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Genotyping from sequencing is the basis of emerging strategies in the molecular breeding of polyploid plants. However,
compared with the situation for diploids, in which genotyping accuracies are confidently determined with comprehensive
benchmarks, polyploids have been neglected; there are no benchmarks measuring genotyping error rates for small variants
using real sequencing reads. We previously introduced a variant calling method, Octopus, that accurately calls germline
variants in diploids and somatic mutations in tumors. Here, we evaluate Octopus and other popular tools on whole-genome
tetraploid and hexaploid data sets created using in silico mixtures of diploid Genome in a Bottle (GIAB) samples. We find
that genotyping errors are abundant for typical sequencing depths but that Octopus makes 25% fewer errors than other
methods on average. We supplement our benchmarks with concordance analysis in real autotriploid banana data sets.

[Supplemental material is available for this article.]

Polyploidy is common inmany plant species, including important
agricultural crops such as wheat, potato, oat, coffee, rapeseed, cot-
ton, banana, and sugar cane (Song et al. 2012). In mammals, poly-
ploidization regularly occurs during tumorigenesis but has also
been shown to be a normal part of development in some mouse
and human tissues (Velicky et al. 2018). Molecular markers have
been widely used for decades in artificial polyploid crop breeding
to assist in selection of more desirable traits such as better resil-
ience to climate change and disease. More recently, genotyping
by sequencing has been applied for marker-assisted and genomic
selection (He et al. 2014; Kim et al. 2016; Hickey et al. 2019),
and the assembly of high-quality plant reference genomes (Jack-
son et al. 2011; Potato Genome Sequencing Consortium 2011;
D’Hont et al. 2012; International Wheat Genome Sequencing
Consortium [IWGSC] et al. 2018; Zhuang et al. 2019), together
with developments in resequencing, promises new strategies for
quantitative trait analysis with a wider variety of genetic variants
and better linkage information than is currently possible (Jackson
et al. 2011; Uitdewilligen et al. 2013; Bourke et al. 2018; Kyriakidou
et al. 2018).

Despite these advances, methods for genotyping polyploids
from sequencing data have received little scrutiny in comparison
to those for diploids (Bourke et al. 2018; Zook et al. 2019; Li
et al. 2018; Krusche et al. 2019). Variant calling and genotyping
in polyploids are more difficult than in diploids primarily because
the number of possible genotypes at a given loci is combinatorial
in the ploidy and number of distinct alleles, and a sequencing
read cannot distinguish identical allele copies in the absence of
physical linkage with other heterozygous alleles. It therefore be-
comes harder to determine the allele-specific copy number for a
fixed read depth as the ploidy increases. The lower per-allele cover-
age alsomakes differentiating true variation from sequencing error
less certain. Haplotype-basedmethods increase power to genotype
individual alleles by jointly evaluating combinations of several
proximal alleles (haplotypes). They are now standard for diploid
calling (Garrison and Marth 2012; Rimmer et al. 2014; Poplin

et al. 2017, 2018; Kim et al. 2018; Cooke et al. 2021) and are be-
coming more common for somatic mutation calling in tumors
(Cooke et al. 2021). Unfortunately, only a minority are capable
of polyploid calling (Garrison and Marth 2012; Poplin et al.
2017; Cooke et al. 2021), and none have been rigorously tested
for this purpose. Specialized methods for polyploid genotyping
have been developed (Blischak et al. 2018; Gerard et al. 2018; Clark
et al. 2019) but are only suitable for biallelic SNPs. Furthermore, ex-
isting benchmarks of polyploid-calling methods fall short of the
standard demanded for diploid calling (Uitdewilligen et al. 2013;
Clevenger et al. 2015; Krusche et al. 2019; Yao et al. 2020). In par-
ticular, we are not aware of any that consider insertions and dele-
tions (indels), genotyping errors in real sequencing data, or
representation differences between callers (Krusche et al. 2019).
Polyploid genotyping error rates from sequencing are therefore
highly uncertain, undermining developments that depends on
them.

We sought to address some of these issues by conducting an
in-depth assessment of polyploid small variant calling using an in-
dependent and comprehensive ground truth, real sequencing
data, and haplotype-aware comparisons.

