad literature search 

strategy. Our goal was to describe the comprehensive applications of machine learning 

used in pediatric cardiology research, and then focus on machine learning techniques 

used for diagnosis and assessment. This approach required screening an extensive amount 

of journal article titles and abstracts. In the future, it will be interesting to explore the 

predictive capabilities of other non-invasive diagnostic technologies, such as the 12-lead 

electrocardiogram. Few pediatric focused studies have considered the disease detection 

capabilities of this technology.82 In adult focused machine learning cardiac research, 12-lead 

electrocardiograms are already being leveraged to detect acute coronary syndrome.83,84

In conclusion, these findings indicate that machine learning is a very promising tool for 

diagnosing and assessing critical and non-critical CHD, yet extensive research is still needed 

to build robust and generalizable models for clinical use, especially considering the extreme 

heterogeneity of complex CHD.

FINANCIAL SUPPORT

This work was supported by grants from the National Institute of Health (S.H., grant number T32NR008857, 
1F31NR019725-01A1).

REFERENCES

1. Gharehbaghi A, Dutoit T, Sepehri AA, Kocharian A, Lindén M. A Novel Method for Screening 
Children with Isolated Bicuspid Aortic Valve. Cardiovascular engineering and technology. 
2015;6(4):546–556. [PubMed: 26577485] 

2. Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: Current applications and 
future directions. PLoS medicine. 2018;15(11):e1002707. [PubMed: 30500815] 

3. Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic 
resonance imaging: Development and retrospective validation of MRNet. PLoS medicine. 
2018;15(11):e1002699. [PubMed: 30481176] 

4. Hosny A, Parmar C, Coroller TP, et al. Deep learning for lung cancer prognostication: A 
retrospective multi-cohort radiomics study. PLoS medicine. 2018;15(11):e1002711. [PubMed: 
30500819] 

5. Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology 
slides using deep learning: A retrospective multicenter study. PLoS medicine. 2019;16(1):e1002730. 
[PubMed: 30677016] 

6. Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A 
retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS medicine. 
2018;15(11):e1002686. [PubMed: 30457988] 

Helman et al. Page 10

Cardiol Young. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Taylor AG, Mielke C, Mongan J. Automated detection of moderate and large pneumothorax 
on frontal chest X-rays using deep convolutional neural networks: A retrospective study. PLoS 
medicine. 2018;15(11):e1002697. [PubMed: 30457991] 

8. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization 
performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional 
study. PLoS medicine. 2018;15(11):e1002683. [PubMed: 30399157] 

9. Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A. Temporal trends in survival 
among infants with critical congenital heart defects. Pediatrics. 2013;131(5):e1502–1508. [PubMed: 
23610203] 

10. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital 
heart defects in metropolitan Atlanta, 1998-2005. The Journal of pediatrics. 2008;153(6):807–813. 
[PubMed: 18657826] 

11. Hoffman JI, Kaplan S. The incidence of congenital heart disease. Journal of the American College 
of Cardiology. 2002;39(12):1890–1900. [PubMed: 12084585] 

12. Centers for Disease Control and Prevention Congential Heart Defects 2019; https://www.cdc.gov/
ncbddd/heartdefects/data.html. Accessed February 28, 2020.

13. CDC. National Birth Defects Prevention Study. https://www.cdc.gov/ncbddd/birthdefects/
nbdps.html. Accessed July 24, 2020.

14. Ailes EC, Gilboa SM, Riehle-Colarusso T, et al. Prenatal diagnosis of nonsyndromic congenital 
heart defects. Prenatal diagnosis. 2014;34(3):214–222. [PubMed: 24222433] 

15. Udine MEF, Burns K, Pearson G, Kaltman J. 269 - Geographic Variation in Infant Mortality Due 
to Congenital Heart Disease. Paper presented at: American Heart Association- Scientific Sessions; 
November 13, 2020; Virtual.

16. Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-
ScR): Checklist and Explanation. Annals of internal medicine. 2018;169(7):467–473. [PubMed: 
30178033] 

17. Garrard J. Health sciences literature review made easy: The matrix method. 5th ed. Burlington, 
MA: Jones & Bartlett; 2017.

