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The impact of PET image acquisition and reconstruction parameters
on SUV measurements or radiomic feature values is widely docu-
mented. This scanner effect is detrimental to the design and validation
of predictive or prognostic models and limits the use of large multicen-
ter cohorts. To reduce the impact of this scanner effect, the ComBat
method has been proposed and is now used in various contexts. The
purpose of this article is to explain and illustrate the use of ComBat
based on practical examples. We also give examples in which the
ComBat assumptions are not met and, thus, in which ComBat should
not be used.
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The emergence of radiomics in mid-2010 renewed interest in
quantitative image analysis for prediction and classification tasks.
Because radiomics requires large image datasets for designing and
validating models, it would largely benefit from pooling images
from different sites or from different scanners. However, many
quantitative biomarkers and radiomic features are sensitive to a
scanner or protocol effect (1–5), referred to here as the site effect,
underlining the importance of harmonizing image acquisition and
reconstruction procedures to reduce multicenter variability before
pooling data from different sites. Similarly, when a new radiomic
or quantitative image analysis method is developed at one site, its
application to images from another site requires prior verification
that the images from the 2 sites are comparable.
Much effort has been deployed in recent years to propose proce-

dures to harmonize image quality (6), including the successful
European Association of Nuclear Medicine Research Ltd. (EARL)
accreditation program (7,8). However, in retrospective studies,
many images have been reconstructed using protocols that did not
follow these harmonization guidelines, for which it is impossible to

retrieve or perform phantom acquisitions that would be needed to
harmonize them a posteriori. Often, the raw data are not stored,
hampering any novel reconstruction to target a given image quality.
The variability between scans resulting from different acquisition
and reconstruction protocols can be reduced using image resam-
pling or filtering (9,10), but these techniques require image postpro-
cessing and most often yield a decrease in spatial resolution in the
images acquired using the most recent devices, yielding suboptimal
image quality for subsequent quantitative and radiomic studies.
To address these site effects, the ComBat harmonization method

has been proposed (11–15) and has produced satisfactory results in
various contexts. Since 2017, at least 51 papers have reported the
use of ComBat in radiomic analysis of MRI (36%), CT (34%), or
PET images (28%). Of these articles, 41% reported higher perfor-
mance metrics after ComBat than before, and 41% presented only
the results with harmonization. Only 18% of the articles did not
report a benefit in using ComBat, without any detrimental effect.
ComBat directly applies to features already extracted from the

images without the need to retrieve the images. However, as with
any harmonization method, it is based on assumptions that have to
be met for the method to generate valid results. The objective of
this paper is to explain and demonstrate under which conditions
ComBat can be used to harmonize image-derived biomarkers mea-
sured in different conditions and when it should be used with cau-
tion. We first summarize the theory behind ComBat and then
illustrate several use cases to demonstrate its ability to compensate
for site effects when properly used and to answer practical ques-
tions a ComBat user might have. We also give examples of situa-
tions in which the ComBat assumptions are not met and, thus, in
which ComBat should not be used. Finally, we discuss the assets
and limitations of ComBat.
All patient data used in the examples were obtained from previ-

ous retrospective studies approved by an institutional review board,
and the requirement to obtain informed consent was waived.

THEORY OF COMBAT

ComBat was initially introduced in the field of genomics (16)
and has been widely used in this field (17). ComBat assumes that

yij 5a1gi 1di«ij Eq. 1

where j denotes the specific measurement of feature y, i denotes
the setting, a corresponds to the average value of the feature of
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interest y, gi is an additive batch effect affecting the measurement,
di is a multiplicative batch effect and, «ij is an error term. Batch i
corresponds to the experimental settings used for making the y
measurement, including the possible observer effect, scanner
effect, or even sample effect.
In medical imaging, y is an image feature (e.g., SUV); i denotes

the scanner, protocol effect, or even observer effect (called the site
effect); and j denotes the specific measurement, typically the vol-
ume of interest in which the measurement is made.
The model therefore assumes that the value of measurement i of

a given feature y in volume of interest j is possibly affected by
additive and multiplicative effects that depend on the scanner, pro-
tocol, or even observer who made the measurement. These effects
are common to all measurements j of that same quantity y made
using the same scanner, protocol, or observer. On the basis of mul-
tiple measurements yij of the same feature y made in volume of
interest j in different images coming from different scanners i, the
site effects gi and di can be estimated using conditional posterior
means (16) and subsequently corrected using