Results

Synthetic polyploid genomes

We created synthetic tetraploid and hexaploid samples with high-
quality truth sets by merging GIAB v4.2.1 (Zook et al. 2019)
GRCh38 variants for the human diploid samples HG002,
HG003, and HG004. We chose HG003 and HG004 for the tetra-
ploid sample: the two unrelated parents of HG002. Evaluation re-
gions were defined by intersecting (Quinlan and Hall 2010) the
GIAB high-confidence regions for each sample, resulting in 2.50-
Gb (86% non-N primary reference) confident tetraploid bases
containing 5,010,307 variants and 2.48-Gb (85% non-N primary
reference) confident hexaploid bases containing 4,951,498 vari-
ants. We constructed polyploid Illumina NovaSeq whole-genome
test data bymixing reads generated independently for each sample
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with consistent PCR-free library preparation and depths
(Methods). Each individual sequencing run targeted 35× coverage,
resulting in 70× coverage tetraploid samples and 105× coverage
hexaploid samples. We confirmed total read counts were similar
for each contributing sample, ensuring realistic heterozygous al-
lele frequencies. We then randomly down-sampled the full data
sets, starting from 10× in 10× intervals to the full coverage, result-
ing in 6+10=16 polyploid data sets. All reads were mapped to
GRCh38 with BWA-MEM (Methods) (Li 2013).

Polyploid genotyping accuracy from short-read whole-genome
sequencing

We evaluated three popular germline variant callers that support
polyploid genotypes—Octopus (Cooke et al. 2021), GATK4 (Pop-
lin et al. 2017), and FreeBayes (Garrison and Marth 2012)—on
all synthetic polyploid Illumina data sets, as well as in the diploid
HG002 sample to get performance baselines. Other notable germ-
line callers, such as DeepVariant (Poplin et al. 2018), Strelka2 (Kim
et al. 2018), and Platypus (Rimmer et al. 2014) were not included
because they do not support polyploid calling. We also ignored
methods that call polyploid SNVs but not indels, such as polyRAD
(Clark et al. 2019). Other than specifying the ploidy and request-
ing genotype qualities from FreeBayes, we used default setting
for all callers (Methods). Octopus calls were hard-filtered with de-
fault thresholds; GATK4 and FreeBayes calls were hard-filtered us-

ing recommended thresholds (Methods). Variants were compared
using RTG Tools vcfeval (Cleary et al. 2015) based on both geno-
type and allele matches (Methods).

Genotyping accuracy was considerably worse for polyploids
compared with diploids (Fig. 1A; Supplemental Table S1). For
30× sequencing depth, on average one of 200 diploid genotype
calls were incorrect, in contrast with one of 11 for tetraploid and
one of six for hexaploid. Sensitivity was similarly affected; there
were 8× and 16× more false negatives on average for tetraploid
and hexaploid, respectively, compared with diploid, for 30× se-
quencing. There were alsomore substantial differences in accuracy
between callers for polyploids compared with diploids. Sensitivity
was greater for SNVs than indels, and there was greater disparity
between callers for indels (Supplemental Fig. S1; Supplemental
Table S2). Overall, Octopus made 26% fewer errors than GATK4
and 30% fewer errors than FreeBayes. However, performance dif-
ferences varied across depths; the largest F-measure difference be-
tween callers occurred at moderate sequencing depth: 30× for
tetraploid, 50× for hexaploid. The F-measure showed a typical log-
arithmic relationship with sequencing depth for both tetraploid
and hexaploid samples but also showed a suboptimal response
considering ploidy; the F-measure lost from doubling the ploidy
was not recovered by doubling the depth, and the differential in-
creased with depth. Stratifying evaluation by GIAB/GA4GH “diffi-
cult” regions showed similar results to those found genome-wide
(Supplemental Fig. S2; Supplemental Table S1).
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Figure 1. Genotyping accuracy in synthetic polyploids. (A) Sensitivity and precision by depth for each caller on real diploid, as well as synthetic tetraploid
and hexaploid Illumina data sets. (B) Counts of false-positive biallelic calls stratified by depth and genotype (top). False-negative rates at biallelic sites strat-
ified by depth and genotype (bottom). (C) Precision-recall curves for a various tetraploid sequencing depths. Scoremetrics used to generate the curves were
RFGQ (Octopus), GQ (GATK4), and GQ (FreeBayes).
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Most false-positive genotype calls resulted from calling the
incorrect number of variant alleles (allele-specific copy number
error): 89% of false-positive biallelic genotype calls (97% of all
false positives) were owing to genotyping errors. The most com-
mon false positive for all depths was the balanced heterozygotes:
AAaa and AAAaaa (Fig. 1B; Supplemental Fig. S3; Supplemental
Table S3), 94% of which were owing to incorrect variant allele
copy number. A larger fraction of these was made when the
true genotype had a −1 variant allele copy rather than a +1
copy (65% vs. 34%) (Supplemental Figs. S4, S5; Supplemental Ta-
ble S4). The most common biallelic false negatives in tetraploids
were simplex heterozygotes (those with a single variant allele
copy), whereas for hexaploids, it was duplex heterozygotes (Sup-
plemental Figs. S3, S4). However, normalizing by the true preva-
lence shows that the most frequent false negative for depths of
30× or more is the balanced heterozygote—the point of maximal
variance for binomial distributed allele observations—for both
tetraploid and hexaploid; for depths of 20× or more, the most fre-
quent false negative was simplex (Fig. 1B). Furthermore, there
was a slight tendency to miscall balanced heterozygotes by a
−1 variant allele copy rather than a +1 copy for all callers (Supple-
mental Figs. S4, S5).