18. Norgeot B, Quer G, Beaulieu-Jones BK, et al. Minimum information about clinical artificial 
intelligence modeling: the MI-CLAIM checklist. Nat Med. 2020;26(9):1320–1324. [PubMed: 
32908275] 

19. Diller GP, Lammers AE, Babu-Narayan S, et al. Denoising and artefact removal for transthoracic 
echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep 
learning algorithms. The international journal of cardiovascular imaging. 2019;35(12):2189–2196. 
[PubMed: 31325067] 

20. Sun S, Wang H. Principal component analysis-based features generation combined with ellipse 
models-based classification criterion for a ventricular septal defect diagnosis system. Australasian 
physical & engineering sciences in medicine. 2018;41(4):821–836. [PubMed: 30238221] 

21. Meza JM, Slieker M, Blackstone EH, et al. A novel, data-driven conceptualization for critical left 
heart obstruction. Computer methods and programs in biomedicine. 2018;165:107–116. [PubMed: 
30337065] 

22. Gharehbaghi A, Lindén M, Babic A. A Decision Support System for Cardiac Disease Diagnosis 
Based on Machine Learning Methods. Studies in health technology and informatics. 2017;235:43–
47. [PubMed: 28423752] 

23. Pereira F, Bueno A, Rodriguez A, et al. Automated detection of coarctation of aorta in 
neonates from two-dimensional echocardiograms. Journal of medical imaging (Bellingham, 
Wash). 2017;4(1):014502.

24. Bruse JL, Zuluaga MA, Khushnood A, et al. Detecting Clinically Meaningful Shape Clusters 
in Medical Image Data: Metrics Analysis for Hierarchical Clustering Applied to Healthy and 
Pathological Aortic Arches. IEEE transactions on bio-medical engineering. 2017;64(10):2373–
2383. [PubMed: 28221991] 

25. Diller GP, Babu-Narayan S, Li W, et al. Utility of machine learning algorithms in assessing patients 
with a systemic right ventricle. European heart journal cardiovascular Imaging. 2019;20(8):925–
931. [PubMed: 30629127] 

Helman et al. Page 11

Cardiol Young. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/ncbddd/heartdefects/data.html
https://www.cdc.gov/ncbddd/heartdefects/data.html
https://www.cdc.gov/ncbddd/birthdefects/nbdps.html
https://www.cdc.gov/ncbddd/birthdefects/nbdps.html


26. Gharehbaghi A, Sepehri AA, Lindén M, Babic A. Intelligent Phonocardiography for Screening 
Ventricular Septal Defect Using Time Growing Neural Network. Studies in health technology and 
informatics. 2017;238:108–111. [PubMed: 28679899] 

27. Elgendi M, Bobhate P, Jain S, et al. The Voice of the Heart: Vowel-Like Sound in Pulmonary 
Artery Hypertension. Diseases (Basel, Switzerland). 2018;6(2).

28. Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA. Real-time cardiovascular MR 
with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart 
disease. Magnetic resonance in medicine. 2019;81(2):1143–1156. [PubMed: 30194880] 

29. Aziz S, Khan MU, Alhaisoni M, Akram T, Altaf M. Phonocardiogram Signal Processing for 
Automatic Diagnosis of Congenital Heart Disorders through Fusion of Temporal and Cepstral 
Features. Sensors (Basel, Switzerland). 2020;20(13).

30. Gharehbaghi A, Sepehri AA, Babic A. Distinguishing Septal Heart Defects from the Valvular 
Regurgitation Using Intelligent Phonocardiography. Studies in health technology and informatics. 
2020;270:178–182. [PubMed: 32570370] 

31. Karimi-Bidhendi S, Arafati A, Cheng AL, Wu Y, Kheradvar A, Jafarkhani H. Fully-automated 
deep-learning segmentation of pediatric cardiovascular magnetic resonance of patients with 
complex congenital heart diseases. Journal of cardiovascular magnetic resonance : official journal 
of the Society for Cardiovascular Magnetic Resonance. 2020;22(1):80. [PubMed: 33256762] 

32. Lu Y, Fu X, Li X, Qi Y. Cardiac Chamber Segmentation Using Deep Learning on Magnetic 
Resonance Images from Patients Before and After Atrial Septal Occlusion Surgery. Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society IEEE 
Engineering in Medicine and Biology Society Annual International Conference. 2020;2020:1211–
1216.

33. Wang J, Liu X, Wang F, et al. Automated interpretation of congenital heart disease from multi-view 
echocardiograms. Medical image analysis. 2020;69:101942. [PubMed: 33418465] 

34. Gómez-Quintana S, Schwarz CE, Shelevytsky I, et al. A Framework for AI-Assisted Detection 
of Patent Ductus Arteriosus from Neonatal Phonocardiogram. Healthcare (Basel, Switzerland). 
2021;9(2).