yComBat
ij 5

yij2â2ĝi

d̂i
1â Eq. 2

where â, ĝi and d̂i are estimators of a, gi and di and yComBat
ij is the

transformed yij measurement devoid of the site i effect.
ComBat is a data-driven method that does not require any phan-

tom acquisition to estimate the site effect but requires data from the
different sites with sufficient sample size. The site effect can be esti-
mated and corrected directly from the available image feature values
measured at different sites without having to perform any image
processing or any new measurements in the images. ComBat always
theoretically improves the alignment of the mean and SD of the
distributions given the criterion optimized by the method. A
Kolmogorov–Smirnov test can be used to determine whether the
statistical distributions of 2 sets of feature values are significantly
different, in which case ComBat is needed, and to check the effec-
tiveness of the applied transformation. A nonsignificant Kolmogor-
ov–Smirnov test suggests that there is no evidence of differences in
the 2 distributions, implying that any subsequent analysis should not
be affected by a detectable difference between the distributions.

EXAMPLE

We numerically generated 3,000 values drawn from 3 gaussian
distributions with different means (8, 12, or 14) and SDs (3, 4,
or 5) (Table 1), mimicking, for example, SUVmax measured in
3 sets of highly metabolic tumors but with 3 scanners of
different generations, of which one had a much higher spatial reso-
lution than the others (hence higher SUVmax due to reduced
partial-volume effect (18)). As shown in Figure 1, ComBat can be

used in 2 ways: either to realign the distributions of the 3 sites to a
virtual site (11), which is neither site A nor site B nor site C, or to
realign the data from sites B and C to site A chosen as the reference
site (or vice versa) (19). Contrary to what has been reported (20),
both approaches lead to the same ranking of the patients and, hence,
identical receiver-operating-characteristic curves for classification
tasks, and only the absolute value of the feature changes. Aligning
the data to a reference site may be preferable for feature value inter-
pretation, but the reference site selection has no impact on the qual-
ity of the realignment. In the following, harmonization will always
be performed with respect to a reference site.

COMBAT TO COMPENSATE FOR PROTOCOL DIFFERENCES

The straightforward application of ComBat in medical imaging is
to compensate for differences in radiomic feature values obtained
from images acquired using different protocols. To illustrate,
we performed an EARL experiment using PET images of 49 lesions
from 15 lymphoma patients reconstructed according to the EARL1
and EARL2 standards (8). Without harmonization, we observed a
systematic deviation in SUVmax between the 2 reconstructions (Kol-
mogorov–Smirnov, P5 0.0002; Fig. 2). After applying ComBat con-
sidering the EARL2 reconstruction as a reference site, we observed a
better concordance of SUVmax (P5 0.6994).

NEED FOR TISSUE-SPECIFIC AND TUMOR-SPECIFIC
TRANSFORMATIONS

Since ComBat is a data-driven method, the realignment transfor-
mation (Eq. 2) is specific to the input data. It is therefore specific to
the tissue or tumor type or patient population from which it is esti-
mated. For example, in a previous publication (12), the ComBat
transformation appropriate for SUVmax was different for liver tissue
and breast tumors when pooling 63 patients from site A and 74
patients from site B (Fig. 3). In that example, values from site B
were realigned to values measured at site A, and the resulting trans-
formations were SUVmax Að Þ51:053 SUVmaxðBÞ10:07 for liver
tissue and SUVmaxðAÞ51:133 SUVmaxðBÞ11:84 for tumor tis-
sue. This effect of the imaging protocols is different as a function
of the structure of interest. SUVmax in the liver is not much
impacted by the partial-volume effect, as the liver is a large region;
hence, it is relatively robust to the difference in spatial resolution in
the images produced by the 2 sites. Therefore, the slope of the
transformation was close to 1, and the intercept was close to 0. In
contrast, the SUVmax in breast tumors is affected by the partial-
volume effect. This translates into a slope farther from 1 and an
intercept farther from 0. Therefore, unlike what is stated in a previ-
ous publication (21), phantom measurements cannot be used to
determine the transformations to be applied to feature values mea-
sured at one site to convert them to values that would have been
obtained at the other site a priori. Given the ComBat assumptions,
Equation 2 can be applied only to data affected by the site effect in
the same way as the data used to estimate the a, g, and d parame-
ters of the model. This implies that, for example, a transformation
derived for lung tumors should not be applied to lymphoma tumors
unless the biomarker of interest is affected by the site effect in the
same way in the 2 tumor types.