Genotype quality scores were generally well calibrated for all
callers (Fig. 1C; Supplemental Fig. S6). However, filtering did not
always improve the F-measure; the average F-measure percentage
change for filtered versus unfiltered calls on all tests was −0.1%,
−0.2%, and +3.5% for Octopus, GATK4, and FreeBayes, respective-
ly. Performance differentials between callers were similar for unfil-
tered calls (Supplemental Table S1), suggesting that most of
Octopus’ performance advantage comes from better genotyping
rather than filtering.

Comparison based on allele matching showed less perfor-
mance differential between callers, ploidies, and depths, particu-
larly for precision (Supplemental Fig. S7; Supplemental Table S1).
However, predominantly because of better sensitivity at low
depths, Octopus still made considerably fewer errors in total
than GATK (16% fewer) and FreeBayes (36% fewer).

Longer haplotypes improve genotyping accuracy

Apossible explanation forOctopus having better genotyping accu-
racy than GATK4 and FreeBayes is that Octopus considered longer
haplotypes—on average—when calculating genotype likelihoods.
If the true set of haplotypes including a subset of variants can be
confidently determined, then the variance in the genotype poste-
rior probability distribution is expected to decrease, with respect to
allele-specific copy number, for larger subsets (and therefore lon-
ger haplotypes) because the number of discriminating reads is ex-
pected to be proportional to the haplotype length (Fig. 2). To test
this, we recalled genotypes in the 30× tetraploid sample using a pa-
rametrization of Octopus designed to generate longer haplotypes
than with default settings (Methods). The mean called haplotype
length increased from 319 bases to 511 bases and the number of
raw false positives decreased by 3976, but the number of raw false
negatives increased by 3117.

Banana genotyping

Dwarf Cavendish banana (Musa acuminata) is autotriploid, consist-
ing of 11 chromosomes with a haploid genome size of ∼523 Mb
and is an important food source and export-product for many de-
veloping countries (D’Hont et al. 2012). To support our previous
results on real polyploid samples, we called variants (Methods)
in a Dwarf Cavendish banana specimen that was previously
whole-genome-sequenced with two Illumina technologies, Next-
Seq 500 and HiSeq 1500, to 65× and 55× coverage, respectively
(Busche et al. 2020). Both data sets weremapped to the DHPahang
v4 reference (D’Hont et al. 2012; Belser et al. 2021) with BWA-
MEM, and genotypes were called with Octopus, GATK4, and
FreeBayes.

Because of the lack of truth data, we evaluated concordance
on the two banana data sets using haplotype-aware intersections
(Methods). Genotypes called by all callers in both data sets, al-
though substantially the largest intersection set, only accounted
for 38% of all distinct genotype calls; 22% of calls were unique
to a single callset (Fig. 3). However, there were considerable

Figure 2. Read pileup of HG003-HG004 tetraploid colored and grouped by supported haplotype. There are two distinct haplotypes (light and dark
gray). The true genotypes for the three SNVs (Chr 1:g.3451471T >C, Chr 1:g.3451567G>A, Chr 1:g.3451579G>A) are AAAa, Aaaa, and AAAa. The var-
iant allele read depths are 30/78 (38%), 38/64 (59%), and 20/58 (34%), respectively. GATK4 and FreeBayes both miscall the first two SNVs as AAaa, the
most likely genotypes assuming binomially distributed allele observations. Octopus makes the correct calls because it phases all three SNVs, and the first
haplotype (including the first and third SNVs) is supported by 74/114 (65%) of reads.
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differences in concordance between the two data sets for each cal-
ler: GATK4had 31%more discordant calls comparedwithOctopus
and had 11% more than FreeBayes, despite making 2.4% fewer
calls overall than FreeBayes and only 1% more than Octopus
(Table 1).We also found high discordancewhen intersecting by al-
leles (Table 1; Supplemental Fig. S8); only 55% of distinct alleles
were present in all callsets, whereas 13% were unique to a single
callset, indicating that, in comparison to our results on synthetic
data, a larger proportion of false calls arise from incorrect variant
alleles rather than genotype errors.