35. Tandon A, Mohan N, Jensen C, et al. Retraining Convolutional Neural Networks for Specialized 
Cardiovascular Imaging Tasks: Lessons from Tetralogy of Fallot. Pediatric cardiology. 2021.

36. Thompson WR, Reinisch AJ, Unterberger MJ, Schriefl AJ. Artificial Intelligence-Assisted 
Auscultation of Heart Murmurs: Validation by Virtual Clinical Trial. Pediatric cardiology. 
2019;40(3):623–629. [PubMed: 30542919] 

37. Lv J, Dong B, Lei H, et al. Artificial intelligence-assisted auscultation in detecting congenital heart 
disease. European Heart Journal - Digital Health. 2021;2(1):119–124.

38. Ruiz VM, Saenz L, Lopez-Magallon A, et al. Early prediction of critical events for infants with 
single-ventricle physiology in critical care using routinely collected data. The Journal of thoracic 
and cardiovascular surgery. 2019;158(1):234–243.e233. [PubMed: 30948317] 

39. Luo Y, Li Z, Guo H, et al. Predicting congenital heart defects: A comparison of three data mining 
methods. PloS one. 2017;12(5):e0177811. [PubMed: 28542318] 

40. Gharehbaghi A, Borga M, Sjöberg BJ, Ask P. A novel method for discrimination between innocent 
and pathological heart murmurs. Medical engineering & physics. 2015;37(7):674–682. [PubMed: 
26003286] 

41. Miller R, Tumin D, Cooper J, Hayes D Jr., Tobias JD. Prediction of mortality following pediatric 
heart transplant using machine learning algorithms. Pediatric transplantation. 2019;23(3):e13360. 
[PubMed: 30697906] 

42. Jalali A, Simpao AF, Gálvez JA, Licht DJ, Nataraj C. Prediction of Periventricular Leukomalacia in 
Neonates after Cardiac Surgery Using Machine Learning Algorithms. Journal of medical systems. 
2018;42(10):177. [PubMed: 30116905] 

43. Samad MD, Wehner GJ, Arbabshirani MR, et al. Predicting deterioration of ventricular function 
in patients with repaired tetralogy of Fallot using machine learning. European heart journal 
cardiovascular Imaging. 2018;19(7):730–738. [PubMed: 29538684] 

Helman et al. Page 12

Cardiol Young. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Diller GP, Orwat S, Vahle J, et al. Prediction of prognosis in patients with tetralogy of Fallot based 
on deep learning imaging analysis. Heart (British Cardiac Society). 2020;106(13):1007–1014. 
[PubMed: 32161041] 

45. Ruiz-Fernández D, Monsalve Torra A, Soriano-Payá A, Marín-Alonso O, Triana Palencia E. 
Aid decision algorithms to estimate the risk in congenital heart surgery. Computer methods and 
programs in biomedicine. 2016;126:118–127. [PubMed: 26774238] 

46. Dimopoulos AC, Nikolaidou M, Caballero FF, et al. Machine learning methodologies versus 
cardiovascular risk scores, in predicting disease risk. BMC medical research methodology. 
2018;18(1):179. [PubMed: 30594138] 

47. Liem DA, Murali S, Sigdel D, et al. Phrase mining of textual data to analyze extracellular 
matrix protein patterns across cardiovascular disease. American journal of physiology Heart and 
circulatory physiology. 2018;315(4):H910–h924. [PubMed: 29775406] 

48. Boskovski MT, Homsy J, Nathan M, et al. De Novo Damaging Variants, Clinical Phenotypes, 
and Post-Operative Outcomes in Congenital Heart Disease. Circulation Genomic and precision 
medicine. 2020;13(4):e002836. [PubMed: 32812804] 

49. Huang L, Li J, Huang M, et al. Prediction of pulmonary pressure after Glenn shunts by 
computed tomography-based machine learning models. European radiology. 2020;30(3):1369–
1377. [PubMed: 31705256] 

50. Jalali A, Lonsdale H, Do N, et al. Deep Learning for Improved Risk Prediction in Surgical 
Outcomes. Scientific reports. 2020;10(1):9289. [PubMed: 32518246] 

51. Toba S, Mitani Y, Yodoya N, et al. Prediction of Pulmonary to Systemic Flow Ratio in Patients 
With Congenital Heart Disease Using Deep Learning-Based Analysis of Chest Radiographs. 
JAMA cardiology. 2020;5(4):449–457. [PubMed: 31968049] 