NEED FOR A FEATURE-SPECIFIC TRANSFORMATION

Just as transformations are specific to each tissue, they are also
specific to each index. For example, using the same data as in
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� Guidelines are proposed for using the ComBat harmonization
method on SUVs, metabolic tumor volume, or any radiomic
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� The ComBat, EARL, and z score harmonization strategies are
compared.
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Figure 3, the equations differ for SUVmax (SUVmaxðAÞ5
1:053SUVmaxðBÞ10:07 for liver tissue) and for the homogeneity
feature (homogðAÞ51:063homogðBÞ20:14). The transformation
has to be estimated for each feature independently because not all fea-
tures are affected in the same way by the site effect. Some features
are relatively immune to the site effect (e.g., shape features), unlike
others (e.g., SUVmax or metabolic tumor volume).

USE OF COMBAT TO ADJUST CUTOFFS BETWEEN
DIFFERENT SITES

Aligning data from different sites might be extremely useful to
adjust the cutoff used to distinguish between groups. Let us take
the example of lymphoma patients, for whom it is well known
that the total metabolic tumor volume (TMTV) calculated from
18F-FDG PET images is a valuable prognostic factor of
progression-free and overall survival (22). However, the cutoff to
identify patients with a poor prognosis depends on the segmenta-
tion method used for TMTV calculation, and there is no consen-
sus on the optimal segmentation method (23). ComBat can thus
be used to automatically determine how the cutoff appropriate for
a segmentation method should be shifted to be applicable to
TMTV measured using a different segmentation method. To
illustrate, we studied a cohort of 280 patients with diffuse large

B-cell lymphoma from the REMARC trial (NCT01122472), for
whom TMTV was calculated from 18F-FDG PET images using 2
segmentation methods (24). Method 1 (M1) used a threshold of
41% of SUVmax to segment lesions previously identified by a
nuclear medicine physician. Method 2 (M2) used a convolutional
neural network model (25). Using M1, the optimal TMTV cutoff
was 242 cm3 to best distinguish between patients with short and
long progression-free survival. Applying that cutoff to TMTVs
measured with M2, the Youden index (sensitivity 1 specificity 2
1) was 0.18 (sensitivity, 41%; specificity, 77%; Table 2). From the
TMTV distributions obtained by the 2 methods (Supplemental
Figs. 1A–1C; supplemental materials are available at http://jnm.
snmjournals.org), ComBat identified the transformation needed
to convert M1 TMTVs to TMTVs that would have been
obtained if M2 segmentation had been used: TMTVM25
0:613TMTVM1228:64. This formula can be used to determine
how the cutoff appropriate for M1 TMTV should be shifted to
be applicable to TMTV measured with M2, which was 119 cm3

(50.61 3 242 2 28.64). With that cutoff, the Youden index was
0.22 (sensitivity, 64%; specificity, 58%), close to the performance
obtained when optimizing the cutoff directly on the M2 TMTV
(Youden index, 0.23). These results demonstrate the ability of
ComBat to determine how a cutoff should be shifted to account
for differences in the segmentation method.

TABLE 1
Description of Simulations

Site A Site B Site C

Experiment Limited stage Advanced stage Limited stage Advanced stage Limited stage

Experiment 1
(virtual site),
reference site5A

N5 1,000, m5 8,
SD53

ø N5 1,000, m512,
SD5 4

ø N51,000, m5 14,
SD5 5

Experiment 2,
reference site5A

N5 1,000, m5 8,
SD53

N51,000, m5 10,
SD5 3

N5 1,000, m512,
SD5 4

N5 1,000, m514,
SD54

ø

Experiment 3,
reference
site5A, without
and with
covariate
(5stage)

N5 1,000, m5 8,
SD53

N51,000, m5 10,
SD5 3

N5 1,000, m512,
SD5 4

ø ø

Experiment 4,
reference
site5A, without
and with
covariate
(5stage)

N5 1,000, m5 8,
SD53

N51,000, m5 10,
SD5 3

N5 200, m5 12,
SD5 4

N5 1,800, m514,
SD54

ø

Experiment 5,
reference
site5A, without
and with
covariate
(5stage)