Discussion
We have shown that genotyping is substantially more error-prone
in polyploids than in diploids using typical whole-genome se-
quencing depths, emphasizing that polyploid sequencing studies
must be carefully designed to ensure sufficient sequencing depth
and caution taken when interpreting polyploid genotype calls.
We also found considerable differences in accuracy between call-
ers. Octopus produced fewer than a quarter of the total errors of
other methods and half the errors on some data sets. We believe
this may be owing to Octopus modeling longer haplotypes, on av-
erage, as at loci where variant phasing can be confidently deter-
mined, reads assignable to any one allele on a haplotype are
implicitly assigned to all other alleles on the same haplotype—
even if the read does not overlap them—therefore increasing the
effective allele-specific observation count. Regenotyping with lon-

ger haplotypes increased genotyping precision, supporting this
hypothesis.

Analysis of real autotriploid banana data sets revealed high
discordance between callers, as well as high discordance for all call-
ers on a technical replicate. Although these results were at least
consistent with the relative accuracy of callers determined by our
benchmarks using synthetic polyploid data (Octopus was the
most concordant caller), absolute error rates were evidently higher
in real polyploid data. Reasons for this may include greater diver-
gence from the reference genome (Busche et al. 2020); higher lev-
els of repetitive elements in the genome (Jackson et al. 2011);more
structural variation (Busche et al. 2020); a less complete reference
genome (Jackson et al. 2011); higher rates of sequencing related er-
rors, such as owing to the use of PCR amplification; and bioinfor-
matics algorithms optimized for human data.

We have only considered single-sample polyploid calling in
this work; however, multisample calling is important for studying
population diversity. Population calling in humans is a difficult
problem owing to the computational complexities of joint calling
and difficulties in merging independent callsets. Population call-
ing in polyploids will likely be even more challenging and would
perhaps benefit from more sophisticated genotype prior models
(Blischak et al. 2018).

Moving forward, there is clearly room for improvement in
polyploid genotyping from sequencing. The creation of high-qual-
ity validation sets with real polyploid samples would be highly
valuable in the development of polyploid-calling algorithms,

Figure 3. Comparison of genotypes called in two Illumina data sets (HiSeq andNextSeq) of banana specimen byOctopus, GATK4, and FreeBayes. UpSet
plot shows callset intersections for each caller–data set pair. The largest 50/63 intersection sets are shown. Intersections are color-coded by caller discord-
ance between the two data sets: no discordances (black), Octopus (blue), GATK4 (red), FreeBayes (green), Octopus & GATK4 (purple), Octopus &
FreeBayes (cyan), GATK4 & FreeBayes (yellow), and all (brown). The total number of unique genotype calls was 19,197,247.

Table 1. Concordance in two banana Illumina data sets

Match Caller Concordant Discordant Total Concordance

GT FreeBayes 10,390,819 4,516,305 14,907,124 69.70%
GT GATK4 9,555,918 5,005,372 14,561,290 65.60%
GT Octopus 10,554,489 3,822,232 14,376,721 73.40%
AL FreeBayes 11,707,954 3,132,559 14,840,513 79.00%
AL GATK4 11,114,091 2,445,439 13,559,530 82.00%
AL Octopus 11,550,003 2,479,828 14,029,831 82.30%
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including Octopus. We hope that this work lays the groundwork
for future developments.

Methods

Synthetic polyploids with real reads

Raw reads (FASTQ) generated for the PrecisionFDA Truth v2 chal-
lenge (Olson et al. 2021) were downloaded from the DNAnexus
portal (https://precision.fda.gov/challenges/10). Each FASTQ was
line-counted to ensure realistic haplotype frequencies, before con-
catenation of contributing samples tomake the full data polyploid
data set. Down-sampling was performed directly on the FASTQ
files using seqtk with the default seed. The sampling fraction was
set using test depth/full depth, where full depth is 35× ploidy/2.
Reads were mapped with BWA-MEM using default alignment
parameters.

Creating polyploid truth genotypes from diploid GIAB samples

Polyploid truth genotypes were generated by concatenating dip-
loid genotypes from GIAB truth VCFs using the BCFtools merge
and the RTG Tools vcffilter, vcfannotate, and vcfsubset commands.
We note that this merge procedure does not resolve variant repre-
sentation differences between samples. High-confidence BED re-
gions were generated by intersecting GIAB high-confidence BED
regions with the BEDTools multiinter.