52. Cainelli E, Bisiacchi PS, Cogo P, et al. Detecting neurodevelopmental trajectories in congenital 
heart diseases with a machine-learning approach. Scientific reports. 2021;11(1):2574. [PubMed: 
33510389] 

53. Diller GP, Kempny A, Babu-Narayan SV, et al. Machine learning algorithms estimating prognosis 
and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 
10 019 patients. European heart journal. 2019;40(13):1069–1077. [PubMed: 30689812] 

54. Wolf MJ, Lee EK, Nicolson SC, et al. Rationale and methodology of a collaborative learning 
project in congenital cardiac care. American heart journal. 2016;174:129–137. [PubMed: 
26995379] 

55. Wang L, Javadekar N, Rajagopalan A, et al. Eligibility for subcutaneous implantable cardioverter-
defibrillator in congenital heart disease. Heart rhythm. 2020;17(5 Pt B):860–869. [PubMed: 
32354451] 

56. Ma Y, Alhrishy M, Narayan SA, Mountney P, Rhode KS. A novel real-time computational 
framework for detecting catheters and rigid guidewires in cardiac catheterization procedures. 
Medical physics. 2018;45(11):5066–5079. [PubMed: 30221493] 

57. Kan CD, Wang JN, Lin CH, et al. Handmade trileaflet valve design and validation for patch-
valved conduit reconstruction using generalized regression machine learning model. Technology 
and health care : official journal of the European Society for Engineering and Medicine. 
2018;26(4):605–620.

58. Liu X, Aslan S, Hess R, et al. Automatic Shape Optimization of Patient-Specific Tissue Engineered 
Vascular Grafts for Aortic Coarctation. Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual 
International Conference. 2020;2020:2319–2323.

59. Liu M, Zhao L, Yuan J. Establishment of Relational Model of Congenital Heart Disease Markers 
and GO Functional Analysis of the Association between Its Serum Markers and Susceptibility 
Genes. Computational and mathematical methods in medicine. 2016;2016:9506829. [PubMed: 
27118988] 

60. Gopalakrishnan V, Menon PG, Madan S. cMRI-BED: A novel informatics framework for cardiac 
MRI biomarker extraction and discovery applied to pediatric cardiomyopathy classification. 
Biomedical engineering online. 2015;14 Suppl 2(Suppl 2):S7.

Helman et al. Page 13

Cardiol Young. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



61. Liu H, Zhang CH, Ammanamanchi N, et al. Control of cytokinesis by β-adrenergic receptors 
indicates an approach for regulating cardiomyocyte endowment. Science translational medicine. 
2019;11(513).

62. Troisi J, Cavallo P, Richards S, et al. Noninvasive screening for congenital heart defects using a 
serum metabolomics approach. Prenatal diagnosis. 2021.

63. Qi H, Zhang H, Zhao Y, et al. MVP predicts the pathogenicity of missense variants by deep 
learning. Nature communications. 2021;12(1):510.

64. Ren Z, Zhu J, Gao Y, et al. Maternal exposure to ambient PM(10) during pregnancy increases the 
risk of congenital heart defects: Evidence from machine learning models. The Science of the total 
environment. 2018;630:1–10. [PubMed: 29471186] 

65. Chu R, Chen W, Song G, et al. Predicting the Risk of Adverse Events in Pregnant Women 
With Congenital Heart Disease. Journal of the American Heart Association. 2020;9(14):e016371. 
[PubMed: 32662348] 

66. Dozen A, Komatsu M, Sakai A, et al. Image Segmentation of the Ventricular Septum in 
Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information. 
Biomolecules. 2020;10(11).

67. Klein AZ, Sarker A, Cai H, Weissenbacher D, Gonzalez-Hernandez G. Social media mining 
for birth defects research: A rule-based, bootstrapping approach to collecting data for rare health-
related events on Twitter. Journal of biomedical informatics. 2018;87:68–78. [PubMed: 30292855] 

68. Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial Intelligence: Practical Primer 
for Clinical Research in Cardiovascular Disease. Journal of the American Heart Association. 
2019;8(17):e012788. [PubMed: 31450991] 

69. Mahle WT, Sutherland JL, Frias PA. Outcome of isolated bicuspid aortic valve in childhood. The 
Journal of pediatrics. 2010;157(3):445–449. [PubMed: 20400103] 