N5 1,000, m5 8,
SD53

N51,000, m5 10,
SD5 3

N5 1,000, m512,
SD5 4

N5 1,000, m512,
SD54

ø

Experiment 6,
reference
site5A, without
and with
covariate
(5stage)

N5 1,000, m5 8,
SD53

N51,000, m5 10,
SD5 3

N5 1,000, m512,
SD5 4

N5 1,000, m520,
SD54

ø

N5number of simulated samples; m5mean of gaussian distribution; ø5no simulation for this category.
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CIRCUMSTANCES IN WHICH A COVARIATE IS NEEDED

Equation 1 corresponds to the simplest version of ComBat,
which is applicable when the 2 distributions of features to be real-
igned are drawn from the same population and differ only because
of a site effect. However, in many examples, each of these distri-
butions is itself composed of 2 or more distributions. For example,
a feature value distribution might be different in patients with dif-
ferent tumor stages. If the subcategories (patients with different
stages) are not present with the same frequencies at the 2 sites,
then the feature distributions observed at the 2 sites will differ in 2
respects: because of the site effect and because of the different fre-
quencies of subcategories. Equation 1 will not apply unless the
subcategory covariate is introduced. Equation 1 then becomes

yij 5a1Xijb1gi 1di«ij Eq. 3

where X is the design matrix for the covariates of interest,
and b is the vector of regression coefficients corresponding
to each covariate. The values after realignment are obtained using

yComBat
ij 5

yij2â2Xijb̂2ĝi

d̂i
1â Eq. 4

To illustrate the impact of using a covari-
ate, we performed 5 experiments, as listed
in Table 1 (experiments 2–6). In all experi-
ments, we assumed we had data from 2 dif-
ferent sites and that at each site there were
patients with limited-stage or advanced-
stage disease.
In experiment 2, the numbers of patients

with limited-stage and advanced-stage dis-
ease were identical at both sites. Using
ComBat with or without the stage covariate
yields almost identical results (Fig. 4). The
differences are because only 1 transforma-
tion is estimated without a covariate,
compared with 2 transformations corre-
sponding to each of the 2 stages in the ver-
sion including a covariate. Because the
proportion of patients in each stage is
exactly the same, the stage covariate does
not introduce confounding factors. The
covariate is thus not necessary, but using it
does not influence the ComBat results.
In experiment 3, the samples were the

same as in experiment 2, but there were no
advanced-stage patients at site B. Without

the covariate stage, ComBat realigns patients at site A (limited
and advanced stages) with patients at site B (limited stage only),
as shown in Figure 5. Although the realignment of the 2 distri-
butions seems to be satisfactory, a closer analysis shows that
limited-stage patients are not well aligned between sites A and
B because ComBat assumed that all site A patients were drawn
from a single distribution, identical to that of the site B patients.
When stage information is provided as a covariate, the distribu-
tions of limited-stage patients from site B are properly realigned
with those of limited-stage patients from site A.
The frequency of the covariate may also differ between the 2 sites,

such as in experiment 4 (Table 1). Similar to what was observed for
experiment 3, the stage covariate must be introduced in the model to
obtain a correct realignment for each stage (Fig. 4).
Applying ComBat with a covariate is different from performing

ComBat for each subcategory separately. Using a covariate
assumes that the site effect is identical for the 2 (or more) subcate-
gories composing the sample and that only the proportion of indi-
viduals in the subcategories differs between the sites. The
transformations associated with each subcategory are then con-
strained to have the same slope and will differ in their intercept

only, as the intercept expression includes
the design matrix X (Supplemental Fig. 2).
If that assumption can be made, using
ComBat with a covariate should be pre-
ferred to performing ComBat indepen-
dently for each subcategory, as ComBat
parameter estimates will benefit from a
larger sample. If the site effect is expected
to be different for the subcategories (e.g.,
for different tissue types), then ComBat
should be performed for each subcategory
independently. However, introducing cova-
riates implies that the transformation will
be determined from a smaller number of
patients, which may lead to a less reliable

RGB

FIGURE 2. Bland–Altman plots for SUVmax obtained using EARL1 and EARL2 reconstructions
before ComBat (A) and after ComBat (B). Black 5 without covariate; red 5 with metabolic volume
(cm3) as continuous covariate; m5 mean.