Changes to Octopus for polyploid calling

Although the models that we previously described for Octopus
(Cooke et al. 2021) are fully capable of polyploid calls, in practice
we found some issues. Runtimes were prohibitive for high ploidies
owing to themodel always considering every possible genotype for
a given set of candidate haplotypes, which is reasonable for dip-
loids but not polyploids. Moreover, sensitivity for simplex variants
was not optimal owing to the variant discovery mechanisms not
fully accounting for ploidy.

To resolve the runtime issue, we modified the genotype pro-
posal algorithm so that an upper bound on the number of geno-
types evaluated can be specified. The algorithm respects this
limit by evaluating the full model on themaximumploidy that re-
sults in fewer candidate genotypes than the limit for a given set of
haplotypes and then extends a subset of these with greatest poste-
rior probability using each of the candidate haplotypes. The proce-
dure is then applied iteratively, increasing the ploidy by one each
iteration until the desired ploidy is reached. We expect this proce-
dure to work well when the number of unique haplotypes present
in a region is not substantially greater than the first ploidy con-
sidered. We addressed the sensitivity issue by tweaking the
pileup and local de novo reassembly candidate variant discovery
algorithms to account for the sample ploidy. Octopus source
code and documentation are freely available under theMIT license
from GitHub (https://github.com/luntergroup/octopus).

Variant calling polyploids

For GATK4, we called variants using BAMs withmarked duplicates
created by GATK4’s MarkDuplicates tool. Raw BAMs were used for
FreeBayes and Octopus. The sample ploidy was specified for all
callers: ‐‐organism-ploidy (Octopus), ‐‐sample-ploidy (GATK4), and
‐‐ploidy (FreeBayes). For FreeBayes, we requested genotype qualities
with the - = option.

Filtering variant calls

For GATK4, we used following filter expressions: “-filter ‘QD< 2.0’
‐‐filter-name ‘QD2’ -filter ‘QUAL<50’ ‐‐filter-name ‘Q50’ -filter ‘GQ<
5’ ‐‐filter-name ‘GQ5’ -filter ‘FS>60.0’ ‐‐filter-name ‘FS60’ -filter ‘SOR
>3.0’ ‐‐filter-name ‘SOR3’ -filter ‘MQ<40.0’ ‐‐filter-name ‘MQ40’
-filter ‘MQRankSum<−12.5’ ‐‐filter-name ‘MQRankSum-12.5’ -filter
‘ReadPosRankSum<−8.0’ ‐‐filter-name ‘ReadPosRankSum-8.’” For
FreeBayes, we used filter expression “QUAL>1 & GQ>1 & SAF>0
& SAR>0.”

Genotype and allele comparisons

We used RTG Tools vcfeval (v3.12.1) for genotype and allele
comparisons, using the ‐‐sample-ploidy and ‐‐ref-overlap options.
For allele matching, we also used the ‐‐squash-ploidy,
‐‐XXcom.rtg.vcf.eval.flag-alternates = true, and ‐‐output-mode =
“annotate” options and then determined true and false calls
based on the resulting BASE, CALL, BASE_ALTERNATE, and
CALL_ALTERNATE annotations.

Identifying genotype errors

Biallelic genotype errors were identified by running RTG Tools
vcfeval with the ‐‐output-mode = “combine” option and considering
biallelic calls with baseline INFO annotations “BASE= FN_CA” and
“CALL= FP_CA.”

Long haplotypes with Octopus

To call long haplotypes with Octopus, we provided Octopus with
the variant calls it previously produced with default setting as can-
didates (‐‐source-candidates) and disabled de novo variant discovery
(‐‐disable-denovo-variant-discovery). We also set command line op-
tions ‐‐lagging-level =OPTIMSITIC, ‐‐backtrack-level =AGGRESSIVE,
and ‐‐max-haplotypes = 400.

Banana concordance analysis

Callsets for the banana data sets were intersected using a custom
script (https://github.com/dancooke/starfish) that invokes both
RTG Tools vcfeval (that only supports two-way comparisons)
and BCFtools to achieve multisample haplotype-aware compari-
sons. UpSet plots were created with UpSetR (Conway et al. 2017).

Software availability

Custom Snakemake (Köster and Rahmann 2018) and Python code
used for data analysis are available from GitHub (https://github
.com/luntergroup/polyploid) and as Supplemental Code.
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