70. Marinho J, Pires A, Sousa G, Castela E. Right subclavian artery aneurysm in an adolescent with a 
bicuspid aortic valve. Pediatric cardiology. 2013;34(8):1952–1954. [PubMed: 22968291] 

71. Siu SC, Silversides CK. Bicuspid aortic valve disease. Journal of the American College of 
Cardiology. 2010;55(25):2789–2800. [PubMed: 20579534] 

72. Spaziani G, Ballo P, Favilli S, et al. Clinical outcome, valve dysfunction, and progressive 
aortic dilation in a pediatric population with isolated bicuspid aortic valve. Pediatric cardiology. 
2014;35(5):803–809. [PubMed: 24362596] 

73. Rubinstein R. The Cross-Entropy Method for Combinatorial and Continuous Optimization. 
Methodology And Computing In Applied Probability. 1999;1(2):127–190.

74. Chen C, Qin C, Qiu H, et al. Deep Learning for Cardiac Image Segmentation: A Review. Frontiers 
in Cardiovascular Medicine. 2020;7(25).

75. Zeleznik R, Weiss J, Taron J, et al. Deep-learning system to improve the quality and efficiency 
of volumetric heart segmentation for breast cancer. NPJ digital medicine. 2021;4(1):43. [PubMed: 
33674717] 

76. Diller GP, Vahle J, Radke R, et al. Utility of deep learning networks for the generation of 
artificial cardiac magnetic resonance images in congenital heart disease. BMC Med Imaging. 
2020;20(1):113. [PubMed: 33032536] 

77. Hughes JW, Olgin JE, Avram R, et al. Performance of a Convolutional Neural Network and 
Explainability Technique for 12-Lead Electrocardiogram Interpretation. JAMA cardiology. 2021.

78. Bose E, Hoffman L, Hravnak M. Monitoring cardiorespiratory instability: Current approaches 
and implications for nursing practice. Intensive & critical care nursing. 2016;34:73–80. [PubMed: 
26927832] 

79. Kause J, Smith G, Prytherch D, et al. A comparison of antecedents to cardiac arrests, deaths and 
emergency intensive care admissions in Australia and New Zealand, and the United Kingdom--the 
ACADEMIA study. Resuscitation. 2004;62(3):275–282. [PubMed: 15325446] 

80. Czapp P, Kovach K. Poverty and Health- The Family Medicine Perspective (Position Paper). 2015; 
https://www.aafp.org/about/policies/all/poverty-health.html. Accessed January 2, 2021.

81. Macintyre S, Ellaway A, Cummins S. Place effects on health: how can we conceptualise, 
operationalise and measure them? Social science & medicine (1982). 2002;55(1):125–139. 
[PubMed: 12137182] 

Helman et al. Page 14

Cardiol Young. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.aafp.org/about/policies/all/poverty-health.html


82. Du Y, Huang S, Huang C, Maalla A, Liang H. Recognition of Child Congenital Heart Disease 
using Electrocardiogram based on Residual of Residual Network. Paper presented at: 2020 IEEE 
International Conference on Progress in Informatics and Computing (PIC); 18-20 Dec. 2020, 
2020.

83. Bouzid Z, Faramand Z, Gregg RE, et al. In Search of an Optimal Subset of ECG Features to 
Augment the Diagnosis of Acute Coronary Syndrome at the Emergency Department. Journal of 
the American Heart Association. 2021;10(3):e017871. [PubMed: 33459029] 

84. Al-Zaiti S, Besomi L, Bouzid Z, et al. Machine learning-based prediction of acute coronary 
syndrome using only the pre-hospital 12-lead electrocardiogram. Nature communications. 
2020;11(1):3966.

Helman et al. Page 15

Cardiol Young. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Summary of a Typical Machine Learning Pipeline Application

*Machine Learning (ML), Principal Component Analysis (PCA)
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Figure 2. 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses Flow Diagram of 

Included Articles
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Figure 3. 
Distribution of Machine Learning Applications and Uses in Pediatric Cardiology Research

*Congenital Heart Defect (CHD)
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Figure 4. 
Distribution of Machine Learning Algorithms Used in Pediatric Cardiology Research in 

General
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Figure 5. 
Distribution of Machine Learning Algorithms Used in Pediatric Cardiology Research 

Focusing on the Diagnosis and Assessment of Critical and Non-Critical CHD

The most common neural network types were the convolutional neural network, time 

growing neural network, autoencoder, and generative adversarial network.

The most common kernel among the studies who used support vector machine was a 

Gaussian kernel.

*Congenital Heart Defect (CHD)
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