RGB

FIGURE 1. Box plot and feature value distributions for experiment 1 (Table 1). (A and D) Plots
before ComBat. (B, E, and G) Plots after ComBat by aligning data from sites B and C to site A. (C, F,
and H) Plots after ComBat by aligning data on virtual site (intermediate between 3 sites). Bottom
graphs show equations of transformations.
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estimate. The need for a covariate must therefore be carefully
considered.

NO INTRODUCTION OF SPURIOUS INFORMATION FROM
COMBAT COVARIATES

Introducing covariates does not artificially add information to the
data, as demonstrated by experiment 5 (Fig. 4). In that setting, the
data were the same as in experiment 4, except that at site B, lim-
ited- and advanced-stage patients yielded features with the exact
same distribution. When ComBat is used with the stage covariate,
limited-stage patients from both sites are realigned, advanced-stage
patients from both sites are realigned, and the differences in lim-
ited- and advanced-stage patient feature distributions are reduced
after pooling of the data from both sites, given that there was a real
difference between the 2 stages at site A but not at site B. The stage
covariate did not introduce any illegitimate differences between the
2 stages in patients scanned at site B (Fig. 4).
Similarly, when the difference between 2 categories (here,

stages) is more detectable on feature values measured at one site

(here, site B) than at the other (site A),
applying ComBat using a covariate will
not corrupt the results (Fig. 4). In experi-
ment 6, the gap between the limited and
advanced stages is 4 times larger at site B
than at site A. After realignment of the dis-
tributions with ComBat and the stage
covariate, the gap between the 2 stages
remains larger at site B (interquartile range
of feature values from site B after ComBat
with covariate, 7.5) than at site A (inter-
quartile range, 4.2), thus preserving the
original properties of the site B distribu-
tions (interquartile range, 8.4) compared
with without covariate (interquartile range,
4.7).
The fact that ComBat does not introduce

false-positives even with the addition of a
covariate has been previously demon-
strated using sham experiments (15).
The covariate can also take continuous

values. In the EARL experiment, the
addition of the metabolic tumor volume of
the volume of interest in cubic centimeters
as a covariate also slightly improved
agreement in SUVmax between with the
EARL1 and EARL2 reconstructions (Fig.
2), with a reduction in the SD of the
Bland–Altman plot from 2.1 SUV to 1.9
SUV.

COMBAT VERSUS Z SCORE

Another frequent harmonization method that can be applied a
posteriori to feature values is the calculation of z scores at each
site independently (26). The feature values at site A are con-
verted into z scores using the average feature value and associ-
ated SD observed over all patients at site A. The same procedure
is used for data from site B, using the mean and SD of all meas-
urements made at site B. In doing so, values measured at the 2
sites become comparable. Supplemental Figure 3 shows the result
after calculating a z score from the SUVmax in the lesions for
centers A and B in comparison with Figure 3. Yet, this does not
preserve the original range of values, since SUVs vary between
21.5 and 3.6 when expressed in z scores, against 1.2 SUV and
35.8 SUV on the original data. A second limitation is that it is
not possible to account for a covariate. Supplemental Figure 4
shows that the absence of the advanced stage at site B for experi-
ment 3 did not allow the distributions of the limited stages in the
2 sites to be aligned correctly when using a z score, in compari-
son to Figure 5.

RGB

FIGURE 3. Application of ComBat in liver and tumor tissues for SUVmax (A) and homogeneity (B).
(Left) Distributions at 2 sites before ComBat. (Center) Distributions after ComBat (site A 5 reference
site). (Right) Values after ComBat plotted against value for same index and tissue before ComBat.
Equation is transformation identified by ComBat to align data from site B to site A.

TABLE 2
Summary of Results Obtained with ComBat to Adjust TMTV Cutoffs Between Different Sites

Parameter Cutoff Youden Sensitivity Specificity

Cutoff optimized for M1 242 cm3 0.18 41% 77%

Based on M1 cutoff, estimated cutoff for M2
(ComBat without log transformation)

119 cm3 0.22 64% 58%

Optimal cutoff for M2 112 cm3 0.23 66% 57%
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REQUIREMENTS TO PREVENT FAILURE OF COMBAT

For ComBat to be useful, some basic assumptions must be ful-
filled. The first assumption is that the distributions of the features
to be realigned must be similar except for shift (additive factor)
and spread (multiplicative factor) effects. This assumption can be
checked by plotting the distributions of the feature values from the
2 sites. ComBat can be used even for nongaussian distributions. A
log transformation before applying ComBat (followed by expo-
nentiation after ComBat) can further improve the effectiveness of
ComBat for heavy-tailed distributions, as shown in Supplemental
Figure 1D.
The second assumption is that covariates (if any) that might

explain different distributions at the 2 sites (see the first assump-
tion) have to be identified and considered using the design matrix
of Equation 3.
Third, the different sets of feature values

to be realigned have to be independent. If
not, it is unlikely that the first assumption
will be met; hence, ComBat will not pro-
vide any sound result. A practical example
is the realignment of TMTVs as described
in this paper but between 2 segmentation
methods, M1 and M2, where M2 produces
the same result as M1 in some examples
and produces a different result in others.
Unless the cases for which the 2 methods
produce the same segmentation can be pre-
dicted and coded as a covariate (e.g., in
small lesions), ComBat should not be used.
To illustrate, we analyzed TMTV from 140
lymphoma patients. M1 corresponds to a
threshold set to an SUV of 4, and M2

corresponds to a majority vote between 3
segmentation approaches, including M1. In
60 of 140 cases, M2 led to exactly the
same TMTV as M1, and the TMTV was
different for all other cases. The TMTVs to
be aligned are not independent, thus result-
ing in a misalignment with ComBat (Sup-
plemental Fig. 5), which should realign the
cases in which the TMTVs are identical
and different separately.
Fourth, determining a single transforma-

tion with ComBat from data with different
tissue or tumor types does not always lead
to satisfactory data realignments, because
different texture patterns are not necessar-
ily affected identically by the image acqui-
sition and reconstruction protocols. It is
therefore not appropriate to realign them
all using a single ComBat transformation.
This consideration fully explains why Ibra-
him et al. (27) did not realign the data cor-
rectly with ComBat: the 10 patterns in the
investigated phantom were affected differ-
ently by the pixel spacing. When ComBat
was applied separately for each of the tex-
tural patterns, the realignments were cor-
rect (28).

AMOUNT OF DATA NEEDED TO USE COMBAT

The success of ComBat when only small datasets are available
depends on the magnitude of the site effect and on the representa-
tiveness of the samples available for each site. In previous studies
(13), ComBat was successful when the number of patients per site
was as low as 20. To illustrate the impact of the number of
patients, we reanalyzed previously published data (12) by aligning
the feature distribution from site B (74 patients) to site A (63
patients) after estimating the ComBat transformation using only a
subset of site B data (74 to 5 patients, 100 repeated random selec-
tions). Before ComBat, the distributions from the 2 sites were differ-
ent (Kolmogorov–Smirnov, P, 5%) for SUVmax or homogeneity
measured in the lesions (Supplemental Table 1). After ComBat, the
distributions were not significantly different in at least 95 of 100

RGB

FIGURE 4. Value distributions for experiments 2, 4, 5, and 6 (Table 1). (Left) Distributions before
ComBat. (Center) Distributions after ComBat (without covariates). (Right) Distributions after ComBat
and specifying stage as covariate.

RGB

FIGURE 5. Distributions for experiment 3 (Table 1). (Left) Distributions before ComBat. (Center)
Distributions after ComBat (without covariate). (Right) Distributions after ComBat and specifying
stage as covariate. (Top) Pooling of data at each site. (Bottom) Data represented per site and stage.
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tests when the transformation was estimated using 25 patients or
more from site B for SUVmax (20 patients for homogeneity). Sup-
plemental Figure 6 shows the increase in variability in estimating
the intercept and slope of the ComBat transformation when the esti-
mation is based on fewer and fewer patients. These results support
the recommendation of using ComBat when at least 20–30 patients
per batch are available. Use of a small sample size to estimate the
transformations can also lead to a nonsignificant Kolmogorov–Smir-
nov test because the scanner effect becomes undetectable. In case a
covariate is used, a minimum of 20–30 patients per covariate in
each batch is also recommended.
A variant of ComBat named B-ComBat, which uses a bootstrap

approach to determine the parameters of the transformation, has
been proposed (20). However, the use of B-ComBat and the poten-
tial benefit of this more computationally demanding approach
compared with ComBat have not yet been reported by independent
groups.

USE OF COMBAT IN PRACTICE

Different implementations of ComBat are publicly available (R,
Python, MATLAB [MathWorks]) and are summarized in Table 3.
ComBat can also be used without any third-party software or pro-
gramming skills using a free online application (https://forlhac.
shinyapps.io/Shiny_ComBat/).

DISCUSSION

In this article, we provide a guide to understanding and using
the ComBat harmonization method correctly. The main advantage
of ComBat is that it can be used retrospectively and directly on
image features that are already calculated without the need to per-
form phantom experiments. However, given that ComBat is a
data-driven method, a highly recommended practice is to

scrutinize the distributions of the feature values from the sites to
be pooled before using ComBat. This practice usually makes it
possible to quickly determine whether the assumptions underlying
ComBat are fulfilled, especially whether the distributions observed
at the different sites are similar except for shift and spread effects.
When this is the case, ComBat can be used; otherwise, the reason
should first be identified. Often, the reason is the presence of one
or more covariates, such as patient age, disease stage, treatment,
molecular subtype, or metabolic volume. When covariates can be
identified, it is easy to check whether ComBat assumptions are
met for each dataset corresponding to a covariate value and
whether the site effect impacts the sample corresponding to each
covariate identically. If so, ComBat can be used by including that
covariate. If the site effect impacts samples corresponding to each
covariate differently, then a specific ComBat transformation
should be estimated for each sample independently. Examination of
feature distributions in tumors can sometimes be challenging, as the
variability in the biologic signal associated with tumor heterogeneity
can hide other sources of variability associated with the site effect.
An easy check is to segment a reference region of fixed size in a
nonpathologic tissue (e.g., healthy liver) and observe feature values
within that region in images from different sites. This check is not
sufficient, as it will not give precise information about site effects
related to the spatial resolution in the images because the liver usu-
ally displays a low-frequency signal. However, we still find it useful
to characterize how image quality differs between sites.
ComBat users should keep in mind that data can be grouped in

the same batch if they were extracted from images obtained using
the same setting on the same scanner. If the image acquisition and
reconstruction protocols vary on a scanner, a careful check is
needed to ensure that this variance does not affect the image prop-
erties. Otherwise, different batches should be used for the same
scanner corresponding to different settings.

TABLE 3
Implementations of ComBat

Name Details

neuroComBat (script) https://github.com/Jfortin1/ComBatHarmonization; language: R, Python, or MATLAB

M-ComBat (script) https://github.com/SteinCK/M-ComBat; language: R

ComBaTool (standalone web application) https://forlhac.shinyapps.io/Shiny_ComBat/; language: R

TABLE 4
Opportunities and Limitations of Harmonization Using EARL and ComBat

Parameter Upfront harmonization (like EARL) ComBat

Opportunities Applicable without restriction on
number of patients; valid for any
pathology and feature

Applicable directly to calculated radiomic feature values
(no need to access images); no need for phantom
acquisition; applicable retrospectively; applicable
prospectively if data have already been acquired for
same pathology with same acquisition and analysis
protocols and settings; ability to realign data to
particular site

Limitations Not applicable retrospectively;
requires acquisition of phantom
images, optimization of
reconstruction settings, and
access to machine

Requirement for minimum number of patients (�20–30 per
batch); specific transformation for each type of tissue,
each type of tumor, each scanner, each material in
phantom, each analysis method (e.g., segmentation
approach) and each feature; not applicable prospectively
if little or no previously acquired data
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In prospective studies, the transformation to be applied with
ComBat can be deduced from data acquired previously for the
same patient population. The ComBat method is complementary
to the EARL standardization approach. We have summarized the
pros and cons of both approaches in Table 4. EARL and ComBat
can be used together if differences in feature distributions remain
even with an EARL-standardized imaging protocol.
Harmonization in medical imaging can also be seen as domain

adaptation, where the goal would be to produce images belonging
to a single domain (here, corresponding to the image quality or
accuracy obtained with a specific scanner and protocol) from
images recorded in different domains. Promising approaches for
domain adaptation using, for example, generative adversarial net-
works have been developed in recent years (29–31). The role of
such approaches in harmonizing PET and SPECT images remains
to be studied. Unlike ComBat, generative adversarial networks act
on the images and not on the already computed features; this
requires access to the images, which could be a limitation.

CONCLUSION

In this article, we provide a guide to using the ComBat method
to compensate for multicenter effects affecting quantitative bio-
markers extracted from nuclear medicine images and beyond. This
harmonization method is largely used in medical imaging and
should facilitate large-scale multicenter studies needed to translate
radiomics to the clinics.
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